Τοπογραφικά Δίκτυα & Υπολογισμοί
|
|
- Ἱερώνυμος Μιαούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 4: Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων Χριστόφορος Κωτσάκης
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων
5 Περιεχόμενα ενότητας Γενική δομή του συστήματος εξισώσεων παρατηρήσεων σε τοπογραφικά και γεωδαιτικά δίκτυα. Παραμετροποίηση και τύποι συντεταγμένων δικτύου. Βασικά παρατηρούμενα μεγέθη δικτύων. Αναλυτικές μορφές μη γραμμικών και γραμμικοποιημένων εξισώσεων παρατηρήσεων.
6 Σκοποί ενότητας Γενική δομή του συστήματος εξισώσεων παρατηρήσεων σε τοπογραφικά και γεωδαιτικά δίκτυα. Παραμετροποίηση και τύποι συντεταγμένων δικτύου. Βασικά παρατηρούμενα μεγέθη δικτύων. Αναλυτικές μορφές των μη-γραμμικών και γραμμικοποιημένων εξισώσεων παρατηρήσεων. 6
7 Τίτλος και Αρίθμηση (1/4) 1. Γενική μορφή εξισώσεων παρατήρησης δικτύου 2. Βασικοί τύποι δικτύων 3. Είδη συντενταγμένων δικτύου 4. Σε αυτό το μάθημα: 5. Εξισώσεις μαθηματικού μοντέλου 6. Αζιμούθιο πλευράς 7. Οριζόντια διεύθυνση πλευράς 7
8 Τίτλος και Αρίθμηση (2/4) 8. Σταθερά προσανατολισμού 9. Οριζόντια γωνία μεταξύ δύο πλευρών 10.Πληροφορία παρατηρήσεων δικτύου 11.Παράμετροι καθορισμού ΣΑ 12.Πληροφορία παρατηρήσεων δικτύου 13.«Ανατομία» παρατηρήσεων δικτύου 14.Παραμετρικοί βαθμοί δικτύου 8
9 Τίτλος και Αρίθμηση (3/4) 15.Γραμμικοποίηση μαθηματικού μοντέλου 16.Προσεγγιστικές τιμές 17.Γενική μορφή πίνακα σχεδιασμού 18.Μερικές παράγωγοι αζιμουθίου 19.Μερικές παράγωγοι οριζόντιας διεύθυνσης 20.Μερικές παράγωγοι οριζόντιας απόστασης 21.Μερικές παράγωγοι συνιστωσών βάσης 9
10 Τίτλος και Αρίθμηση (4/4) 22.Πίνακας σχεδιασμού οριζόντιου δικτύου με παρατηρήσεις οριζόντιων διευθύνσεων και αποστάσεων 23.Πίνακας κατακόρυφου δικτύου με παρατηρήσεις υψομετρικών διαφορών 10
11 Γενική μορφή εξισώσεων παρατήρησης δικτύου (1/2) y f( x, q) v y v x q διάνυσμα παρατηρήσεων του δικτύου διάνυσμα τυχαίων σφαλμάτων των παρατηρήσεων διάνυσμα συντεταγμένων για όλα τα σημεία του δικτύου διάνυσμα πρόσθετων ( αδιάφορων ) παραμέτρων 11
12 Γενική μορφή εξισώσεων παρατήρησης δικτύου (2/2) y f( x, q) v O τύπος του δικτύου καθορίζει: -το είδος των παρατηρήσεων -το σύστημα αναφοράς ως προς το οποίο γίνεται η παραμετροποίηση των παρατηρούμενων μεγεθών -την αναλυτική δομή του μαθηματικού μοντέλου 12
13 Βασικοί τύποι δικτύων (1/2) Ανάλογα με τη διάστασή τους 1Δ (υψομετρικά ή κατακόρυφα δίκτυα) o Περιορισμένης εμβέλειας (< 5-10 km) o Εκτεταμένης εμβέλειας (> 10 km) 2Δ (οριζόντια δίκτυα) o σε κάποιο επίπεδο o στο ΕΕΠ αναφοράς 3Δ (τριδιάστατα δίκτυα) o Δίκτυα δορυφορικής γεωδαισίας o Δίκτυα μικρής εμβέλειας ειδικών εφαρμογών 13
