Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
|
|
- Παρθενορή Αλαβάνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
2 Εξισώσεις παρατηρήσεων δικτύου (γενική μη-γραμμική μορφή) f(, q) v v q διάνυσμα παρατηρήσεων δικτύου διάνυσμα (τυχαίων) σφαλμάτων των παρατηρήσεων διάνυσμα συντεταγμένων για τα σημεία του δικτύου διάνυσμα πρόσθετων ( αδιάφορων ) παραμέτρων
3 Εξισώσεις παρατηρήσεων δικτύου (γενική μη-γραμμική μορφή) f(, q) v O τύπος του δικτύου καθορίζει: - το είδος των παρατηρήσεων που χρησιμοποιούνται - το είδος του ΣΑ που θα χρησιμοποιηθεί για την παραμετροποίηση των παρατηρήσεων - την αναλυτική δομή του μαθηματικού μοντέλου
4 Βασικοί τύποι δικτύων 1Δ (υψομετρικά ή κατακόρυφα δίκτυα) περιορισμένης εμβέλειας (< 5-10 km) εκτεταμένης εμβέλειας (> 10 km) Δ (οριζόντια δίκτυα) σε τοπικό-οριζόντιο ή προβολικό επίπεδο σε κάποιο ελλειψοειδές εκ περιστροφής (ΕΕΠ) 3Δ (τριδιάστατα δίκτυα) δίκτυα δορυφορικής γεωδαισίας δίκτυα μικρής εμβέλειας (για ειδικές εφαρμογές)
5 Επιπλέον τύποι δικτύων Στατικά δίκτυα 1Δ, Δ, 3Δ Δυναμικά δίκτυα 1Δ, Δ, 3Δ
6 Στατικά δίκτυα Χρονική εποχή t 1 Χρονική εποχή t Α Β Α Β C C (*) οι θέσεις των κορυφών του δικτύου παραμένουν χρονικά αμετάβλητες.
7 Δυναμικά δίκτυα Χρονική εποχή t 1 Χρονική εποχή t Α Β Α Β C C (*) οι θέσεις των κορυφών του δικτύου μεταβάλλονται ως προς το χρόνο.
8 Βασικοί τύποι συντεταγμένων Στατικά δίκτυα Δυναμικά δίκτυα 1Δ H H(t ), v H Δ 3Δ, X, Y, Z (t ), (t ) v, v X(t ), Y(t ), Z(t ) v X, v Y, v Z
9 Βασικοί τύποι συντεταγμένων Στατικά δίκτυα 1Δ H ή C (= W W) Δ (, ) ή (φ, λ) ή (Ε, Ν) 3Δ (X, Y, Z) ή (φ, λ, h) ψευτο-3δ, φ, λ και Η Ε, Ν (*) από ξεχωριστές διαδικασίες
10 Παρατηρούμενα μεγέθη 1Δ (κατακόρυφα δίκτυα) υψομετρικές διαφορές διαφορές βαρυτικού δυναμικού Δ (οριζόντια δίκτυα) οριζόντιες γωνίες/διευθύνσεις, (αζιμούθια) οριζόντιες αποστάσεις ανηγμένες μετρήσεις GPS 3Δ (τριδιάστατα δίκτυα) οριζόντιες γωνίες/διευθύνσεις, (αζιμούθια) ζενίθειες γωνίες, υψομετρικές διαφορές χωρικές αποστάσεις συνιστώσες βάσεων GPS
11 Παρατηρούμενα μεγέθη (*) Για την επεξεργασία δυναμικών δικτύων μπορούν να χρησιμοποιηθούν: σετ μετρήσεων πεδίου που έχουν γίνει σε διαφορετικές χρονικές εποχές σετ λύσεων (συντεταγμένες) του δικτύου που έχουν υπολογιστεί σε διαφορετικές χρονικές εποχές
12 Σε αυτό το μάθημα Θα ασχοληθούμε με παρατηρούμενα μεγέθη και τις παραμετροποιημένες εκφράσεις τους σε συστήματα αναφοράς που χρησιμοποιούνται στα συνήθη τοπογραφικά δίκτυα ελέγχου. Εντούτοις, οι τεχνικές & αλγόριθμοι συνόρθωσης που θα μελετήσουμε καθώς και η διαδικασία ανάλυσης των αποτελεσμάτων που θα παρουσιάσουμε, μπορούν να αξιοποιηθούν στις περισσότερες περιπτώσεις δικτύων που εμφανίζονται σε γεωδαιτικές εφαρμογές.
