. Επόμενο βήμα. Θέση Τηλεσκοπίου
|
|
- ÍΘεριστής Σερπετζόγλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Θέμα 1 ο (4.0 μονάδες) Για τις ανάγκες ίδρυσης ενός δικτύου πολύ μεγάλης ακρίβειας μετρήσατε από το σημείο Τ1 3 διευθύνσεις προς τα σημεία Σ14, Σ9 και Σ6 σε 4 περιόδους. Σας ζητείται να υπολογίσετε την μέση τιμή των διευθύνσεων για τις 4 περιόδους (1+1+1 μονάδα), καθώς επίσης και το σφάλμα σταθμού (1 μονάδα) Περίοδος 1η 2η 3η 4η Σημείο Θέση Τηλεσκοπίου Ι ΙΙ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Απάντηση Είναι ακριβώς η ίδια άσκηση, με ακριβώς τα ίδια νούμερα που δώθηκε στις εξετάσεις του εργαστηρίου. Το μόνο επιπλέον ζητούμενο ήταν να υπολογιστεί το σφάλμα του σταθμού, που αφενός έχει διδαχθεί μέσα στο μάθημα, αφετέρου υπάρχει λυμένη άσκηση μέσα στο βιβλίο. Πρώτη εργασία ήταν ο υπολογισμός της μέσης τιμής σκόπευσης λαμβάνοντας την 1 η και τη 2 η θέση τηλεσκοπίου, σύμφωνα με τον τύπο = (±). Επόμενο βήμα είναι ο υπολογισμός της μέσης ανοιγμένης τιμής για κάθε περίοδο μέτρησης, όπου υπολογίζεται από τη διαφορά της μέσης τιμής της διεύθυνσης από τη μέση τιμή της διεύθυνσης αναφοράς (συνήθως το σημείο «μηδενισμού»). Το τελευταίο βήμα ήταν ο υπολογισμός της μέσης τιμής περιόδων για κάθε διεύθυνση χωριστά, δηλαδή ο υπολογισμός των μέσων όρων της κάθε διεύθυνσης για τις 4 περιόδους μέτρησης. (σελίδες )
2 Περίοδος 1η 2η 3η 4η Σημείο Θέση Τηλεσκοπίου Ι ΙΙ Ανηγμένη Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ τιμή 4 περιόδων Τ1 Σ Τ1 Σ Τ1 Σ Επόμενο βήμα ήταν ο υπολογισμός των ποσοτήτων υ, υο, υ, υυ σύμφωνα με τους τύπους: υ = μέση τιμή περιόδου μέση ανηγμένη τιμή υο = - Συ /s, όπου s το πλήθος των διευθύνσεων ανά περίοδο (s=3 στη περίπτωση μας) υ = υ + υο υυ = υ 2 Υπολογίζοντας τις παραπάνω ποσότητες, μπορούμε να υπολογίσουμε και το μέσο τετραγωνικό σφάλμα μιας διεύθυνσης σύμφωνα με τον τύπο: = () (), όπου ν ο αριθμός των περιόδων (ν=4 στη περίπτωση μας) Τέλος, υπολογίζεται το μέσο τετραγωνικό σφάλμα γενικής μέση τιμής ή αλλιώς το Σφάλμα Σταθμού σύμφωνα με τον τύπο: =
3 Άρα έχουμε: Περίοδος 1η 2η 3η 4η Σημείο Ανηγμένη υ (cc) υο(cc) υ(cc) υυ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Σ Με Συυ = m = 2.91 και τελικά Μ=1.45 που είναι και το σφάλμα σταθμού. Πρόκειται δηλαδή για μία διαδικασία, η οποία ακριβώς με τα ίδια νούμερα παραδόθηκε στο μάθημα, και απαιτεί χρόνο για την ορθή επίλυσή του περίπου 45 λεπτά. Θέμα 2 ο (4.0 μονάδες) Για τις ανάγκες αποτύπωσης μιας περιοχής, υλοποιήσατε και μετρήσατε μια ανοιχτή εξαρτημένη στα δύο άκρα όδευση, καθώς επίσης και κάποιες τυφλές στάσεις. Οι μετρήσεις που πραγματοποιήθηκαν μετά από τις απαραίτητες αναγωγές είναι οι παρακάτω. Σημείο Σημείο Ύψος Οριζόντια Κατακόρυφη Κεκλιμένη Ύψος Στάσης Σκόπευσης Οργάνου Γωνία Γωνία Απόσταση Οργάνου S S S S S S S S S