14 Βασικοί τύποι δικτύων (2/2) Ανάλογα με την αντιμετώπιση των διαχρονικών μεταβολών για τις θέσεις των κορυφών τους Στατικά δίκτυα Οι συντεταγμένες θεωρούνται σταθερές ως προς τον χρόνο και διατηρούνται αμετάβλητες (π.χ. ΕΓΣΑ87) Δυναμικά δίκτυα Οι συντεταγμένες μεταβάλλονται χρονικά και μπορούν να διορθώνονται με τη βοήθεια κατάλληλων ταχυτήτων ITRF, ETRF) (π.χ. 14
15 Είδη συντεταγμένων δικτύου (1/5) Στατικό δίκτυο Δυναμικό δίκτυο 1Δ H H(t o ), v H 2Δ 3Δ x, y φ, λ Ε, Ν X, Y, Z φ, λ, h x(t o ), y(t o ) v x, v y X(t o ), Y(t o ), Z(t o ) v X, v Y, v Z ψευτο-3δ x, y φ, λ και Η Ε, Ν (*) από ξεχωριστές διαδικασίες 15
16 Είδη συντεταγμένων δικτύου (2/5) Στατικό δίκτυο Δυναμικό δίκτυο 1Δ H H(t o ), v H 2Δ 3Δ ψευτο -3Δ x, y φ, λ Ε, Ν X, Y, Z φ, λ, h x, y φ, λ και Η Ε, Ν x(t o ), y(t o ) v x, v y X(t o ), Y(t o ), Z(t o ) v X, v Y, v Z 16
17 Είδη συντεταγμένων δικτύου (3/5) Στατικό δίκτυο Δυναμικό δίκτυο 1Δ 2Δ 3Δ Υψομετρικές διαφορές (αζιμούθια), οριζόντιες γωνίες και διευθύνσεις, οριζόντιες αποστάσεις, ανηγμένες κλασσικές μετρήσεις ή μετρήσεις GPS σε τοπικό/προβολικό επίπεδο ή στο ΕΕΠ αναφοράς (αζιμούθια), οριζόντιες γωνίες και διευθύνσεις, ζενίθειες γωνίες, χωρικές αποστάσεις Συνιστώσες βάσεων GPS (ΔX, ΔY, ΔZ) Σετ μετρήσεων σε διάφορες χρονικές εποχές ή Λύσεις δικτύου (συντεταγμένες σταθμών) από διάφορες χρονικές εποχές 17
18 Είδη συντεταγμένων δικτύου (4/5) Στατικό δίκτυο Δυναμικό δίκτυο 1Δ 2Δ 3Δ Υψομετρικές διαφορές Σε ορισμένες περιπτώσεις ένα 2Δ δίκτυο προκύπτει έπειτα από την συνόρθωση ενός 3Δ δικτύου και τον μετασχηματισμό του σε κάποιο οριζοντιογραφικό γεωδαιτικό σύστημα αναφοράς (π.χ. ένταξη δικτύου GPS στο ΕΓΣΑ87) Σετ μετρήσεων σε διάφορες χρονικές εποχές ή Λύσεις δικτύου (συντεταγμένες σταθμών) από διάφορες χρονικές εποχές 18
19 Είδη συντεταγμένων δικτύου (5/5) 1Δ 2Δ 3Δ Στατικό δίκτυο Υψομετρικές διαφορές Αζιμούθια, οριζόντιες γωνίες και διευθύνσεις, οριζόντιες αποστάσεις, ανηγμένες μετρήσεις GPS σε τοπικό/προβολικό επίπεδο ή στο ΕΕΠ αναφοράς Αζιμούθια, οριζόντιες γωνίες και διευθύνσεις, ζενίθειες γωνίες, χωρικές αποστάσεις Συνιστώσες βάσεων GPS (ΔX, ΔY, ΔZ) Δυναμικό δίκτυο Σετ μετρήσεων σε διάφορες χρονικές εποχές ή Λύσεις δικτύου (συντεταγμένες σταθμών) από διάφορες χρονικές εποχές 19
20 Σε αυτό το μάθημα: Θα ασχοληθούμε με παρατηρούμενα μεγέθη (και τα αντίστοιχα παραμετροποιημένα μοντέλα τους) που χρησιμοποιούνται σε συνήθη τοπογραφικά δίκτυα. Εντούτοις, οι τεχνικές & αλγόριθμοι συνόρθωσης που θα μελετήσουμε καθώς και η γενικότερη ανάλυση των αποτελεσμάτων συνόρθωσης δικτύου που θα παρουσιάσουμε σε επόμενα μαθήματα, μπορούν να χρησιμοποιηθούν στις περισσότερες περιπτώσεις δικτύων που εμφανίζονται σε γεωδαιτικές εφαρμογές. 20
21 Εξισώσεις μαθηματικού μοντέλου (1/4) Αζιμούθιο πλευράς δικτύου a x arctan j x y y i j i Οριζόντια διεύθυνση πλευράς δικτύου k arctan x y j j x y i i Οριζόντια γωνία μεταξύ δύο πλευρών δικτύου x x x arctan k i arctan j x y y y y i k i i j i 21