13 Παρατηρούμενα μεγέθη σε συνήθη τοπογραφικά δίκτυα
14 Εξισώσεις μαθηματικού μοντέλου Αζιμούθιο πλευράς δικτύου arctan j a arctan j Οριζόντια διεύθυνση πλευράς δικτύου j j k Οριζόντια γωνία μεταξύ δύο πλευρών δικτύου arctan k arctan j k j
15 Τα βασικά οριζόντια γωνιακά μεγέθη παράλληλη διεύθυνση στον άξονα του ΣΑ ( βορράς ) αυθαίρετη μηδενική διεύθυνση αναφοράς οργάνου j α j δ j ω k \\ Αζιμούθιο Οριζόντια διεύθυνση Οριζόντια γωνία
16 Εξισώσεις μαθηματικού μοντέλου Μήκος οριζόντιας πλευράς δικτύου j j d ( ) ( ) Συνιστώσες οριζόντιας βάσης δικτύου (από αναγωγή 3Δ βάσεων GPS σε τοπικό οριζόντιο ή προβολικό επίπεδο) j j Υψομετρική διαφορά πλευράς δικτύου H H H j
17 Εξισώσεις μαθηματικού μοντέλου Μήκος χωρικής πλευράς δικτύου j j j S ( ) ( ) ( z z ) Συνιστώσες βάσης δικτύου GPS (ως προς γεωκεντρικό ΣΑ) j j z z z j Ζενίθεια γωνία πλευράς δικτύου (ως προς τοποκεντρικό ΣΑ) arctan z z j j ( ) ( ) j
18 Αζιμούθιο πλευράς a arctan j j Δεσμεύει τον προσανατολισμό του δικτύου ως προς το ΣΑ! j // P j Δεν περιλαμβάνεται συνήθως στις κλασικές τοπογραφικές παρατηρήσεις. a P j
19 Οριζόντια διεύθυνση πλευράς arctan j j Δεν καθορίζει τον προσανατολισμό του δικτύου ως προς το ΣΑ! j // Μηδενική διεύθυνση θεοδολίχου P j Ύπαρξη άγνωστης σταθεράς προσανατολισμού (θ ). P θ a j
20 Σταθερά προσανατολισμού Είναι η γωνία προσανατολισμού της μηδενικής διεύθυνσης του οργάνου και συμμετέχει ως πρόσθετη άγνωστη παράμετρος στη συνόρθωση του δικτύου. θ k : θετική γωνία θ k : αρνητική γωνία
21 Σταθερά προσανατολισμού Ο αριθμός των αγνώστων σταθερών προσανατολισμού είναι ίσος με τον αριθμό των σειρών μετρήσεων οριζοντίων διευθύνσεων που έγιναν από τα διάφορα σημεία στάσης του δικτύου.
22 Οριζόντια γωνία μεταξύ δύο πλευρών k arctan k arctan j k j Προσοχή στο διαχωρισμό μεταξύ αριστερού και δεξιού σημείου σκόπευσης. // a P j ω k a k P k P
23 Ένα κρίσιμο ερώτημα Παρατηρήσεις πεδίου Συνόρθωση δικτύου Εκτιμήσεις συντεταγμένων στις κορυφές του δικτύου Απαιτείται ένα ΣΑ Περιέχεται πληροφορία σχετικά με το ΣΑ στα παρατηρούμενα μεγέθη του δικτύου ;
24 Παράμετροι καθορισμού ΣΑ Τα θεμελιώδη χαρακτηριστικά ενός ΣΑ είναι: Αρχή των αξόνων Προσανατολισμός των αξόνων Κλίμακα των αξόνων (αντιστοιχεί στην μετρητική κλίμακα μηκών στο χώρο) Ανάλογα με τον τύπο δικτύου: 1Δ απαιτούνται παράμετροι για τον ορισμό του ΣΑ Δ απαιτούνται 4 παράμετροι για τον ορισμό του ΣΑ 3Δ απαιτούνται 7 παράμετροι για τον ορισμό του ΣΑ
25 Ανατομία παρατηρήσεων δικτύου Τύπος παρατήρησης Δ ΔΙΚΤΥΑ Αζιμούθιο Οριζ. διεύθυνση Οριζ. γωνία Οριζ. απόσταση 1Δ ΔΙΚΤΥΑ Υψομετρ. διαφορές 3Δ ΔΙΚΤΥΑ Ζενίθειες γωνίες Χωρικές αποστάσεις Συνιστώσες βάσης GPS Περιέχεται πληροφορία σχετικά με κάποιο/α από τα θεμελιώδη χαρακτηριστικά του ΣΑ; Ναι (προσανατολισμός) Όχι Όχι Ναι (κλίμακα) Ναι (κλίμακα) Ναι (προσανατολισμός ως προς τον κατακόρυφο άξονα) Ναι (κλίμακα) Ναι (κλίμακα + προσανατολισμός)
26 Παραμετρικοί βαθμοί δικτύου Τριγωνομετρικό οριζόντιο δίκτυο: Ν 4 Τριπλευρικό ή μικτό οριζόντιο δίκτυο: Ν 3 Τριπλευρικό 3Δ δίκτυο: 3Ν 6 3Δ δίκτυο GPS: 3Ν 3 Υψομετρικό δίκτυο: Ν 1 (*) Ν είναι ο συνολικός αριθμός των κορυφών του δικτύου
27 Γραμμικοποίηση