4 Σημείο Σημείο Ύψος Οριζόντια Κατακόρυφη Κεκλιμένη Ύψος Στάσης Σκόπευσης Οργάνου Γωνία Γωνία Απόσταση Οργάνου S S S S S S S S S S S S S S S S S S S S S S S S Οι συντεταγμένες των σταθερών σημείων δίνονται παρακάτω: Α/Α Χ Υ Ζ S S S S ΓΔ 542.0ΓΔ (...) (...) Σας ζητείται να υπολογίσετε γωνιακό σφάλμα της ανοιχτής εξαρτημένης στα δύο άκρα όδευσης, καθώς επίσης και τις συντεταγμένες του σημείου S13. Απάντηση Το δύσκολο κομμάτι σε αυτό το θέμα είναι η κατανόηση της μορφής της όδευσης από τις μετρήσεις. Διαβάζοντας προσεκτικά τις μετρήσεις, διαπιστώνεται
5 ότι πρόκειται για μία συνεχή όδευση, χωρίς διακλαδώσεις, η οποία ξεκινάει από το σημείο στάσης Σ1 και καταλήγει στο σημείο στάσης Σ13. Από την εκφώνηση του θέματος γνωρίζουμε τις συντεταγμένες των σημείων στάσης Σ1, Σ2, Σ11, και Σ12, με αποτέλεσμα να έχουμε μια ανοιχτή εξαρτημένη στα δύο άκρα όδευση από το σημείο Σ1 (πρώτο γνωστό σημείο) έως το σημείο Σ12 (τελευταίο γνωστό σημείο), και μια τυφλή στάση (Σ13), η οποία υλοποιήθηκε από τη στάση Σ12. Παράλληλα μας δίνονται οι μετρήσεις όλων των στάσεων, ΑΡΑ και οι γωνίες θλάσης βι, μιας και ο «μηδενισμός» γίνεται σε σκόπευση Για να υπολογιστεί το γωνιακό σφάλμα της ανοιχτής εξαρτημένης στα δύο άκρα όδευσης, πολύ απλά θα έπρεπε να υπολογιστούν τα αζιμούθια των δύο πρώτων γνωστών σημείων και των δύο τελευταίων γνωστών σημείων με τη χρήση του 2 ου θεμελιώδες προβλήματος. Δηλαδή: G Σ1-Σ2 G Σ11-Σ12 Υπάρχουν και οι γωνίες θλάσης βι, δηλαδή από τη β1 έως τη β10 (προσοχή δεν θα υπολογιστεί ως γωνία θλάσης η Σ12-Σ13, διότι δεν αποτελεί μέτρηση της όδευσης), άρα με τη χρήση του 3 ου θεμελιώδες προβλήματος υπολογίζεται το Gείναι και συγκρίνεται με το Gπρέπει, ώστε να υπολογιστεί το γωνιακό σφάλμα. Επόμενο βήμα ήταν ο υπολογισμός των συντεταγμένων του σημείου Σ13. Για να υπολογίσουμε τις συντεταγμένες του σημείου Σ13, χρειάζεται να ξέρουμε την Sοριζόντια από τη Σ12 στη Σ13, που μπορούμε να την υπολογίσουμε, καθώς επίσης και το G Σ12-Σ13, το οποίο πολύ εύκολα μπορεί να υπολογιστεί χρησιμοποιώντας το 3 ο θεμελιώδες πρόβλημα και γνωρίζοντας από πριν το G Σ11-Σ12. Τέλος για το υψόμετρο του σημείου Σ13 πολύ απλά εφαρμόζεται ο τύπος: ΗΣ13 = ΗΣ12 + Υ.Ο.Σ12 Υ.Σ. + SD Σ12-Σ13 x cos Vz Σ12-Σ13 Για την ορθή εκτέλεση του θέματος, το οποίο παραδόθηκε στο μάθημα, απαιτείται χρόνος περίπου 30 λεπτά. Θέμα 3 ο (2.0 μονάδες) Σας ζητείται να απαντήσετε πόσα και ποια (σχήμα) σημεία θα χρειαστεί να αποτυπώσετε, ώστε να σχεδιαστεί άρτια μια τετραγωνική κατασκευή (φρεάτιο) διαστάσεων 12x12cm, και μια ορθογωνική κατασκευή (φρεάτιο) διαστάσεων 20x10cm για κλίμακες σχεδίασης 1:200, 1:500 και 1: Απάντηση Για να απαντηθεί το συγκεκριμένο ερώτημα, έπρεπε οι σπουδαστές να σκεφτούν την ακρίβεια του κάθε χάρτη αναλόγως τη κλίμακα σχεδίασης. Γνωρίζουμε ότι η διακριτική ικανότητα του ματιού είναι 0.2mm στο χαρτί, άρα για κάθε κλίμακα σχεδίασης υπάρχει και μια ελάχιστη απόσταση που θα φαίνεται στην εκτύπωση. Έτσι η σωστή απάντηση για το συγκεκριμένο θέμα δίνεται στο παρακάτω σχήμα.