22 Εξισώσεις μαθηματικού μοντέλου (2/4) Μήκος οριζόντιας πλευράς δικτύου 2 2 j i j i d ( x x ) ( y y ) Συνιστώσες οριζόντιας βάσης δικτύου (από αναγωγή 3Δ βάσεων GPS σε τοπικό οριζόντιο επίπεδο) x x x j i y y y j i Υψομετρική διαφορά πλευράς δικτύου H H H j i 22
23 Εξισώσεις μαθηματικού μοντέλου (3/4) Μήκος χωρικής πλευράς δικτύου j i j i j i S ( x x ) ( y y ) ( z z ) Συνιστώσες 3Δ βάσης δικτύου GPS (ως προς γεωκεντρικό ΣΑ) x x x j i y y y j i z z z j i Ζενίθεια γωνία πλευράς δικτύου (ως προς τοποκεντρικό 3Δ ΣΑ) arctan 2 2 x x y y j i j i z z j i arccos z z j i ( x x ) ( y y ) ( z z ) j i j i j i ( ) ( ) 23
24 Εξισώσεις μαθηματικού μοντέλου (4/4) Συνθετικές μετρήσεις οριζόντιας απόστασης και αζιμουθίου μέσω κατάλληλης αναγωγής 3Δ βάσης GPS d f x y z a f ( x, y, z ) (,, ) Συνθετική μέτρηση υψομετρικής διαφοράς μέσω τριγωνομετρικής υψομετρίας H S cos 24
25 a Αζιμούθιο πλευράς x y arctan j i j x y i Καθορίζει τον προσανατολισμό του ΣΑ! y //y Δεν περιλαμβάνεται στις κλασικές τοπογραφικές παρατηρήσεις y j y i a P i P j x i x j x 25
26 Οριζόντια διεύθυνση πλευράς arctan x y j j x y i i i Δεν καθορίζει τον προσανατολισμό του ΣΑ! y //y Ύπαρξη άγνωστης σταθεράς προσανατολισμού (θ i ) y j y i θ i a P i P j 26
27 Σταθερά προσανατολισμού (1/2) Είναι η γωνία προσανατολισμού της μηδενικής διεύθυνσης του οργάνου και συμμετέχει ως πρόσθετη άγνωστη παράμετρος στη συνόρθωση του δικτύου 27
28 Σταθερά προσανατολισμού (2/2) Ο αριθμός των αγνώστων σταθερών προσανατολισμού είναι ίσος με τον αριθμό των σειρών μετρήσεων οριζοντίων διευθύνσεων που έγιναν από τα διάφορα σημεία στάσης. 28
29 k Οριζόντια γωνία μεταξύ δύο πλευρών x x x x y y y y arctan k i arctan j i k i j i Προσοχή στο διαχωρισμό μεταξύ αριστερού και δεξιού σημείου σκόπευσης y //y a P j a ik ω k P k P i 29
30 Πληροφορία παρατηρήσεων δικτύου y Συνόρθωση δικτύου x Απαιτείται ένα ΣΑ Περιέχεται πληροφορία σχετικά με το ΣΑ στους διάφορους τύπους παρατηρήσεων δικτύου; 30
31 Παράμετροι καθορισμού ΣΑ Βασικές παράμετροι ενός συστήματος αναφοράς Αρχή των αξόνων Προσανατολισμός των αξόνων Κλίμακα (ενιαία στο χώρο) Ανάλογα με τον τύπο (στατικού) δικτύου που μας ενδιαφέρει 1Δ απαιτούνται 2 παράμετροι για τον ορισμό του ΣΑ 2Δ απαιτούνται 4 παράμετροι για τον ορισμό του ΣΑ 3Δ απαιτούνται 7 παράμετροι για τον ορισμό του ΣΑ 31
32 Πληροφορία παρατηρήσεων δικτύου Παρατηρήσεις δικτύου y Συνόρθωση δικτύου x Εκτιμήσεις συντεταγμένων στις κορυφές του δικτύου Απαιτείται ένα ΣΑ Οι παρατηρήσεις περιέχουν πληροφορία για κάποιες από τις παραμέτρους καθορισμού του ΣΑ; 32
33 Ανατομία παρατηρήσεων δικτύου Τύπος παρατήρησης 2Δ ΔΙΚΤΥΑ Αζιμούθιο Οριζ. Διεύθυνση Οριζ. Γωνία Οριζ. Απόσταση 1Δ ΔΙΚΤΥΑ Υψομετρ. διαφορές 3Δ ΔΙΚΤΥΑ Ζενίθειες γωνίες Χωρικές αποστάσεις Συνιστώσες βάσης Περιέχεται πληροφορία σχετικά με κάποια/ες από τις παραμέτρους του ΣΑ; Ναι (προσανατολισμός) Όχι Όχι Ναι (κλίμακα) Ναι (κλίμακα) Ναι (προσανατολισμός ως προς τον κατακόρυφο άξονα) Ναι (κλίμακα) Ναι (κλίμακα + προσανατολισμός) 33