28 Να θυμάστε ότι Η συνόρθωση μέσω ΜΕΤ σε μη-γραμμικά συστήματα εξισώσεων παρατηρήσεων απαιτεί τις εξής ενέργειες: Επιλογή αρχικών προσεγγιστικών τιμών για τις άγνωστες παραμέτρους του προβλήματος. Γραμμικοποίηση (κατά Talr) των μη-γραμμικών εξισώσεων παρατηρήσεων του προβλήματος. Υπολογισμός ανηγμένων παρατηρήσεων και πίνακα σχεδιασμού με βάση τις επιλεγμένες προσεγγιστικές τιμές. Εκτέλεση συνόρθωσης στο γραμμικοποιημένο σύστημα και υπολογισμός εκτιμήσεων παραμέτρων. Αντικατάσταση προσεγγιστικών τιμών με τις τρέχουσες εκτιμήσεις των παραμέτρων & επανάληψη συνόρθωσης μέχρι να επιτευχθεί ικανοποιητική αριθμητική σύγκλιση.
29 Γραμμικοποίηση μαθηματικού μοντέλου f(, q) v Προσεγγιστικές τιμές συντεταγμένων και πρόσθετων παραμέτρων:, q Προσεγγιστικές τιμές παρατηρήσεων: f(, q ) Γραμμικοποιημένες εξισώσεις παρατηρήσεων: f f q qq v
30 Γραμμικοποίηση μαθηματικού μοντέλου f f Ανηγμένες παρατηρήσεις ή πιο συνοπτικά q qq Πίνακας σχεδιασμού δικτύου δ b A A v δ q (*) προσοχή στις μονάδες των επιμέρους όρων πρέπει να υπάρχει συμβατότητα! v Διάνυσμα άγνωστων διορθώσεων Διάνυσμα άγνωστων σφαλμάτων
31 Εύρεση προσεγγιστικών τιμών Ο υπολογισμός προσεγγιστικών συντεταγμένων για τις κορυφές του δικτύου βασίζεται στη συνδυασμένη χρήση () γνωστών συντεταγμένων σε σταθμούς αναφοράς του δικτύου και () διαθέσιμων παρατηρήσεων του δικτύου. Ο υπολογισμός προσεγγιστικών τιμών q για τις πρόσθετες παραμέτρους βασίζεται στην εμπειρική επίλυση εξισώσεων του μαθηματικού μοντέλου με χρήση των προσεγγιστικών συντεταγμένων και των διαθέσιμων παρατηρήσεων. f q (, ) q g (, )
32 Παράδειγμα: οριζόντιες διευθύνσεις Προσεγγιστικές τιμές αζιμουθίου a arctan j j (με διερεύνηση τεταρτημορίου, ο θεμελιώδες) a... a... k m μηδενική διεύθυνση (θ ) // δ δ k j k Προσεγγιστική τιμή σταθεράς προσαν/μού δ m m a (με βάση κάποια από τις διαθέσιμες παρατηρήσεις, π.χ. δ ) Προσεγγιστικές τιμές οριζοντίων διευθύνσεων a ( ) k a k a m m
33 Ειδικές περιπτώσεις Αν το μαθηματικό μοντέλο του δικτύου είναι εξαρχής γραμμικό, π.χ. κατακόρυφο δίκτυο, τότε η επιλογή των προσεγγιστικών συντ/νων δεν έχει καμία σημασία! Οι παρακάτω μορφές των εξισώσεων παρατήρησης είναι απόλυτα ισοδύναμες: H H H v j H H H H H H H H v ( ) ( ) ( ) j j j H H H j H
34 Ειδικές περιπτώσεις Αν το μαθηματικό μοντέλο του δικτύου είναι εξαρχής γραμμικό, π.χ. κατακόρυφο δίκτυο, τότε η επιλογή των προσεγγιστικών συντ/νων δεν έχει καμία σημασία! Οι παρακάτω μορφές των εξισώσεων παρατήρησης είναι απόλυτα ισοδύναμες: H H 1 1 H H j H H 1 1 H H H j j H H v v
35 παρατηρήσεις δικτύου Γενική μορφή πίνακα σχεδιασμού συντεταγμένες σημείων δικτύου () πρόσθετες παράμετροι (q) p q q N N 1 k q q n n n n n n 1 1 N N 1 k p q συνολικό διάνυσμα άγνωστων παραμέτρων
36 Αναλυτικές μορφές μερικών παραγώγων
37 Μερικές παράγωγοι αζιμουθίου a arctan j j a j ( ) ( ) j j a j a a j ( ) ( ) j j a j a
38 Μερικές παράγωγοι οριζ. διεύθυνσης arctan j j j ( ) ( ) j j j ( ) ( ) j j j j 1
39 Εναλλακτικές σχέσεις μερικών παραγώγων οριζ. διεύθυνσης cs a ( ) ( ) S j j j (*) απαιτούν πιο χρονοβόρα υπολογιστική διαδικασία (αποφύγετε τη χρήση τους για γρήγορους υπολογισμούς) sn a ( ) ( ) S j j j
40 Μερικές παράγωγοι οριζ. απόστασης j j S ( ) ( ) S j ( ) ( ) j j S j S S j ( ) ( ) j j S j S
41 Εναλλακτικές σχέσεις μερικών παραγώγων οριζ. απόστασης S j ( ) ( ) j j S j ( ) ( ) sn j j (*) απαιτούν πιο χρονοβόρα υπολογιστική διαδικασία (αποφύγετε τη χρήση τους για γρήγορους υπολογισμούς) cs a a
42 Μερικές παράγωγοι συνιστωσών βάσης j j z z z j j j κ.ο.κ. z z j z 0 0 0
43 Για τις αναλυτικές μορφές των μερικών παραγώγων σχετικά με άλλα παρατηρούμενα μεγέθη σε τοπογραφικά δίκτυα, βλέπε στα αντίστοιχα κεφάλαια του βιβλίου Δ. Ρωσσικόπουλου.