6 Για την ορθή εκτέλεση του θέματος, το οποίο παραδόθηκε στο μάθημα, απαιτείται χρόνος περίπου 10 λεπτά. Γενική παρατήρηση Και τα τρία θέματα συζητήθηκαν εκτενέστερα και παραδόθηκαν διαλέξεις είτε με ακριβώς ίδια νούμερα, είτε με παραπλήσια μέσα στο μάθημα της θεωρίας.
Θέμα 1 ο (2.5 μονάδες)
Θέμα 1 ο (2.5 μονάδες) Α) Με τον γεωδαιτικό σταθμό της εταιρίας Pentax που εργαστήκατε στο εργαστήριο Τοπογραφίας υπάρχει δυνατότητα να κεντρώσετε και να οριζοντιώσετε το όργανο χωρίς τη χρήση της μπαταρίας;
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις,
Για την άρτια εκτέλεση του θέματος θα πρέπει να γίνουν οι παρακάτω εργασίες:
Το αντικείμενο του θέματος είναι η ταχυμετρική αποτύπωση σε κλίμακα 1:200 της περιοχής που ορίζεται από τo Σκαρίφημα Λιμνίου με Συντεταγμένες Σημείων το οποίο παραδόθηκε στο μάθημα και βρίσκεται στο eclass.
Πρόλογος 5. Πρόλογος
Πρόλογος 5 Πρόλογος Η Τοπογραφία είναι ο επιστημονικός χώρος μέσω του οποίου κατόρθωσε να επιτύχει ο άνθρωπος την απεικόνιση τμημάτων της γήινης επιφάνειας στο επίπεδο. Ενδιάμεσο και απαραίτητο στάδιο
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Ενημερωτικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
ύο λόγια από τους συγγραφείς.
ύο λόγια από τους συγγραφείς. Το βιβλίο αυτό γράφτηκε από τους συγγραφείς με σκοπό να συμβάλουν στην εκπαιδευτική διαδικασία του μαθήματος της Τοπογραφίας Ι. Το βιβλίο είναι γραμμένο με τον απλούστερο
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Εισαγωγικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 8: Λυμένες ασκήσεις Δρ. Γρηγόριος Βάρρας
Τοπογραφία Γεωμορφολογία (Εργαστήριο) Ενότητα 8: Λυμένες ασκήσεις Δρ. Γρηγόριος Βάρρας 1.1.1.1. ΠΑΡΑΔΕΙΓΜΑ 1 Στον πίνακα, που ακολουθεί, δίνονται τα στοιχεία κλειστής πολυγωνικής Όδευσης 1-2-3-4-1. Ζητούνται
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΕΡΙΓΡΑΦΗ ΜΑΘΗΜΑΤΟΣ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΕΡΙΓΡΑΦΗ ΜΑΘΗΜΑΤΟΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστημίου Δυτικής Αττικής 3ο εξάμηνο ΝΕΟ eclass http://eclass.uniwa.gr
ΑΣΚΗΣΕ. Εξάμηνο. Χειμερινό. Διδάσκων Πατλάκης
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΤΟΠΟΓΡΑΦΙΑΑ
Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων
Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε
Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας
Τοπογραφία Γεωµορφολογία (Εργαστήριο) Ενότητα 5: Τοπογραφικά όργανα Γ ρ. Γρηγόριος Βάρρας 1.1. ΧΩΡΟΒΑΤΗΣ Ο χωροβάτης είναι το Τοπογραφικό όργανο, που χρησιμοποιείται στη μέτρηση των υψομέτρων σημείων.