34 Παραμετρικοί βαθμοί δικτύου Τριγωνομετρικό οριζόντιο δίκτυο: 2Ν 4 Τριπλευρικό ή μικτό οριζόντιο δίκτυο: 2Ν 3 Τριπλευρικό 3Δ δίκτυο: 3Ν 6 3Δ δίκτυο GPS: 3Ν 3 Υψομετρικό δίκτυο: Ν 1 (*) Ν είναι ο συνολικός αριθμός των κορυφών του δικτύου 34
35 Γραμμικοποίηση μαθηματικού μοντέλου (1/2) y f( x, q) v Προσεγγιστικές τιμές συντεταγμένων και πρόσθετων παραμέτρων x o, q o Προσεγγιστικές τιμές παρατηρήσεων y f( x, q ) o o o Γραμμικοποιημένες εξισώσεις παρατηρήσεων xx o o f f o o o y y x q qq v 35
36 Γραμμικοποίηση μαθηματικού μοντέλου (2/2) xx o o f f o o o y y Ανηγμένες παρατηρήσεις ή πιο συνοπτικά x q qq Πίνακας σχεδιασμού δικτύου δx b A A v δ q v Διάνυσμα άγνωστων διορθώσεων Διάνυσμα άγνωστων σφαλμάτων (*) προσοχή στις μονάδες των επιμέρους όρων πρέπει να υπάρχει συμβατότητα! 36
37 Προσεγγιστικές τιμές (1/3) Ο υπολογισμός των προσεγγιστικών συντεταγμένων x o για τις κορυφές του δικτύου βασίζεται στη συνδυασμένη χρήση: (i) γνωστών συντεταγμένων σε σταθμούς αναφοράς του δικτύου και (ii) διαθέσιμων παρατηρήσεων του δικτύου. Ο υπολογισμός των προσεγγιστικών τιμών q o των πρόσθετων παραμέτρων γίνεται μέσω εμπειρικής επίλυσης των εξισώσεων του μαθηματικού μοντέλου με χρήση των προσεγγιστικών συντεταγμένων και των παρατηρήσεων. y f x q o o (, ) q o g x y o (, ) 37
38 Προσεγγιστικές τιμές - Παράδειγμα Προσεγγιστική τιμή αζιμουθίου a o με διερεύνηση τεταρτημορίου x o arctan j i y o j x y o o i μηδενική διεύθυνση (θ i ) i // y δ δ ik j k Προσεγγιστικές τιμές οριζοντίων διευθύνσεων και της αντίστοιχης σταθεράς προσανατολισμού o a o i o o o ik a (*) προφανώς ik i o 38
39 Προσεγγιστικές τιμές (2/3) Αν το μαθηματικό μοντέλο του δικτύου είναι εξαρχής γραμμικό, π.χ. κατακόρυφο δίκτυο, τότε η επιλογή των προσεγγιστικών συντ/νων δεν έχει ιδιαίτερη σημασία Οι παρακάτω μορφές των εξισώσεων παρατήρησης είναι ισοδύναμες: H b 1 1 H H H H H v j i H o H i i o H j j v H H ( H H ) H H H H v o o o o j i j j i i H o H 39
40 Προσεγγιστικές τιμές (3/3) Η χρήση προσεγγιστικών συντεταγμένων για όλες τις κορυφές του δικτύου δεν συνιστά εισαγωγή πληροφορίας για το ΣΑ του τελικού συνορθωμένου δικτύου. Η χρήση προσεγγιστικών συντεταγμένων για όλες τις κορυφές του δικτύου συνιστά απλά ένα απαραίτητο βήμα προκειμένου να έχουμε μια αρχική (προσεγγιστική) πληροφορία για την εσωτερική γεωμετρία του δικτύου ώστε να εκτιμήσουμε με βέλτιστο τρόπο τα γεωμετρικά του χαρακτηριστικά μέσω ενός γραμμικοποιημένου (επαναληπτικού) αλγορίθμου. 40
41 Γενική μορφή πίνακα σχεδιασμού 41 k n n n n n n k N N a θ θ x x x x θ θ y x y x y y y y y y y y y y y y x y A συντεταγμένες σημείων πρόσθετες παράμετροι