44 Παραδείγματα αποσπασμάτων πινάκων σχεδιασμού
45 Πίνακας σχεδιασμού οριζόντιου δικτύου με παρατηρήσεις οριζόντιων διευθύνσεων και αποστάσεων
46
47 S j Αναφέρεται στην παρατήρηση S 1, ( 0 ) 0 ( 0 ) j j
48 S j ( ) ( ) j j Αναφέρεται στην παρατήρηση S 1,
49 j ( ) ( ) rad/m cc/cm j j (πολλαπλασιασμός με 0000/) Αναφέρεται στην παρατήρηση δ 1,
50 j ( 0 0 ) ( ) 0 (πολλαπλασιασμός με /) j j Αναφέρεται στην παρατήρηση δ 3,5 rad/m cc/cm
51 δ 1, δ,
52 δ 1, δ, Π.χ , ( 0 0 ) ( 0 ) ( ) ( ) , 1 3 = = ( ) ( ) ( 0 0 ) ( 0 0 ) ,1 1 5,
53 Πίνακας σχεδιασμού κατακόρυφου δικτύου με παρατηρήσεις υψομετρικών διαφορών
54 H 1 H H 3 H 4 H 5 H 6 H 7 H 8 H H
55 ΔΗ 1,5 ΔΗ 8,4 H 1 H H 3 H 4 H 5 H 6 H 7 H 8 H H
56 ΔΗ 1,6 ΔΗ 6,1 H 1 H H 3 H 4 H 5 H 6 H 7 H 8 H H
Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το
Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr
Σύντομος οδηγός του προγράμματος DEROS
Τοπογραφικά Δίκτυα και Υπολογισμοί Σύντομος οδηγός του προγράμματος DEROS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή ΑΠΘ SUPPLEMENTARY COURSE NOTES Για περισσότερες λεπτομέρειες
Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016. Χριστόφορος Κωτσάκης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2015-2016 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Εισαγωγή στα Δίκτυα. Τοπογραφικά Δίκτυα και Υπολογισμοί. 5 ο εξάμηνο, Ακαδημαϊκό Έτος Χριστόφορος Κωτσάκης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Τι είναι δίκτυο;
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΓΕΝΙΚΑ ΠΕΡΙ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο ΠΑΛΙΟ http://eclass.survey.teiath.gr NEO
Μερικά διδακτικά παραδείγματα
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 206-207 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα Παράδειγμα
Μερικά διδακτικά παραδείγματα
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 207-208 Μερικά διδακτικά παραδείγματα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Σημείωση Τα παρακάτω
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 018-019 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή
Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε παραμετρικές συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο Ακαδημαϊκό Έτος 017-018 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος IΙ Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή
Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Ανάλυση πινάκων συμ-μεταβλητοτήτων σε επιμέρους συνιστώσες Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Η έννοια και χρήση των εσωτερικών δεσμεύσεων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Η έννοια και χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Η
Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 06-07 Παραδείγματα ανάλυσης ακρίβειας συντεταγμένων από συνορθώσεις δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική
Παράδειγμα συνόρθωσης οριζόντιου δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 216-217 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί ο εξάμηνο, Ακαδημαϊκό Έτος 08-09 Ανάλυση ακρίβειας συντεταγμένων από διαφορετικά σενάρια συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
Παράδειγμα συνόρθωσης οριζόντιου δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 218-219 Παράδειγμα συνόρθωσης οριζόντιου δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
ΛΥΣΕΙΣ AΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΛΥΣΕΙΣ ΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση (α) Οι συνορθωμένες συντεταγμένες του σημείου P είναι: ˆ 358.47 m, ˆ 4.46 m (β) Η a-psteriri εκτίμηση της μεταβλητότητας
Οδηγός λύσης θέματος 3
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Οδηγός λύσης θέματος 3 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ ανά 5 λεπτά ανά 1 λεπτό
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΓΩΝΙΟΜΕΤΡΗΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 16-17 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Προ-επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Γενική λύση συνόρθωσης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Πως ξεπερνάμε το
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ Η ΕΝΝΟΙΑ ΤΟΥ ΓΕΩΔΑΙΤΙΚΟΥ DATUM Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστημίου Δυτικής Αττικής 3ο εξάμηνο ΝΕΟ eclass http://eclass.uniwa.gr Παρουσιάσεις,
10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων
Εντάξεις δικτύων GPS. 6.1 Εισαγωγή
6 Εντάξεις δικτύων GPS 6.1 Εισαγωγή Oι απόλυτες (X, Y, Z ή σχετικές (ΔX, ΔY, ΔZ θέσεις των σηµείων, έτσι όπως προσδιορίζονται από τις µετρήσεις GPS, αναφέρονται στο γεωκεντρικό σύστηµα WGS 84 (Wrld Gedetic
Αλγόριθμοι συνόρθωσης δικτύων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ)
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΝΑΦΟΡΑΣ ΚΑΙ Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΟΥ ΔΙΚΤΥΟΥ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ 1) Ποιός είναι ο βασικός ρόλος και η χρησιμότητα των δικτύων στη Γεωδαισία και την Τοπογραφία; 2) Αναφέρετε ορισμένες
Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 18-19 Ανάλυση αξιοπιστίας δικτύων (μέρος ΙΙ) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Περιεχόμενα
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 6: Σχηματισμός κανονικών εξισώσεων και το πρόβλημα ορισμού του ΣΑ Χριστόφορος Κωτσάκης Άδειες
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 3: Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 10 Σε ένα κατακόρυφο δίκτυο έχουν μετρηθεί, μέσω διπλής γεωμετρικής χωροστάθμησης, οι υψομετρικές διαφορές μεταξύ όλων των σημείων
Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση
ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΥΨΟΜΕΤΡΙΚΩΝ ΔΙΚΤΥΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι)
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αξιολόγηση ακρίβειας στη συνόρθωση δικτύων (μέρος Ι) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Παρουσίαση 2 η : Αρχές εκτίμησης παραμέτρων Μέρος 1 ο
Εφαρμογές Ανάλυσης Σήματος στη Γεωδαισία Παρουσίαση η : Αρχές εκτίμησης παραμέτρων Μέρος ο Βασίλειος Δ. Ανδριτσάνος Αναπληρωτής Καθηγητής Γεώργιος Χλούπης Επίκουρος Καθηγητής Τμήμα Μηχανικών Τοπογραφίας
Αλγόριθμοι συνόρθωσης δικτύων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Μου τη
Σύντομη σύγκριση μεθόδων ένταξης δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2016-2017 Σύντομη σύγκριση μεθόδων ένταξης δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Bασικές
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές στο δίκτυο του
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Ενημερωτικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΥΨΟΜΕΤΡΙΑ - ΧΩΡΟΣΤΑΘΜΗΣΗ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΥΨΟΜΕΤΡΙΑ - ΧΩΡΟΣΤΑΘΜΗΣΗ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr Παρουσιάσεις,
Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS
Επιµορφωτικά Σεµινάρια ΑΤΜ Γεωδαιτικό Υπόβαθρο για τη χρήση του HEPOS Συστήματα & πλαίσια αναφοράς Μετασχηματισμοί συντεταγμένων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική
Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2018-2019 Παρεμβολή & πρόγνωση άγνωστης συνάρτησης μέσω σημειακής προσαρμογής (Least squares collocation) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων
Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2016-2017 Βέλτιστη παρεμβολή και πρόγνωση άγνωστης συνάρτησης με τη μέθοδο της σημειακής προσαρμογής (Least squares collocation) Χριστόφορος
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΠΙΛΥΣΗ ΟΔΕΥΣΗΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις,
Παραδείγματα ανάλυσης αξιοπιστίας δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παραδείγματα ανάλυσης αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Οριζόντιο
Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών
Εισαγωγικό σεμινάριο για το μάθημα των Ασκήσεων Υπαίθρου Οδηγίες για τις μετρήσεις πεδίου, βασικές συμβουλές και γενική περιγραφή εργασιών (θεματικές ενότητες 4, 5, 6, 7) Χ. Κωτσάκης Τμήμα Αγρονόμων και
Οδηγός λύσης θέματος 4
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 217-218 Οδηγός λύσης θέματος 4 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε να
Θέμα 1 ο (2.5 μονάδες)
Θέμα 1 ο (2.5 μονάδες) Α) Με τον γεωδαιτικό σταθμό της εταιρίας Pentax που εργαστήκατε στο εργαστήριο Τοπογραφίας υπάρχει δυνατότητα να κεντρώσετε και να οριζοντιώσετε το όργανο χωρίς τη χρήση της μπαταρίας;
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Περί ανώμαλων πινάκων συμ-μεταβλητοτήτων Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Ένα
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr
7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ
61 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστήμιο Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr
Παράδειγμα συνόρθωσης υψομετρικού δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Παράδειγμα συνόρθωσης υψομετρικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίνεται
Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 016-017 Παραδείγματα ανάλυσης αξιοπιστίας τοπογραφικού δικτύου Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση υψομετρικών τεχνικών στο δίκτυο Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Υψομετρικές τεχνικές
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Μηχανικών ΤΕ και Μηχανικών Τοπογραφίας & Γεωπληροφορικής ΤΕ κατεύθυνση Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ Τοπογραφικά και
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για τη συνόρθωση ενός τοπογραφικού
ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.
ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2017 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Επιλέξτε μία σωστή απάντηση σε κάθε ένα από τα παρακάτω ερωτήματα. 1) Η χρήση απόλυτων δεσμεύσεων για την συνόρθωση ενός τοπογραφικού
Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω ότι έχουμε διαθέσιμες
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο
AΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ 5 ο εξάμηνο Άσκηση 1 Για τον υπολογισμό των συντεταγμένων ενός σημείου P μετρήθηκαν οι οριζόντιες αποστάσεις προς τρία γνωστά σημεία (βλέπε σχήμα).
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΦΑΛΜΑΤΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις, Ασκήσεις,
Σύντομος οδηγός του μαθήματος
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2018-2019 Σύντομος οδηγός του μαθήματος Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Γενικές πληροφορίες
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Επεξήγηση Μηχανισµού Προσοµοίωση της ανθρώπινης όρασης B A C Μαθηµατική γεωµετρική περιγραφή ενός φυσικού φαινοµένου ΗΦωτογραµµετρική
Μικτά δίκτυα. GPS και γωνίες, αποστάσεις, υψοµετρικές διαφορές και βαρύτητα. 7.1 H αρχή της τρισδιάστατης ολοκληρωµένης γεωδαισίας
7 Μικτά δίκτυα. GPS και γωνίες, αποστάσεις, υψοµετρικές διαφορές και βαρύτητα. 7.1 H αρχή της τρισδιάστατης ολοκληρωµένης γεωδαισίας Στην κλασική οπογραφία και Γεωδαισία, ο υπολογισµός ενός δικτύου οριζόντιου
Οδηγός λύσης για το θέμα 2
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 218-219 Οδηγός λύσης για το θέμα 2 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε
ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ. Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π.
ΦΩΤΟΓΡΑΜΜΕΤΡΙΑ ΙΙ ΕΠΑΝΑΛΗΨΗ Ανδρέας Γεωργόπουλος Καθηγητής Ε.Μ.Π. dag@cental.ntua.g Άδεια χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Ceative Commons και δημιουργήθηκε στο πλαίσιο των Ανοιχτών Ακαδημαϊκών
Τοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 11: Ανάλυση αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Οδηγός λύσης θέματος 2
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Οδηγός λύσης θέματος 2 Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Τι προσπαθούμε να κάνουμε
ΓΕΩΔΑΙΤΙΚΗ ΑΣΤΡΟΝΟΜΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΚ. ΕΤΟΣ 2006-2007 ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ Ηρώων Πολυτεχνείου 9, 157 80 Ζωγράφος Αθήνα Τηλ.: 210 772 2666 2668, Fax: 210 772 2670 ΓΕΩΔΑΙΤΙΚΗ
Χ, Υ, Ζ σηµείων. Εικονιστικό προϊόν
Στην ουσία η Φωτογραµµετρία: Χ, Υ, Ζ σηµείων Γραµµικό σχέδιο Εικονιστικό προϊόν Επεξήγηση η Μηχανισµού µ Προσοµοίωση της ανθρώπινης όρασης B A C Μαθηµατική γεωµετρική περιγραφή ενός φυσικού φαινοµένου
Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Προ-επεξεργασία, συνόρθωση και στατιστική ανάλυση δικτύων Μεταλλικού Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Δίκτυο
7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ
63 7. ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΑΖΙΜΟΥΘΙΟΥ Υπενθυμίζεται ότι αστρονομικό αζιμούθιο Α D μιας διεύθυνσης D, ως προς το σημείο (τόπο) Ο, ονομάζεται το μέτρο της δίεδρης γωνίας που σχηματίζεται μεταξύ του επιπέδου του
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ
ΕΓΧΕΙΡΙΔΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΟΜΟΙΟΤΗΤΑΣ Για το μάθημα των Ασκήσεων Υπαίθρου (και όχι μόνο..) Χ. Κωτσάκης ΤΑΤΜ ΑΠΘ Ιούλιος 2016 ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή Βασικές σχέσεις.3 Γραμμική vs. μη-γραμμική προσέγγιση του
Αναλυτική Φωτογραμμετρία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αναλυτική Φωτογραμμετρία Ενότητα # 5: Βασικά Φωτογραμμετρικά προβλήματα I Καθηγήτρια Όλγα Γεωργούλα Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής
Κεφάλαιο 12: Υδραυλική ανάλυση δικτύων διανομής Εννοιολογική αναπαράσταση δίκτυων διανομής Σχηματοποίηση: δικτυακή απεικόνιση των συνιστωσών του φυσικού συστήματος ως συνιστώσες ενός εννοιολογικού μοντέλου
Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων
Σεμιναριακό Μάθημα Ασκήσεων Υπαίθρου (Ιούλιος 2016) Σύγκριση λύσεων δικτύου μέσω μετασχηματισμού συντεταγμένων Χ. Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ Εισαγωγή Έστω
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης
Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 2017-2018 Συνόρθωση κατά στάδια και αναδρομικοί αλγόριθμοι βέλτιστης εκτίμησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών
5/3/2010. A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ B. Στη συσχέτισή του µε το γεωδαιτικό σύστηµα
5/3/ Για να είναι δυνατή η επεξεργασία στα φωτογραµµετρικά όργανα χρειάζεται κάποιο στάδιο προετοιµασίας του ζεύγους των εικόνων. Η προετοιµασία αυτή αφορά: A. Στη δηµιουργία του στερεοσκοπικού µοντέλουέ.