Εργαστήριο μαθήματος - Τοπογραφία (Παρατηρητές) Ονοματεπώνυμο ΑΜ. Ασκήσεις Εργαστηρίου τοπογραφίας
ΤΕΙ Σερρών, Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ & Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Κατεύθυνση Πολιτικών Μηχανικών ΤΕ Ακαδημαϊκό Έτος 2015-2016 Χειμερινό Εξάμηνο Εργαστήριο
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης
ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΠΡΟΒΛΗΜΑ Ένας μαθητής της Γ γυμνασίου, για να περάσει το μάθημα της Πληροφορικής θα πρέπει να βγάλει γενικό μέσο όρο (ΓΜΟ) 9.5 Το πρόγραμμα που
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΟΛΥΓΩΝΟΜΕΤΡΙΑ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΟΛΥΓΩΝΟΜΕΤΡΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις Παρουσιάσεις,
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο
ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΚΑΙ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ )
1 ο ΕΚΦΕ (. ΣΜΥΡΗΣ) Δ Δ/ΣΗΣ Δ. Ε. ΑΘΗΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΟ ΚΑΙ ΟΡΙΖΟΤΙΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος, που ολισθαίνει
Έτος: Εξάμηνο: Ημερομηνία εκτέλεσης: Ημερομηνία παράδοσης:
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ (ΑΣΠΑΙΤΕ) - ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΠΟΙΟΤΙΚΟΥ ΕΛΕΓΧΟΥ Υπεύθυνος καθηγητής: Ζκέρης Βασίλειος ΕΚΘΕΣΗ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ 6: ΠΡΟΒΟΛΙΚΟ ΜΗΧΑΝΗΜΑ
ΤΙΤΛΟΣ ΘΕΜΑΤΟΣ ΑΠΟΤΥΠΩΣΗ ΟΙΚΟ ΟΜΙΚΟΥ ΤΕΤΡΑΓΩΝΟΥ ΚΑΙ ΟΜΟΡΩΝ ΑΥΤΟΥ ΗΜΟΣ ΕΥΟΣΜΟΥ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΤΙΤΛΟΣ ΘΕΜΑΤΟΣ ΑΠΟΤΥΠΩΣΗ ΟΙΚΟ ΟΜΙΚΟΥ ΤΕΤΡΑΓΩΝΟΥ ΚΑΙ ΟΜΟΡΩΝ ΑΥΤΟΥ ΗΜΟΣ ΕΥΟΣΜΟΥ ΝΟΜΟΣ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΟΙΤΗΤΕΣ Κοκολιός Στυλιανός Μυρίτης Λεονάρδος 05 ΝΟΕΜΒΡΙΟΥ 2009 ΚΑΘΗΓΗΤΗΣ Βακαλφώτης Κωνσταντίνος ΠΙΝΑΚΑΣ
ήγαινε στο x : y : κατέβασε πένα σήκωσε πένα
Παραδείγματα Ας δούμε τώρα πρακτικά πως μπορούμε να συνδυάσουμε την εντολή κίνησης πήγαινε στο x: y: με τις κατέβασε πένα, σήκωσε πένα για να δημιουργήσουμε ένα τετράγωνο. Έστω ότι θέλουμε να το δημιουργήσουμε
Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις,
Εφαρμογές Πληροφορικής στην Τοπογραφία 7η Ενότητα Μονάδες, εντολές Text, List, μετρήσεις, μετασχηματισμοί και άσκηση χάραξης
Εφαρμογές Πληροφορικής στην Τοπογραφία 7η Ενότητα Μονάδες, εντολές Text, List, μετρήσεις, μετασχηματισμοί και άσκηση χάραξης Τσιούκας Βασίλειος, Αναπληρωτής Καθηγητής Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
ΕΙΣΑΓΩΓΗ ΟΙ ΜΕΤΡΗΣΕΙΣ ΕΓΙΝΑΝ ΣΤΟ : ΕΛΛΗΝΙΚΟ ΓΕΩΔΑΙΤΙΚΟ ΣΥΣΤΗΜΑ ΑΝΑΦΟΡΑΣ 1987 (Ε.Γ.Σ.Α. 87)
ΕΙΣΑΓΩΓΗ 1 Η ΟΜΑΔΑ ΕΡΓΑΣΙΑΣ ΑΠΟΤΕΛΟΥΜΕΝΗ ΑΠΟ ΤΟΥΣ ΣΠΟΥΔΑΣΤΕΣ ΚΑΛΟΜΑΛΟ ΠΑΝΑΓΙΩΤΗ, ΛΑΓΟ ΣΠΥΡΙΔΩΝ ΚΑΙ ΠΟΘΟ ΣΠΥΡΙΔΩΝ ΑΝΕΛΑΒΕ, ΚΑΤΟΠΙΝ ΣΥΝΝΕΝΟΗΣΕΩΣ ΜΕ ΤΟ ΕΡΓΑΣΤΗΡΙΟ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΤΟΝ ΚΑΘΗΓΗΤΗ κ. ΚΩΝΣΤΑΝΤΙΝΟ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΥΨΟΜΕΤΡΙΑ - ΧΩΡΟΣΤΑΘΜΗΣΗ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΥΨΟΜΕΤΡΙΑ - ΧΩΡΟΣΤΑΘΜΗΣΗ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr Παρουσιάσεις,
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO
ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς
Αναγκαιότητα τοποθέτησης διαστάσεων 29/10/2015 Πολύζος Θωμάς 1 Αναγκαιότητα τοποθέτησης διαστάσεων Σφάλμα μέτρησης που οφείλεται: Σε υποκειμενικό λάθος εκείνου που κάνει την μέτρηση. Σε σφάλμα του οργάνου
ΜΕΤΡΟΛΟΓΙΑ 8 ο εξάµηνο. Έλεγχοι Γεωδαιτικών Οργάνων κατά ISO / DIS
ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΑ ΓΕΝΙΚΗΣ ΓΕΩ ΑΙΣΙΑΣ και ΦΩΤΟΓΡΑΜΜΕΤΡΙΑΣ ΜΕΤΡΟΛΟΓΙΑ 8 ο εξάµηνο Έλεγχοι Γεωδαιτικών Οργάνων κατά IO / DI 1857 - Σκοπός της άσκησης είναι
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr
ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ
ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΟΠΤΙΚΗΣ Άσκηση 4: Σφάλματα φακών: Ι Σφαιρική εκτροπή Εξεταζόμενες γνώσεις: σφάλματα σφαιρικής εκτροπής. Α. Γενικά περί σφαλμάτων φακών Η βασική σχέση του Gauss 1/s +1/s = 1/f που
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύου Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο Μεταλλικού Τ1-Τ10
ΓΕΩΔΑΙΣΙΑ II Μάθημα 3 ο και 4 ο. Ι.Μ. Δόκας Επικ. Καθηγητής
ΓΕΩΔΑΙΣΙΑ II Μάθημα 3 ο και 4 ο Ι.Μ. Δόκας Επικ. Καθηγητής Εμβαδά Υπολογισμός του εμβαδού μιας επιφάνειας γίνεται πάντα στο οριζόντιο επίπεδο με τις παρακάτω μεθόδους: Από τις επίπεδες καρτεσιανές συντεταγμένες
Σ.Α.Τ.Μ. ΕΜΠ Γενική Γεωδαισία Άσκηση 1 1
Σ.Α.Τ.Μ. ΕΜΠ Γενική Γεωδαισία Άσκηση 1 1 Άσκηση 1 ο (Θεμελιώδη προβλήματα) Για τον προσδιορισμό των συντεταγμένων των κορυφών μιας ιδιοκτησίας Α-Β-Γ-Δ-Ε (σκαρίφημα 1) στο κρατικό σύστημα αναφοράς ΕΓΣΑ
Σύντομος οδηγός του προγράμματος DEROS
Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες
Θεωρητικό Μέρος Θέμα 1 ο Α. Για την ταχύτητα υυ και την επιτάχυνση αα ενός κινούμενου σώματος δίνονται οι ακόλουθοι συνδυασμοί τιμών:
Α Λυκείου 7 Μαρτίου 2015 ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα
Μια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG )
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΤΡΙΒΗ ΟΛΙΣΘΗΣΗΣ ΣΕ ΚΕΚΛΙΜΕΝΟ ΕΠΙΠΕΔΟ ( ΜΕ ΤΗΝ ΚΛΑΣΣΙΚΗ ΜΕΘΟΔΟ Ή ΤΟ MULTILOG ) Α. ΣΤΟΧΟΙ Η εφαρμογή των νόμων της Μηχανικής στη μελέτη της κίνησης σώματος,
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Τα θέματα συνεχίζονται στην πίσω σελίδα
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ ΑΚΑΔ. ΕΤΟΣ 16-17 Διδάσκων : Χ. Βοζίκης Τ. Ε. Ι. ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός
Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,
ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας
Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές
0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)
ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ
ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την
ΥΨΟΜΕΤΡΗΣΗ. hab = ο - ε.
ΒΙΒΛΙΟΓΡΑΦΙΑ: Π. Σαββαΐδης, Ι. Υφαντής, Κ. Λακάκης, ΣΗΜΕΙΩΣΕΙΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΘΕΜΑΤΙΚΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ Α. Π. Θ., Θεσσαλονίκη 2007 ΥΨΟΜΕΤΡΗΣΗ 1. H γεωµετρική χωροστάθµηση Στη γεωµετρική
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το
Έντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Σημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://phsicscourses.wordpress.com/ Θεωρία Υπάρχουν κάποιες περιπτώσεις μελέτης τις οποίες
ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ
2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί
ΕΞΑΜΗΝΙΑΙΟ ΘΕΜΑ ΜΑΘΗΜΑΤΟΣ ΑΠΟΤΥΠΩΣΕΙΣ ΧΑΡΑΞΕΙΣ
ΕΞΑΜΗΝΙΑΙΟ ΘΕΜΑ ΜΑΘΗΜΑΤΟΣ ΑΠΟΤΥΠΩΣΕΙΣ ΧΑΡΑΞΕΙΣ «Αποτύπωση περιοχής πευκώνα και παρακείμενων κτηρίων Υπολογισμοί στοιχείων χάραξης γεωτεμαχίου και κυκλικού τόξου» Αντικείμενο έργου Αντικείμενο του εξαμηνιαίου
Πίνακες αποφάσεων. Παράδειγµα 1 ο. Εκφώνηση. Ανάλυση
Πίνακες αποφάσεων Ο πίνακας αποφάσεων είναι η µέθοδος για την επίλυση προβληµάτων µε πολλές και αλληλοεπιδρώσες συνθήκες. Ένα πίνακας αποφάσεων χωρίζεται στα εξής µέρη: 1 ο µέρος καταγράφονται οι λογικές
ΥΛΟΠΟΙΗΣΗ ΗΛΕΚΤΡΟΝΙΚΟΥ ΒΟΛΤΟΜΕΤΡΟΥ
ΥΛΟΠΟΙΗΣΗ ΗΛΕΚΤΡΟΝΙΚΟΥ ΒΟΛΤΟΜΕΤΡΟΥ ΕΠΩΝΥΜΟ ΟΝΟΜΑ Α.Μ. ΤΜΗΜΑ ΗΜΕΡΟΜΗΝΙΑ ΔΙΕΞΑΓΩΓΗΣ:.... /..../ 0.. ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:.... /..../ 0.. ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΑΝΤΙΚΕΙΜΕΝΟ
7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ
63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του
ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι:
Μετρήσεις-Αβεβαιότητα-Σφάλματα. Η μέτρηση ενός μεγέθους στο εργαστήριο μπορεί να είναι: ΑΜΕΣΗ ή ΕΜΜΕΣΗ Στην άμεση μέτρηση το μέγεθος μετράται με κάποιο όργανο. Στην έμμεση μέτρηση το μέγεθος υπολογίζεται
6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο
6. ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤ ΕΠΙΠΕ ΘΕΩΡΙΑ. Σύστηµα καθέτων ηµιαξόνων: Είναι δύο κάθετες µεταξύ τους ηµιευθείες µία οριζόντια και µία κατακόρυφη. Την οριζόντια την ονοµάζουµε και την λέµε ηµιάξονα των ή ηµιάξονα
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές στο δίκτυο του
Εφαρμογές Πληροφορικής στην Τοπογραφία 8η Ενότητα - Scripting στο AutoCAD Παραδείγματα
Εφαρμογές Πληροφορικής στην Τοπογραφία 8η Ενότητα - Scripting στο AutoCAD Παραδείγματα Τσιούκας Βασίλειος, Αναπληρωτής Καθηγητής Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Θεσσαλονίκη, Φεβρουάριος 2014 Άδειες
ΑΣΚΗΣΕ. Εξάμηνο. Χειμερινό. Διδάσκων Πατλάκης
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΚΑΤΕΥΘΥΝΣΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΤΟΠΟΓΡΑΦΙΑΑ
Προβλήματα Ισορροπίας Δυνάμεων. Μεθοδολογία ασκήσεων
Μεθοδολογία ασκήσεων Όταν έχουμε προβλήματα στο οποία ένα σώμα ισορροπεί, η μεθοδολογία που χρησιμοποιούμε έχει ως εξής: 1. Σχεδιάζουμε τις δυνάμεις που ασκούνται στο σώμα. Το πλήθος των δυνάμεων που σχεδιάζουμε
sin ϕ = cos ϕ = tan ϕ =
Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται
ΦΥΣΙΚΗ. συστήματος των σωμάτων Α και Β, τα οποίο βρίσκονται διαρκώς σε επαφή. m m 2F. 2 3m
Α Λυκείου 4 / 4 / 9 ΦΥΣΙΚΗ ΘΕΜΑ Α. Α. γ, ΜΟΝ5 Α. β ΜΟΝ5, Α3.γ ΜΟΝ5, Α4.α ΜΟΝ5 Α5. α)σ ΜΟΝ,β) Σ ΜΟΝ, γ) Λ ΜΟΝ, δ)λ ΜΟΝ, ε) Λ ΜΟΝ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (β).μον. Εφαρμόζοντας το ο νόμο του Νεύτωνα
2.2 Αναπτύγµατα. Σχέδιο Ειδικότητας Αµαξωµάτων
2.2 Αναπτύγµατα Ανάπτυγµα ενός γεωµετρικού στερεού σώµατος είναι η αποτύπωση σε ένα επίπεδο του συνόλου των επιφανειών του. Με βάση τα αναπτύγµατα, γίνεται η κοπή της πρώτης ύλης (έλασµα, λάµα) και µε
Γραφήματα οικογένειας παραβολών
Γραφήματα οικογένειας παραβολών Η βολή ενός αντικειμένου στον αέρα έχει ως αποτέλεσμα μια καμπυλωμένη τροχιά, η οποία είναι πάντοτε μια παραβολή. Η παραβολή είναι το γράφημα μιας δευτεροβάθμιας συνάρτησης,
Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης
Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση
Μεθοδολογία Παραβολής
Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2.4.5 8.2 Βασικές Ασκήσεις στις Δομές Επανάληψης Έλεγχος Εισαγόμενων Τιμών Εύρεση Αθροισμάτων - Μέσων όρων Εύρεση Μέγιστου- Ελάχιστου Εύρεση Πλήθους Ποσοστών
ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Α Λυκείου Σελ. 1 από 8 ΟΔΗΓΙΕΣ: ΕΚΦΩΝΗΣΕΙΣ: ΘΕΜΑ 1 Ο
ΟΔΗΓΙΕΣ: 1. Οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί χωριστά από τις εκφωνήσεις. 2. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε φύλλα Α4 ή σε τετράδιο
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ
ΚΕΦΑΛΑΙΟ 4 ο. Πίνακας διερεύνησης της εξίσωσης Εξίσωση: αx 2 +βx+γ=0 (α 0) (Ε) Έχει ΥΟ ρίζες άνισες που δίνονται από τους τύπους x 1,2 =
ΕΞΙΩΕΙ-ΑΝΙΩΕΙ ου ΒΑΘΜΟΥ - 38 - ΚΕΦΑΑΙΟ 4 ΚΕΦΑΑΙΟ 4 ο Εξισώσεις - Ανισώσεις β βαθµού 5.1. Μορφή και διερεύνηση της εξίσωσης β βαθµού Άθροισµα και γινόµενο των ριζών της Κάθε εξίσωση β βαθµού πριν τη λύσουµε,
I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).
ΑΣΚΗΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ 1. Να κατασκευάσετε έναν κύκλο και να πάρετε μια χορδή του ΑΒ. Από το κέντρο Κ του κύκλου να φέρετε κάθετη στη χορδή ΑΒ η οποία τέμνει τη χορδή στο σημείο Μ. Να διαπιστώσετε με μέτρηση
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΔΥΝΑΜΙΚΗ. Ονοματεπώνυμο Τμήμα
Σ ε λ ί δ α 1 ΣΧΟΛΙΚΟ ΕΤΟΣ 2013-2014 ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΔΥΝΑΜΙΚΗ Ονοματεπώνυμο Τμήμα ΘΕΜΑ Α Οδηγία: Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α.1-Α.4
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 17 Ε_3.ΦλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 17 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις
Εργαστήριο μαθήματος - Τοπογραφία. Ονοματεπώνυμο ΑΜ. Ασκήσεις Εργαστηρίου τοπογραφίας
ΤΕΙ Σερρών, Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ & Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Κατεύθυνση Πολιτικών Μηχανικών ΤΕ Ακαδημαϊκό Έτος 2016-2017 Χειμερινό Εξάμηνο Εργαστήριο
Έργο Δύναμης Έργο σταθερής δύναμης
Παρατήρηση: Σε όλες τις ασκήσεις του φυλλαδίου τα αντικείμενα θεωρούμε ότι οι δυνάμεις ασκούνται στο κέντρο μάζας των αντικειμένων έτσι ώστε αυτά κινούνται μόνο μεταφορικά, χωρίς να μπορούν να περιστραφούν.
8. Σύνθεση και ανάλυση δυνάμεων
8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα
25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: ΜΟΝΑΔΕΣ:
ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗ 25 Ιανουαρίου 2014 ΛΥΚΕΙΟ:..... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Το πρόβλημα Ένας φίλος σας βρήκε ένα μικρό, πολύ όμορφο τεμάχιο διαφανούς στερεού και ζητά τη γνώμη
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω
ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΟΜΑΔΑ ΠΡΩΤΗ
ΜΑΘΗΜΑ Α.Ο.Θ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15/01/2017 ΚΑΘ/ΤΗΣ ΣΦΥΡΗΣ Π. ΒΑΘΜΟΣ: /100, /20 ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Στις προτάσεις α μέχρι και ε να γράψετε στο τετράδιο σας το γράμμα της
ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β Ερώτηση. Tο γιο-γιο του σχήματος έχει ακτίνα R και αρχικά είναι ακίνητο. Την t=0 αφήνουμε ελεύθερο το δίσκο
ΗΥ 111, Απειροστικός Λογισμός ΙΙ Εαρινό Εξάμηνο Διδάσκων: Κώστας Παναγιωτάκης
ΗΥ, Απειροστικός Λογισμός ΙΙ Εαρινό Εξάμηνο - Διδάσκων: Κώστας Παναγιωτάκης 5 ο Φροντιστήριο (6//). Βρείτε και χαρακτηρίστε τα κρίσιμα σημεία των συνάρτησεων a. (, ) = sin. b. (, ) = +. Υποθέστε ότι είστε
Ενότητα 2: Εντολές Επανάληψης
Ενότητα 2: Εντολές Επανάληψης Όταν κάποια εντολή ή ολόκληρη ομάδα εντολών επαναλαμβάνεται τότε δεν είναι απαραίτητο να τις γράψουμε πολλές φορές αλλά χρησιμοποιούμε την εντολή ΕΠΑΝΑΛΑΒΕ Συντάσσεται ως
Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1
Περιεχόµενα Περιεχόµενα... 7 Ευρετήριο Γραφηµάτων... 11 Ευρετήριο Εικόνων... 18 Κεφάλαιο 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ... 19 Θεωρία... 19 1.1 Έννοιες και ορισµοί... 20 1.2 Μονάδες µέτρησης γωνιών και µηκών...
ΕΝΟΤΗΤΑ 2: ΡΟΠΗ ΔΥΝΑΜΗΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Γ. γ) η στατική τριβή στον δίσκο καθώς και το μέτρο της δύναμης που ασκεί το κεκλιμένο επίπεδο στο δίσκο.
ΚΕΦΑΛΑΙΟ 4 Ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ : ΡΟΠΗ ΔΥΝΑΜΗΣ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Γ Άσκηση 1. Ο δίσκος ισορροπεί με τη βοήθεια ενός νήματος παράλληλου στο κεκλιμένο επίπεδο. Αν το βάρος του δίσκου είναι
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΟΥ ΑΡΧΕΙΟΥ ΩΣ ΥΠΟΒΑΘΡΟ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΟΔΙΚΗΣ ΑΣΦΑΛΕΙΑΣ
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΟΥ ΑΡΧΕΙΟΥ ΩΣ ΥΠΟΒΑΘΡΟ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΟΔΙΚΗΣ ΑΣΦΑΛΕΙΑΣ Άγγελος Βασιλάς, Σπουδαστής ΕΜΠ Κωνσταντίνος Αποστολέρης, Πολιτικός Μηχανικός, MSc Σοφία Βαρδάκη, Δρ. Αγρονόμος Τοπογράφος
Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7. Ασκήσεις στο IP Fragmentation
Συνοπτική Μεθοδολογία Ασκήσεων Κεφαλαίου 7 Οι σημειώσεις που ακολουθούν περιγράφουν τις ασκήσεις που θα συναντήσετε στο κεφάλαιο 7. Η πιο συνηθισμένη και βασική άσκηση αναφέρεται στο IP Fragmentation,
Θέματα Εξετάσεων Σεπτεμβρίου 2012:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),
Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς
Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.
Παραδείγματα στα θεμελιώδη προβλήματα.
Θεμελιώδη προβλήματα της Τοπογραφίας 1 Παραδείγματα στα θεμελιώδη προβλήματα Παράδειγμα 1 ο Γνωρίζουμε τις συντεταγμένες των σημείων Α με Χ Α =19,71, Ψ Α =0,5 και Β με Χ Β =181,37 και Ψ Β =53,63 Θα υπολογίσουμε