42 Μερικές παράγωγοι αζιμουθίου a x y arctan j i j x y i a y y j i x ( x x ) ( y y ) 2 2 i j i j i o a x j a x i a x x j i y ( x x ) ( y y ) 2 2 i j i j i o a y j a y i 42
43 Μερικές παράγωγοι οριζόντιας διεύθυνσης arctan x y j j x y i i i y y j i x ( x x ) ( y y ) 2 2 i j i j i x x j i y ( x x ) ( y y ) 2 2 i j i j i o o x j y j i xi yi 1 43
44 Μερικές παράγωγοι οριζόντιας απόστασης 2 2 j i j i S ( x x ) ( y y ) S x x j i xi ( x x ) ( y y ) 2 2 j i j i o S x j S x i S y y j i yi ( x x ) ( y y ) 2 2 j i j i o S y j S y i 44
45 Μερικές παράγωγοι συνιστωσών x x x j i βάσης y y y j i z z z j i x x i x x j y x i x y i x y j y y i x z i x z j y z i
46 Για τις αναλυτικές μορφές των μερικών παραγώγων των (υπόλοιπων) παρατηρούμενων μεγεθών σε τοπογραφικά δίκτυα, βλέπε στα αντίστοιχα κεφάλαια του βιβλίου Δ. Ρωσσικόπουλου 46
47 Πίνακας σχεδιασμού οριζόντιου δικτύου με παρατηρήσεις οριζόντιων διευθύνσεων και αποστάσεων (1/4) 47
48 Πίνακας σχεδιασμού οριζόντιου δικτύου με παρατηρήσεις οριζόντιων διευθύνσεων και αποστάσεων (2/4) 48
49 Πίνακας σχεδιασμού οριζόντιου δικτύου με παρατηρήσεις οριζόντιων διευθύνσεων και αποστάσεων (3/4) 49
50 Πίνακας σχεδιασμού οριζόντιου δικτύου με παρατηρήσεις οριζόντιων διευθύνσεων και αποστάσεων (4/4) 50
51 Πίνακας κατακόρυφου δικτύου με παρατηρήσεις υψομετρικών διαφορών (1/2) 51
52 Πίνακας κατακόρυφου δικτύου με παρατηρήσεις υψομετρικών διαφορών (2/2) 52
53 Σημείωμα Χρήσης Έργων Τρίτων (1/2) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 1: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ> Εικόνα 2: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ> Εικόνα 3: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ> Εικόνα 4: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ> Εικόνα 5: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ> Εικόνα 6: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ> Εικόνα 7: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος>< πηγή><κ.τ.λ>
54 Σημείωμα Χρήσης Έργων Τρίτων (2/2) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Πίνακες Πίνακας 1: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ> Πίνακας 2: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ> Πίνακας 3: <αναφορά><άδεια με την οποία διατίθεται> <σύνδεσμος><πηγή><κ.τ.λ>
55 Σημείωμα Αναφοράς Copyright, Χριστόφορος Κωτσάκης, «, Μοντέλα Ανάλυσης και Εξισώσεις Παρατηρήσεων Δικτύων». Έκδοση: 1.0. Θεσσαλονίκη Διαθέσιμο από τη δικτυακή διεύθυνση:
56 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1]
57 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας Επεξεργασία: Ευστάθιος Μπουχουράς Θεσσαλονίκη,
58 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Σημειώματα
59 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.00.
60 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.
Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 017-018 Μοντελοποίηση δικτύου μέσω εξισώσεων παρατήρησης Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή,
Διαβάστε περισσότεραΕξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 018-019 Εξισώσεις παρατηρήσεων στα τοπογραφικά δίκτυα Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 6: Σχηματισμός κανονικών εξισώσεων και το πρόβλημα ορισμού του ΣΑ Χριστόφορος Κωτσάκης Άδειες
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 9: Η έννοια και η χρήση των εσωτερικών δεσμεύσεων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 7: Γενική λύση συνόρθωσης δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 8: Αλγόριθμοι συνόρθωσης δικτύων Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 3: Εισαγωγή στα Δίκτυα Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΟδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Οδοποιία IΙ Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας Γεώργιος Μίντσης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 11: Ανάλυση αξιοπιστίας δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 2: Ανασκόπηση θεωρίας εκτίμησης παραμέτρων και συνόρθωσης παρατηρήσεων Χριστόφορος Κωτσάκης Άδειες
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΙστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
Διαβάστε περισσότεραΘεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΛογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΘεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 10η: Απεσταλμένοι του Ρωμαίου Ποντίφικα και Ρωμαϊκή Κουρία Κυριάκος Κυριαζόπουλος
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8η: Ο νέος αντιρατσιστικός νόμος και ο ν.4301/2014 Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Διαβάστε περισσότεραΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # 17: Ταχύτητα Αντιδράσεων Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΧωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Διαβάστε περισσότεραΤοπογραφικά Δίκτυα & Υπολογισμοί
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τοπογραφικά Δίκτυα & Υπολογισμοί Ενότητα 5: Προ επεξεργασία και έλεγχος μετρήσεων δικτύου Χριστόφορος Κωτσάκης Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΙστορία της μετάφρασης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η μετάφραση των εβδομήκοντα, η εκπαίδευση των μεταφραστών κατά Κικέρωνα, η τέχνη της μετάφρασης από την αρχαιότητα μέχρι τα
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Διαβάστε περισσότεραΕργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΘεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 11η: Σύγκριση Ρωσικής Ορθόδοξης Εκκλησίας και Καθολικής Εκκλησίας Κυριάκος Κυριαζόπουλος
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΟικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Οικονομία των ΜΜΕ Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6η: Ελληνική νομολογία Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΘερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Διαβάστε περισσότεραΥπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΔιεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΘεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 12η: Αυτόνομες και ημιαυτόνομες εκκλησίες κ.ά. διατάξεις Κυριάκος Κυριαζόπουλος Άδειες
Διαβάστε περισσότεραΑξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας Ενότητα 1: Αυτοαξιολόγηση μεταφραστών Κασάπη Ελένη Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΠαράκτια Τεχνικά Έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΘΕΣΗ ΥΓΡΩΝ ΣΤΗ ΘΑΛΑΣΣΑ ΥΠΟΒΡΥΧΙΟΙ ΑΓΩΓΟΙ Ενότητα 5 η : Κατασκευαστικά παραδείγματα Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού Ενότητα 4: Εφαρμογές λογιστικών φύλλων στη Στατική: Γεωμετρικά μεγέθη πολυγωνικά
Διαβάστε περισσότεραΟικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή
Διαβάστε περισσότεραΤίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 4: Τοποθέτηση d ηλεκτρονίων σε οκτάεδρα Σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΔιοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 2: Όψεις Όνομα Καθηγητή: Παρασκευοπούλου Ροδούλα Α.Π.Θ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΔιπλωματική Ιστορία Ενότητα 2η:
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2η: Η εμφάνιση των εθνών-κρατών και οι συνέπειες στο διεθνές σύστημα Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Διαβάστε περισσότεραΑξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος Ενότητα 3: Εργαστηριακή πρακτική Τίτλος: Ισοκίνηση (Εργαστηριακό) Πατίκας Δ. Άδειες
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΑποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποτυπώσεις Μνημείων και Αρχαιολογικών Χώρων Ενότητα 3 : Τοπογραφία και Μνημεία Τοκμακίδης Κωνσταντίνος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Διαβάστε περισσότεραΔιεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΔιοίκηση Εξωτερικής Εμπορικής Δραστηριότητας
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΒέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΓεωργική Εκπαίδευση Ενότητα 9
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Σχεδιασμός εκπαιδευτικών προγραμμάτων για τον αγροτικό χώρο Αφροδίτη Παπαδάκη-Κλαυδιανού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΣχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς
Τοπογραφικά Δίκτυα και Υπολογισμοί 5 ο εξάμηνο, Ακαδημαϊκό Έτος 2017-2018 Σχηματισμός κανονικών εξισώσεων δικτύου και το πρόβλημα ορισμού του συστήματος αναφοράς Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων και
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΟικονομετρία. Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Συστήματα συναληθευουσών εξισώσεων Το πρόβλημα της ταυτοποίησης Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση του προβλήματος
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΕργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 6: Προσδιορισμός δ0 σε οκτάεδρα σύμπλοκα Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΦ 619 Προβλήματα Βιοηθικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ο Πλάτων και ο Αριστοτέλης ως ιατροί. Οι ιατροφιλόσοφοι (Ιπποκράτης, Γαληνός, Κέλσος). Ελένη Καλοκαιρινού Φιλοσοφίας-Παιδαγωγικής
Διαβάστε περισσότεραΔιδακτική της Περιβαλλοντικής Εκπαίδευσης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διδακτική της Περιβαλλοντικής Εκπαίδευσης Ενότητα 13: Αξιολόγηση στην Περιβαλλοντική Εκπαίδευση Πολυξένη Ράγκου Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΓραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Διαβάστε περισσότεραΚβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Διαβάστε περισσότεραΕπικοινωνία Ανθρώπου- Υπολογιστή Σχεδίαση Αλληλεπίδρασης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Επικοινωνία Ανθρώπου- Υπολογιστή Σχεδίαση Αλληλεπίδρασης Ενότητα: 13 η Δ.Πολίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΕυαγγελικές αφηγήσεις της Ανάστασης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ευαγγελικές αφηγήσεις της Ανάστασης Ενότητα 12 : Oὶ μαρτυρίες των ευαγγελίων για την ανάσταση (σύγκριση) Αικατερίνη Τσαλαμπούνη Ποιμαντικής
Διαβάστε περισσότεραΣυγκριτικό Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Συγκριτικό Εκκλησιαστικό Δίκαιο Ενότητα 1η: Εισαγωγή Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΜεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Σειρές Taylor, Maclaurin Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΛογιστική Κόστους Ενότητα 11: Λογισμός Κόστους
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΠροηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 2: Έλεγχος Μηχανών Συνεχούς Ρεύματος με διέγερση σε σειρά Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών &
Διαβάστε περισσότεραΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
Διαβάστε περισσότεραΦ 619 Προβλήματα Βιοηθικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Η Βιοηθική στη σύγχρονη εποχή. Ελένη Καλοκαιρινού Φιλοσοφίας-Παιδαγωγικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΓενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Διαβάστε περισσότεραΣυμπεριφορά Καταναλωτή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 : Ομάδες αναφοράς Χριστίνα Μπουτσούκη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΧώρος και Διαδικασίες Αγωγής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Η δυναμική της σχέσης του ανθρώπου με τον χώρο και η εκπαιδευτική της σημασία (2/2) Δημήτριος Γερμανός Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΜηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 4: Τομές ΙΙ Όνομα Καθηγητή: Γιώργος Ανδρεάδης Τμήμα: Μηχανολόγων Μηχ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΕισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΕκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό)
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκκλησιαστικό Δίκαιο Ι (Μεταπτυχιακό) Ενότητα 11η: Παρουσίαση και σχολιασμός των Οδηγιών (2014 μέρος Δ ) Κυριάκος Κυριαζόπουλος Άδειες
Διαβάστε περισσότεραΔιπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη του Hitler Ιωάννης Στεφανίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα