Bernoulli P ρ +gz Ω2 ϖ 2 2
|
|
- Τερέντιος Δημαράς
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό και Καποιστιακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Δυναμική των Ρευστών, 6 Φεβουαίου 08 Απαντήστε σε 3 από τα 4 θέματα ιάκεια εξέτασης ώες Καλή επιτυχία = bonus εωτήματα) Θέμα ο : Εστω μια ισόθεμη ατμόσφαια σε υοστατική ισοοπία, σε ομογενή βαύτητα g = gẑ. α) Δείξτε ότι η πυκνότητα και η πίεση μειώνονται εκθετικά με το ύψος, σαν = 0 e z/h και P = P 0 e z/h, με κλίμακα ύψους H = P 0 0 g. β) Βείτε την ύναμη που ασκεί το ευστό σε ένα κατακόυφο κύλινο. Θεωήστε ότι οι βάσεις του κυλίνου έχουν εμβαόν S και βίσκονται σε ύψη z και z = z + h. γ) Ισχύει η αχή του Αχιμήη για την άνωση που ασκείται στον κύλινο από αυτή την ατμόσφαια; ) Δείξτε ότι για h H η άνωση είναι ανάλογη του όγκου του κυλίνου. Επίσης ότι για z H η πίεση είναι πακτικά ίια με αυτή που θα ποέκυπτε αν η ατμόσφαια είχε σταθεή πυκνότητα 0. Δίνεται το ανάπτυγμα e + για. ε) Ενα σφαιικό μπαλόνι ακτίνας R = και μάζας M = 4 kg αφήνεται να κινηθεί στην πααπάνω ατμόσφαια, για την οποία η πυκνότητα και η πίεση στην επιφάνεια είναι 0 =. kg/ 3 και P 0 = 0 5 N/, ενώ η επιτάχυνση βαύτητας είναι g = 9.8 /s. Θεωώντας ότι οι ιαστάσεις του μπαλονιού εν αλλάζουν καθώς ανυψώνεται, σε ποιο ύψος θα καταλήξει; Θέμα ο : α) Μη-ιεατό, ασυμπίεστο ευστό πειστέφεται μεταξύ ύο ομοαξονικών, κατακόυφων κυλίνων ακτίνων R και R + και μήκους h. Ο εξωτεικός κύλινος είναι ακίνητος ενώ ο εσωτεικός πειστέφεται με γωνιακή ταχύτητα. α ) Βείτε την ταχύτητα πειστοφής u = uϖ) ˆφ. α ) Βείτε την εφαπτομενική συνιστώσα της ύναμης που ασκεί το ευστό στην μονάα της επιφάνειας του εσωτεικού κυλίνου. Εξηγήστε γιατί το αποτέλεσμα για R πειμένουμε να είναι η R ˆφ, όπου η το ιξώες. α 3 ) Ποια η συνολική οπή που ασκεί το ευστό στον εσωτεικό κύλινο αν R; β) Ενα ιξωόμετο πειστεφόμενου κυλίνου φαίνεται στο σχήμα. Το κενό μεταξύ των κυλίνων γεμίζει με ευστό του οποίου θέλουμε να μετήσουμε το ιξώες. Ο εξωτεικός κύλινος κατείται ακίνητος, ενώ στον εσωτεικό ασκείται οπή M gr λόγω του βάους που φαίνεται στο σχήμα, η οποία τον θέτει σε πειστοφή με γωνιακή ταχύτητα. Μετά από σύντομο χονικό ιάστημα αποκατάστασης το βάος κατεβαίνει με σταθεή ταχύτητα V = r. β ) Βείτε την έκφαση που ίνει το ιξώες συνατήσει της ταχύτητας V το βάος M g και τα γεωμετικά χαακτηιστικά του ιξωόμετου θεωούνται γνωστά). Αγνοήστε το ευστό που υπάχει μεταξύ των βάσεων των ύο κυλίνων. β ) Αιτιολογήστε γιατί το ευστό μεταξύ των βάσεων εν επηεάζει το αποτέλεσμα αν οι λόγοι b και πr πrh είναι ακούντως μικοί. b r R h M V
2 Θέμα 3 ο : Ενα πείαμα στο εγαστήιο γίνεται μέσα σε κυλινική εξαμενή ακτίνας R = 0 c, η οποία πειέχει νεό μέχι ύψος H = 50 c στο κέντο. Η εξαμενή μαζί με το νεό πειστέφονται με συχνότητα 30 στοφές το λεπτό. α) Δείξτε ότι όταν το νεό είναι ακίνητο στο πειστεφόμενο σύστημα της εξαμενής, υπάχει ολοκλήωμα Bernoulli P +gz ϖ = σταθεά και βείτε την ανύψωση του νεού στην πείμετο της εξαμενής. β) Ποιο είναι το πάχος του στώματος Ekan; γ) Κάποια στιγμή ελαττώνουμε την συχνότητα πειστοφής σε 9 στοφές το λεπτό, οπότε το ευστό πειστέφεται ως πος την εξαμενή. γ ) Ελέγξτε αν ισχύει η γεωστοφική ισοοπία. γ ) Το πείαμα ποσομοιάζει κινήσεις γύω από βαομετικό χαμηλό ή υψηλό; γ 3 ) Ποια φοά έχουν οι ακτινικές κινήσεις μέσα στο στώμα Ekan; Θα υπάξουν κατακόυφες κινήσεις στην εξαμενή; Δίνεται η βαύτητα g = 9.8 /s και το κινηματικό ιξώες του νεού ν = 0 6 /s. Θέμα 4 ο : Δύο ευστά ελαφά ιαφοετικών πυκνοτήτων και > βίσκονται σε γεωστοφική ισοοπία, όπως στο σχήμα. Η βαύτητα είναι g = gẑ και η πειστοφή = ẑ. α) Ποια η ιαφοά πιέσεων P B P A στα σημεία A και B που απέχουν απόσταση ; Ομοια, ποια η ιαφοά P Γ P ; Ποια η ιαφοά πιέσεων P A P στα σημεία A και που απέχουν απόσταση z; Ομοια, ποια η ιαφοά P B P Γ ; β) Χησιμοποιήστε τα πααπάνω αποτελέσματα για να βείτε με ύο τόπους την ιαφοά P B P και είξτε την εξίσωση Margules για τον θεμικό άνεμο tan γ = f g v v ). γ) Σε ένα πείαμα στην πειστεφόμενη εξαμενή του σχήματος, η οποία είναι γεμάτη νεό πυκνότητας, έχουμε αχικά χωματισμένο αλατόνεο πυκνότητας γύω από τον άξονα πειστοφής, μέσα στον κύλινο που φαίνεται στο αιστεό σχήμα ο κύλινος εν έχει βάσεις, αλλά ακουμπά στην βάση της εξαμενής και τα ευστά εν αναμειγνύονται). Ολο το σύστημα πειστέφεται γύω από τον άξονα της εξαμενής με γωνιακή ταχύτητα τα ύο ευστά είναι ακίνητα ως πος την εξαμενή). Κάποια στιγμή ταβάμε απότομα πος τα πάνω τον κύλινο οπότε το αλατόνεο βυθίζεται μέσα στο ελαφύτεο νεό. Λόγω της πειστοφής το σύστημα ποσαμόζεται σε γεωστοφική ισοοπία και ημιουγείται μια στάσιμη στήλη αλατόνεου όπως φαίνεται στο εξιό σχήμα. γ ) Δείξτε ότι λόγω ιατήησης στοφομής το νεό που μετατοπίζεται οιζόντια κατά ϖ αποκτά πειστοφική ταχύτητα u φ ως πος την εξαμενή) με ϖu φ + ϖ = σταθεό u φ ϖ. γ ) Συνυάστε την ποηγούμενη σχέση με την εξίσωση Margules με v u φ, v 0) και είξτε ότι η ακτινική μετατόπιση στη στήλη είναι της τάξης της εσωτεικής ακτίνας αποιαμόφωσης Rossby R = g H/f, όπου H το ύψος του νεού στην εξαμενή. Ποια η κλίση της επιφάνειας της στήλης; z υ γ Α uφ ϖ Β Γ υ
3 Θέμα ο : ΛΥΣΕΙΣ: α) Η εξίσωση υοστατικής ισοοπίας 0 = P + g με = z), P = z)k BT d και σταθεό T, ίνει = g k B T dz. Ολοκληώνοντας από z = 0 όπου = 0 σε τυχαίο z βίσκουμε = 0 e z/h κλίμακα ύψους είναι H = k BT g. Γάφεται και σαν H = P g = P 0 0 g. Η πίεση είναι P = k BT = P 0e z/h, όπου P 0 = 0k B T η πίεση στην επιφάνεια z = 0. όπου η β) Η ύναμη αυτή είναι η άνωση και οφείλεται στην πίεση του ευστού, η οποία στην επιφάνεια και το εξωτεικό του κυλίνου είναι ίια με αυτή που θα υπήχε απουσία του κυλίνου αφού για στατικό ευστό ικανοποιείται ταυτοτικά η οιακή συνθήκη του μηενισμού της ταχύτητας της ολικής ή μόνο της κάθετης συνιστώσας ανάλογα με το αν το ευστό είναι μη-ιεατό ή ιεατό, αντίστοιχα στην επιφάνεια του κυλίνου). Λόγω συμμετίας εν υπάχει συνεισφοά από την κυλινική επιφάνεια, οπότε μένουν μόνο οι συνεισφοές από τις βάσεις οι οποίες ίνουν A = P z )Sẑ + P z ) Sẑ) = P 0 Se z /H e h/h) ẑ. γ) Το βάος του ευστού που έχει εκτοπίσει ο κύλινος είναι dτ g = 0 e z/h dz S gẑ = z 0 SgHe z /H e h/h) ẑ, ηλ. ίσο κατά μέτο με την ύναμη A, αφού P 0 = 0 gh. Άα ισχύει η αχή του Αχιμήη ακόμα και σε συμπιεστά ευστά, ακεί να είναι στατικά. Γενικότεα, η ύναμη που ασκεί το ευστό σε οποιοήποτε σώμα ισούται με το ολοκλήωμα A = P da πάνω στην επιφάνεια του σώματος. Αφού στην επιφάνεια και το εξωτεικό του σώματος η πίεση είναι ίια με αυτή που θα υπήχε απουσία του, το ολοκλήωμα μποεί να υπολογιστεί θεωώντας την πείπτωση χωίς το σώμα και είναι A = P da = P dτ = gdτ χησιμοποιώντας την εξίσωση υοστατικής ισοοπίας, ηλ. είναι αντίθετη του βάους του ευστού που εκτοπίζει το σώμα έχει ίσο μέτο αλλά αντίθετη φοά με το βάος του εκτοπιζόμενου ευστού). ) Για h H είναι e h/h h H και A P 0Se z /H h H ẑ = Sh z=z gẑ. Είναι ανάλογη του όγκου Sh. Για z H είναι P = P 0 e z/h P 0 z/h) = P 0 0 gz, ίια με την λύση της υοστατικής ισοοπίας ασυμπίεστου ευστού 0 = P + 0 g 0 = dp dz 0g. ε) Η πυκνότητα του μπαλονιού είναι = ανυψώνεται. Θα καταλήξει στο ύψος z f z M 4πR 3 /3 = 0.95 kg 3 < 0, άα το μπαλόνι θα αχίσει να όπου η πυκνότητα του αέα είναι ίια με αυτή του μπαλονιού, ώστε η άνωση να είναι ίση με το βάος, ηλ. = 0 e z f /H = z f = H ln 0. Είναι H = P 0 = 8500 και 0 g z f = 900. Θέμα ο : α ) Η ˆφ συνιστώσα της εξίσωσης ομής ίνει u u ϖ = 0 d ϖ du ) = u ϖ dϖ dϖ ϖ. Η γαμμική αυτή εξίσωση έχεται λύσεις ϖ λ με την αντικατάσταση να ίνει λ = ±, επομένως η γενική λύση είναι u = C ϖ + C /ϖ. Οι οιακές συνθήκες u ϖ=r = R και u ϖ=r+ = 0 ίνουν C + C /R = και C + C /R + ) = 0, οπότε τελικά u = R + R ϖ + R R + ) + R ϖ. α ) Η ˆφ συνιστώσα της ύναμης ανά επιφάνεια του εσωτεικού κυλίνου ϖ=r ˆϖ) είναι Π ϖφ = ηϖ d u ) ϖ=r R + ) = η dϖ ϖ + R. Για R η ταχύτητα μειώνεται ποσεγγιστικά γαμμικά από R στην ακτίνα R σε 0 στην ακτίνα R +.
4 Επομένως η ύναμη ανά επιφάνεια έχει μέτο η u ϖ = η R. Η φοά της είναι στην ˆφ γιατί το ευστό θέλει να επιβαύνει την πειστοφή του εσωτεικού κυλίνου η οποία είναι το αίτιο πειστοφής του θέσει επίσης να θέσει σε πειστοφή τον εξωτεικό κύλινο με σκοπό να εξισωθούν οι πειστοφές και να μην υπάχουν υνάμεις ιξώους). α 3 ) Βάσει της σχέσης T = r F = ϖf φ ẑ η οπή ανά επιφάνεια είναι R η R ) ẑ. Ολοκληώνοντας στην κυλινική επιφάνεια, η συνολική οπή είναι T = R η R ) πrhẑ = πηr3 h ẑ. ] R + ) Το ακιβές αποτέλεσμα, ηλ. χωίς την ποσέγγιση R, είναι R [ η πrhẑ. + R β ) Η οπή T εξουετεώνει την οπή που ασκεί το ευστό στον εσωτεικό κύλινο, ηλ. Mgr = πηr 3 h με = V/r, οπότε η = Mgr πr 3 hv. β ) Το ευστό μεταξύ των βάσεων πειστέφεται με τόπο ώστε στο ύψος που ακουμπά τον εσωτεικό κύλινο να έχει ταχύτητα ϖ ˆφ, ενώ στο ύψος που ακουμπά τον εξωτεικό κύλινο να έχει μηενική ταχύτητα. Επομένως ασκεί πειστοφική ύναμη η u z = η ϖ στην μονάα επιφάνειας της κάτω βάσης του b εσωτεικού κυλίνου, με φοά ˆφ ιότι αντιστέκεται στο αίτιο πειστοφής του, που είναι η πειστοφή του κυλίνου). Η αντίστοιχη οπή ανά επιφάνεια είναι ηϖ /b. Αυτή είναι τάξης το πολύ /b φοές την αντίστοιχη οπή ανά επιφάνεια στην κυλινική επιφάνεια ιότι ϖ R). Επίσης οι επιφάνειες είναι ιαφοετικές, η βάση πr ενώ η παάπλευη πrh. Επομένως η συνολική οπή στη βάση θα έχει ένα παάγοντα τάξης πr σε σχέση με την οπή στην κυλινική επιφάνεια. πrh Πειμένουμε λοιπόν η οπή στη βάση να είναι τάξης T πr b πrh T. Η λύση που ικανοποιεί την εξίσωση ομής για μικούς αιθμούς Reynolds είναι u = ϖ z b ˆφ όπου z = 0 είναι η βάση του εξωτεικού κυλίνου) και ίνει ˆφ συνιστώσα της ύναμης ανά επιφάνεια στην βάση του εσωτεικού κυλίνου z=b ẑ ίση με Π zφ = η du dz = η ϖ z=b b. Η αντίστοιχη οπή ανά επιφάνεια είναι ϖ ηϖ/b) ẑ. Ολοκληώνοντας στην επιφάνεια της βάσης βίσκουμε συνολική οπή T = ϖ η ϖ ) R πϖdϖẑ = ηπr4 ẑ. 0 b b Είναι ηλ. T = R 4 b h T. Θέμα 3 ο : Συχνότητα πειστοφής = 30 λεπτό = 30 30, άα = π 60 s 60 rad/s = 3.4 rad/s και f = = 6.8 s. α) Στο πειστεφόμενο σύστημα, για στατικό νεό, η εξίσωση ομής είναι 0 = P υναμικό είναι Φ g = gz ϖ P + gz ϖ = σταθεό. άθοισμα βαύτητας και φυγόκεντου). Άα P + Φ g Φ g, όπου το ) = 0, ηλ. Στην επιφάνεια η πίεση είναι σταθεή, άα το ολικό υναμικό είναι σταθεό, gz ϖ = σταθεό. Η τιμή της σταθεάς βίσκεται από το ύψος στο κέντο z c = 0.5 c και άα στην πείμετο το ύωος είναι z με gz ϖ = gz c. Η ανύψωση είναι z z c = R = 5. g β) d = ν/f = 0.6.
5 γ ) Οι ταχύτητα ως πος την εξαμενή είναι +ϖ ˆφ με = π rad/s και άα έχει μέγιστο μέτο 60 U = R = c/s. Ro = U = 0.06, Ek = ν fr fh = 7 0 6, άα ισχύει η γεωστοφική ισοοπία. γ ) Αφού η ταχύτητα έχει την φοά + ˆφ, ηλ. κυκλωνική, η Coriolis είναι ακτινική πος τα έξω και εξουετεώνεται από ύναμη κλίσης πίεσης που αναπτύσσεται με φοά πος τον άξονα, άα αντιστοιχεί σε κίνηση γύω από βαομετικό χαμηλό. ς πος τον αανειακό παατηητή η κίνηση του ευστού και η κατανομή της πίεσης εν αλλάζουν αμέσως μετά την αλλαγή πειστοφής της εξαμενής. Στο πειστεφόμενο όμως σύστημα θεωούμε ότι το μέος της πίεσης ϖ / εξουετεώνει την φυγόκεντο και ασχολούμαστε μόνο με το υπόλοιπο που σχετίζεται με την γεωστοφία. Η ελάττωση του αύξησε το υπόλοιπο ημιουγώντας «βαομετικό χαμηλό» στον άξονα. γ 3 ) Πος το κέντο, όπως είχνει η λύση u H = u g e z/d cos z ) + ẑ u g e z/d sin z d d με u g = ϖ ˆφ. Δείτε ένα τέτοιο πείαμα Θα υπάξουν κατακόυφες κινήσεις. Το ευστό που κινείται πος το κέντο μέσα στο στώμα Ekan ανεβαίνει πος την επιφάνεια στην πειοχή κοντά στον άξονα και κατόπιν επιστέφει στον πυθμένα από το μέος που συνοεύει με την παάπλευη επιφάνεια της εξαμενής. Θέμα 4 ο : α) Η οιζόντια κλίση πίεσης συνέεται με την γεωστοφική οή u g = HP ẑ f 0 v = f 0 P, επομένως P B P A = f 0 v και P Γ P = f 0 v. Η κατακόυφη κλίση πίεσης συνέεται με την βαύτητα 0 = P z g, επομένως P A P = g z και P B P Γ = g z. β) Χησιμοποιώντας τις ιαομές μέσα στο ευστό βίσκουμε P B P = P B P A ) + P A P ) = f 0 v g z, ενώ χησιμοποιώντας τις ιαομές μέσα στο ευστό βίσκουμε P B P = P B P Γ ) + P Γ P ) = f 0 v g z. Εξισώνοντας τα αποτελέσματα βίσκουμε z v v, ή ισούναμα tan γ f g v v ). = f 0 g γ ) Λόγω απουσίας οπών, η στοφομή ανά μάζα ως πος αανειακό παατηητή ϖu φa ιατηείται. Είναι όμως u φa = u φ + ϖ, οπότε το ολοκλήωμα στοφομής είναι ϖu φ + ϖ = σταθεό. Αυτό ποκύπτει και από την εξίσωσης ομής u t + u ) u = P ευστό φ = 0) η ˆφ συνιστώσα γάφεται u φ t +u u φ + u ϖu φ ϖ d Φ g u. Για αξισυμμετικό = u ϖ du φ dt + u φ dϖ ϖ dt ϖuφ + ϖ ) = 0, ηλ. το ζητούμενο ολοκλήωμα. + dϖ dt = 0. Πολλαπλασιάζοντας με ϖ ποκύπτει dt Αν η αχική ακτίνα είναι ϖ i η αχική ακτίνα της στήλης του αλατόνεου) και η τελική είναι ϖ = ϖ i + ϖ, το ολοκλήωμα ίνει ϖu φ + ϖ = ϖi u φ = ϖ i ϖ ) = ϖϖ i + ϖ) ϖ. ϖ ϖ i + ϖ γ ) Η εξίσωση Margules με ταχύτητες v u φ f ϖ, v 0 και κλίση tan γ H ίνει ϖ H ϖ f g ϖ ϖ R. Η κλίση της επιφάνειας της στήλης είναι tan γ = H/R = f H/g. Δείτε το πείαμα στο ή στο weathertank.it.edu/links/projects/fronts-an-introduction/fronts-tank-eaples
1) Ηλεκτρικό πεδίο φορτισμένου φύλλου απείρων διαστάσεων
1) Ηλεκτικό πεδίο φοτισμένου φύλλου απείων διαστάσεων Σε αυτό το εδάφιο θα υπολογιστεί το ηλεκτικό πεδίο παντού στο χώο ενός φοτισμένου λεπτού φύλλου απείων διαστάσεων και αμελητέου πάχους όπως αυτό που
Διαβάστε περισσότεραH 2 + x 2 cos ϕ. cos ϕ dϕ =
. Άπειη γαμμική κατανομή ϕοτίου λ Θεωούμε την γαμμική κατανομή ϕοτίου στον άξονα των x και ζητάμε το ηλεκτικό πεδίο στο σημείο A που απέχει από την κατανομή. Το στοιχειώδες τμήμα dx της κατανομής στη θέση
Διαβάστε περισσότερα= = σταθ. Ι. που είναι. Η ροπή αδράνειας ενός σώματος μετρά την κατανομή της μάζας γύρω από τον άξονα περιστροφής, έτσι όσο
Απαντήσεις ΘΕΜΑ Α Α. γ, Α. α, Α3. γ, Α4. α, Α5. Σ, Λ, Λ, Λ, Σ. ΘΕΜΑ Β Β. Σωστή απάντηση είναι η γ. Σε μία τυχαία θέση θα έχουμε: Στ = τf τ w = F g ηµθ θ F Στ = ( c + 0,5g ηµθ) g ηµ θ = c = σταθ. g Άα λοιπό
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ A Α. α Α. β Α3. γ Α4. δ Α5. α. Λάθος ΘΕΜΑ Β ΦΥΣΙΚΗ Ηµεοµηνία: Μ. Τετάτη Απιλίου 07 β. Σωστό γ. Λάθος δ. Λάθος
Διαβάστε περισσότεραΣυλλογή Ασκήσεων Υδροστατικής
Συλλογή Ασκήσεων Υδοστατικής Άσκηση. ℵ Να βεθεί η τιμή της πίεσης που δείχνει το πιεσόμετο, σε mmhg. Δίνονται οι πυκνότητες υδαγύου Hg 600kg/m, νεού Ν 000 kg/m και αέα Α,9 kg/m. 0 cm cm + 0 Επίλυση Αχικά
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΑΣΚΗΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ Η μέτηση της ταχύτητας οής ενός εστού μέσα σε ένα σωλήνα γίνεται με τη σσκεή Prandtl (σωλήνας Pitot) (βλέπε Σχήμα). Η σσκεή ατή αποτελείται από δο πολύ λεπτούς σωλήνες,
Διαβάστε περισσότεραΧειμερινό εξάμηνο 2007 1
ΜΜΚ 3 Μεταφοά Θεμότητας Φυσική Συναγωγή ΜΜΚ 3 Μεταφοά Θεμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Πααγωγής ΜΜK 3 Μεταφοά Θεμότητας Φυσική Συναγωγή (r convction) Στα ποηγούμενα ύο κεφάλαια ασχοληθήκαμε
Διαβάστε περισσότεραΕισαγωγή στην Αστρονομία
Παπαδόπουλος Μιλτιάδης ΑΕΜ: 4 Εξάμηο: 7 ο Ασκήσεις: -4 Εισαγωγή στη Αστοομία Έα ομογεές μεσοαστικό έφος έχει μάζα Μ ΜΗ (μία μάζα Ηλίου) και πυκότητα ^ mp/m^ Η πείοδος αξοικής πειστοφής του είαι έτη Ποια
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: ΣΕΙΡ: (ΛΥΣΕΙΣ) ΘΕΜ Οδηγία: Να γάψετε στο τετάδιό σας τον αιθμό καθεμιάς από τις παακάτω εωτήσεις -4 και δίπλα το γάμμα που αντιστοιχεί στη σωστή απάντηση..
Διαβάστε περισσότεραΜοντέλα Ταχέως Περιστρεφόµενων Αστέρων Νετρονίων
ιπλωµατική Εγασία Μοντέλα Ταχέως Πειστεφόµενων Αστέων Νετονίων Πασχαλίδης Βασίλειος Α.Ε.Μ.: 1188 Κατεύθυνση Αστονοµίας Αστοφυσικής Επιβλέποντες Καθηγητές: Κ. Κόκκοτας, Ν. Στεγιούλας 8 Ιουλίου 3 Πλάνο Παουσίασης
Διαβάστε περισσότεραΜελέτη της Άνωσης. Α = ρ υγρού g V βυθ..
Μελέτη της Άνωσης F 1 h 1 h 2 Α) Η Άνωση οφείλεται στην βαύτητα. Αν ένα σώμα βίσκεται μέσα σε υγό με πυκνότητα υγού η επάνω επιφάνειά του με εμβαδό S δέχεται δύναμη F 1 = P 1 S και η ίσου εμβαδού κάτω
Διαβάστε περισσότεραΜαθηματι ά ατεύθυνσης
Β Λυκείου Μαθηματι ά ατεύθυνσης Ο Κύκλος Θεωία Μεθοδολογία -Ασκήσεις Σ υ ν ο π τ ι κ ή Θ ε ω ί α Ονομασία Διατύπωση Σχόλια Σχήμα Α. Κύκλος Οισμός: Ονομάζεται κύκλος με κέντο Ο και ακτίνα το σύνολο των
Διαβάστε περισσότεραΣχήµα ΒΣ-6. Προφίλ πάχους, ταχύτητας και θερµοκρασίας υµένα κατά την συµπύκνωση
υθµοί µετάοσης θεµότητας παουσιάζονται πολύ µεγαλύτεοι από τους αντίστοιχους στην συµπύκνωση τύπου υµένα. Κατά την συµπύκνωση υµένα, το υγό συµπύκνωµα ηµιουγείται αχικά στην επιφάνεια, από την οποία στην
Διαβάστε περισσότερα3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4
Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε
Διαβάστε περισσότεραΠΕΙΡΑΜΑ 10. Aεροδυναµική Στερεών Σωµάτων
ΠΕΙΡΑΜΑ 10 Aεοδυναµική Στεεών Σωµάτων Σκοπός του πειάµατος Σκοπός του πειάµατος αυτού είναι η µελέτη της αντίστασης που αναπτύσσεται κατά τη σχετική κίνηση ενός αντικειµένου µέσα σε ένα αέιο. Οι εξισώσεις
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Σελίδα 1 από 6
ΘΕΜΑ Α Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,, 3, 4 δείχνουν
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την
Διαβάστε περισσότεραΥπολογισμός γεωστροφικών ρευμάτων με τη χρήση δεδομένων από CTD. Σύγκριση με αποτελέσματα από A.D.C.P. & Drifters.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΘΑΛΑΣΣΑΣ Υπολογισμός γεωστοφικών ευμάτων με τη χήση δεδομένων από CTD. Σύγκιση με αποτελέσματα από A.D.C.P. & Drifters. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ (Επιβλέπων:
Διαβάστε περισσότεραΔΙΑΛΕΞΗ 4 Βασικές εξισώσεις διατήρησης στη Φυσική Ωκεανογραφία
ΔΙΑΛΕΞΗ 4 Βασικές εξισώσεις ιατήησης στη Φυσική Ωκεανογαφία Πειεχόµενα: q Δυνάµεις που ουν στον ωκεανό q Εξισώσεις κίνησης q Scaling q Εξίσωση συνέχειας q Εξίσωση ιατήησης της ενέγειας q Οιακές συνθήκες
Διαβάστε περισσότεραx D 350 C D Co x Cm m m
Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΘΗΓΗΤΗΣ : Ν ΚΩΤΣΟΒΙΝΟΣ ΛΕΚΤΟΡΑΣ : Π. ΑΓΓΕΛΙ ΗΣ ΛΥΣΕΙΣ B ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΚΟΡ ΟΠΟΥΛΟΣ ΗΜΗΤΡΙΟΣ ΑΜ 585 ΑΣΚΗΣΗ Θαλασσινό νεό από ένα εγοστάσιο, βεβαηµένο
Διαβάστε περισσότεραΠροτεινόμενες λύσεις. kδl
σπουδαστιο Κυιακίδης Ανδεάδης Πανελλνιες 07 Ποτεινόμενες λύσεις ΦΥΙΚΗ ΠΡΟΑΝΑΤΟΛΙΜΟΥ /06/07 ΘΕΜΑ Α Α. δ Α. γ Α. α Α4. δ Α5. α. Λάθος β. ωστό γ. ωστό δ. ωστό ε. Λάθος ΘΕΜΑ Β Β σωστό το ii Δl Δl +Α -Α (Θέση
Διαβάστε περισσότεραdv 2 dx v2 m z Β Ο Γ
Μηχανική Ι Εργασία #2 Χειμερινό εξάμηνο 218-219 Ν Βλαχάκης 1 Στην άσκηση 4 της εργασίας #1 αρχικά για t = είναι φ = και η ταχύτητα του σώματος είναι v με φορά κάθετη στο νήμα ώστε αυτό να τυλίγεται στον
Διαβάστε περισσότεραΆσκηση 1. R y. R x. Επίλυση (2.1) (2.2) Q 1 1 = 1 1
Ασκήσεις εφαµογής ισοζυγίου οής γαµ. οµής Άσκηση Ακοφύσιο Α εκτοξεύει κυλινδική φλέβα νεού διαµέτου d c µε υθµό l/. H φλέβα του νεού εισέχεται σε ένα διαχύτη και χωίζεται σε κυλινδικές φλέβες µε διατοµές
Διαβάστε περισσότεραΑνάληψη αξονικού φορτίου από πάσσαλο
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «Αλληλεπίδαση Εδάφους Κατασκευής» 8 ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 6 7 Διδάσκοντες : Γ. Γκαζέτας
Διαβάστε περισσότεραΣύνδεση µε µη αβαρή ράβδο
Σύνδεση µε µη αβαή άβδο Με τη βοήθεια µιας άβδου µάζας Μ kg και µήκους L συνδέουµε τα κέντα µάζας ενός δίσκου µάζας 4kg και ενός δακτυλίου µάζας m 6kg, όπως αίνεται στο σχήµα. Ο m δίσκος και η άβδος έχουν
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ
Διαβάστε περισσότεραΑνάλυση σε Πεπερασμένο Όγκο Αναφοράς. Τρόποι επίλυσης προβλημάτων Μηχανικής Ρευστών. Θεωρητική ανάλυση συστήματος
Ανάλυση σε Πεπεασμένο Όκο Αναφοάς Τόποι επίλυσης ποβλημάτων Μηχανικής Ρευστών Θεωητική ανάλυση συστήματος Πεπεασμένοόκοαναφοάς Διαφοική ανάλυση σε απειοστό όκο Πειαματική ανάλυση Συστήματα Οι νόμοι της
Διαβάστε περισσότεραΡΕΥΜΑΤΑ, ΝΟΜΟΣ ΤΟΥ OHM
Q ΡΥΜΑΤΑ, ΝΟΜΟΣ ΤΟΥ OHM Ισοοπία σε αγωγό μόνον όταν στο εσωτεικό του αγωγού είναι =0 λεύθεο Ηλεκτόνιο Πείσεια ελευθέων ηλεκτονίων ξωτεικό ηλεκτικό πεδίο εσ εξ = εσ = 0 εξ σωτεικό ηλ. πεδίο Ποσθήκη εξωτεικού
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17/4/2016 ΘΕΜΑ Α
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 7/4/06 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις - 7 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθμό το γράµμα που αντιστοιχεί στη σωστή απάντηση:
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 25/02/2018 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.
ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη. 1 β) Σε ένα πεδίο κεντρικών δυνάµεων F =, ένα σώµα, µε µάζα
Διαβάστε περισσότεραΜία μηχανή μεγάλου κυβισμού κινείται σε ευθύγραμμο δρόμο με σταθερή ταχύτητα υ=36 Km/ h.
ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ (Ε.Φ.Β.Ε.) Θέματα Εξετάσεων Β τάξης Γυμνασίου 2/4/2017 Θέμα 1 ο Μία μηχανή μεγάλου κυβισμού κινείται σε ευθύγραμμο δρόμο με σταθερή ταχύτητα υ=36 Km/ h. Α. Να υπολογίσετε
Διαβάστε περισσότεραΑΣΚΗΣΗ 14. έκδοση DΥΝI-EXC b
ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 14 έκδοση DΥΝI-EXC14-016b Copyright Ε.Μ.Π. - 016 Σχολή
Διαβάστε περισσότερα1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
Διαβάστε περισσότερα11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό κατά dθ dw F ds = F R dθ
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα Α. 1. β 2. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ.
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ- 07 Θέμα Α.. β. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ. Β Στην επιφάνεια ελαστικού μέσου υπάρχουν δύο πανομοιότυπες πηγές κυμάτων που ξεκινούν ταυτόχρονα την ταλάντωση τους. Σε
Διαβάστε περισσότεραΔΙΑΛΕΞΗ 8 Kύματα βαρύτητας απουσία περιστροφής
ΔΙΑΛΕΞΗ 8 Kύματα βαύτητας απουσία πειστοφής Πειεχόμενα: Χαακτηιστικά μεγέθη τν κυμάτν Εξισώσεις τν επιφανειακών κυμάτν Ποσεγγίσεις βαχέν/μακών κυμάτν Το κυματικό φάσμα Εστεικά κύματα βαύτητας Χαακτηιστικά
Διαβάστε περισσότεραdx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Α Λυκείου
Διαγώνισμα Φυσικής Α Λυκείου Ευθύγραμμη κίνηση Δυναμική σε μία διάσταση Δυναμική στο επίπεδο Θέμα Α 1) Μέτρο της αδράνειας των σωμάτων είναι: i) Η ταχύτητα. ii) Η επιτάχυνση. iii) Το βάρος. iv) Η μάζα.
Διαβάστε περισσότεραΚεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόμενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσματικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναμική της Περιστροφικής Κίνησης, Ροπή και
Διαβάστε περισσότεραGMm. 1 2GM ) 2 + L2 2 + R L=4.5 L=4 L=3.7 L= 1 2 =3.46 L= V (r) = L 2 /2r 2 - L 2 /r 3-1/r
Ονοματεπώνυμο: Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Μηχανική Ι, Τμήμα Κ Τσίγκανου & Ν Βλαχάκη, Σεπτεμβρίου 05 Διάρκεια εξέτασης 3 ώρες, Καλή επιτυχία = bonus ερωτήματα),
Διαβάστε περισσότεραΔιαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο
Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος Κυριακή 5 Μαρτίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2
Διαβάστε περισσότεραΘΕΜΑ 1ο Στις ερωτήσεις 1 4 να επιλέξετε τη σωστή απάντηση
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛ. ΔΙΑΓΩΝΙΣΜΑ 2018 ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΠΑΡΑΡΤΗΜΑ ΔΙΑΡΚΕΙΑ 3 ΩΡΕΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1 4 να επιλέξετε τη σωστή απάντηση Α1 Περιπολικό ακολουθεί αυτοκίνητο
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Κανάρη 36, Δάφνη Τηλ. 10 9713934 & 10 9769376 ΘΕΜΑ Α ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 017 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Μ Τετάρτη 1 Απριλίου 017 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ 2. έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε σταθερό σημείο.
ΕΡΩΤΗΣΕΙΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΚΑΙ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΜΕ ΑΙΤΙΟΛΟΓΗΣΗ ΜΕΡΟΣ. Ένα ιδανικό ελατήριο σταθεράς = 00 N/ που έχει τον άξονα του κατακόρυφο έχει το φυσικό του μήκος και η πάνω άκρη του είναι δεμένη σε
Διαβάστε περισσότεραβ) Ε Φ Α Ρ Μ Ο Γ Η 1 2 α)
Ε ΦΑΡΜΟΓΗ 1 Ένα σώμα μάζας m 800g ισορροπεί ακίνητο πάνω σε λείο οριζόντιο δάπεδο, συνδεδεμένο στο ελεύθερο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς K 00N / m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. γ Α2. δ Α3. α Α4. δ Α5. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε) Λάθος ΘΕΜΑ Β Β1. α) Σωστή απάντηση είναι η ( i. ) β)
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 γ Α2 β Α3 γ Α4 β Α5. α Σ, β Σ, γ Λ, δ Λ, ε Σ.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΑΔΑ Β) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 0 ΕΞΕΤΑΖΟΕΝΟ ΑΘΗΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΑ Α Α γ Α β Α γ Α β Α5. α Σ, β Σ, γ
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 1ο σετ - Μέρος Β ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 1 Ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 1ο σετ - Μέρος Β Ερώτηση 1. ΘΕΜΑ Β Σώμα εκτελεί Α.Α.Τ. με εξίσωση απομάκρυνσης
Διαβάστε περισσότεραΘ1.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν:
1. Υγρά σε ισορροπία ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Θ1.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η πίεση στο εσωτερικό ενός υγρού και στα.. του δοχείου που το περιέχει οφείλεται ή στο.. του υγρού ή σε
Διαβάστε περισσότεραΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6)
ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΙΟΣ 019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΝΝΕΑ (6) ΘΕΜΑ Α. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Διαβάστε περισσότεραΑ.1 Να προσδιορίσετε την κάθετη δύναμη (μέτρο και φορά) που ασκεί το τραπέζι στο σώμα στις ακόλουθες περιπτώσεις:
ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό
Διαβάστε περισσότεραΜετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.
Μετεωρολογία Ενότητα 7 Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Ενότητα 7: Η κίνηση των αέριων μαζών Οι δυνάμεις που ρυθμίζουν την κίνηση των αέριων μαζών (δύναμη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ
Σχολικό Έτος 016-017 1 ΚΕΦΑΛΑΙΟ 1 Ο ΚΑΜΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ Α. ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ Οριζόντια βολή, ονομάζουμε την εκτόξευση ενός σώματος από ύψος h από το έδαφος, με οριζόντια ταχύτητα u o, όταν στο σώμα επιδρά
Διαβάστε περισσότεραΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον
Διαβάστε περισσότεραΘέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.
ΕΠΑΝΑΛΗΠΤΙΚΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ o ΕΠΑΝΑΛΗΠΤΙΚΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Θέμα ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ) Σώμα εκτελεί ταυτόχρονα δύο απλές
Διαβάστε περισσότεραΦυσική Β Γυμνασίου Συνοπτικές Σημειώσεις Επανάληψης
Φυσική Β Γυμνασίου Συνοπτικές Σημειώσεις Επανάληψης Επιμέλεια: Αγκανάκης Α. Παναγιώτης Κεφάλαιο 1 Φυσικά Μεγέθη: τα μεγέθη που μελετάει η Φυσική Επιστήμη Κατηγορίες: 1. Θεμελιώδη a. Μάζα (kg) b. Μήκος
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μηχανική Ρευστών Κεφάλαιο Λυμένα Προβλήματα Πρόβλημα Για το κλειστό δοχείο του παρακάτω σχήματος, όλα τα ρευστά είναι
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 11 ΑΠΡΙΛΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε
Διαβάστε περισσότερα11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό
Διαβάστε περισσότεραΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει
Διαβάστε περισσότεραΝα βρίσκουμε τις σχετικές θέσεις δύο κύκλων, όταν γνωρίζουμε τις ακτίνες τους και το μήκος της διακέντρου.
Ενότητα 6 Κύκλος Στην ενότητα αυτή θα μάθουμε: Να βίσκουμε τις σχετικές θέσεις δύο κύκλων, όταν γνωίζουμε τις ακτίνες τους και το μήκος της διακέντου. Να αποδεικνύουμε και να εφαμόζουμε τις σχέσεις εγγεγαμμένων
Διαβάστε περισσότερα1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α
1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια χρονική
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
Κανάρη 36, Δάφνη Τηλ 0 973934 & 0 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Ι Οδηγία: Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ ΤΕΛΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα 1ο. Θέμα 2ο
ΑΠΑΝΤΗΣΕΙΣ ΤΕΛΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 06-07. α.. β. 3. γ. 4. δ. 5. α. Λάθος. β. Σωστό. γ. Σωστό. δ. Λάθος. ε. Σωστό. Θέμα ο Θέμα ο. Σωστή απάντηση είναι η γ. Εφόσον το σημείο Κ είναι αρχικά κοιλία,
Διαβάστε περισσότεραx όπου Ε είναι η ολική ενέργεια ανά µονάδα µάζας και Η είναι η ολική ενθαλπία για τις οποίες ισχύει
ΜΕΘΟ ΟΙ ΑΕΡΟ ΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Κ.Χ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Αν. Καθηγητής, Τοµέας Ρευστών, Σχολή Μηχανολόγων Ε.Μ.Π. ΜΟΝΟ ΙΑΣΤΑΤΕΣ ΕΞΙΣΩΣΕΙΣ EULER ιαφοετικές Γαφές των Εξισώσεων
Διαβάστε περισσότεραΤμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 08 Δυναμική περιστροφικής κίνησης Ροπή Ροπή Αδρανείας ΦΥΣ102 1 Περιστροφική κίνηση
Διαβάστε περισσότεραm 1 m 2 2 (z 2 + R 2 ). 3/2
1 : Θέμα o από εξέταση της 2/2/2: α) Ποια η γενική μορή δηλ ανεξαρτήτως συστήματος συντεταγμένων) του μαγνητικού πεδίου B που δημιουργεί μαγνητικό δίπολο ροπής m σε σημείο P τέτοιο ώστε το διάνυσμα από
Διαβάστε περισσότεραΑσκήσεις 6 ου Κεφαλαίου
Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη
Διαβάστε περισσότεραF mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται
6-04-011 1. Όχημα μάζας m ξεκινά από την αρχή του άξονα x χωρίς αρχική ταχύτητα και κινείται στον άξονα x υπό την επίδραση της δυνάμεως t F mk(1 e ), όπου k θετική σταθερά. Στο όχημα ασκείται επίσης αντίσταση
Διαβάστε περισσότεραΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)
ΑΣΚΗΣΗ 1 ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση 30-06-08 ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες) Α) Τρία σηµειακά ϕορτία τοποθετούνται στις κορυφές ενός τετραγώνου πλευράς α, όπως ϕαίνεται στο σχήµα 1. Υπολογίστε
Διαβάστε περισσότερα1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).
1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.
Διαβάστε περισσότεραΣΥΝΟΨΗ 1 ου Μαθήματος
Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση
Διαβάστε περισσότεραΑ.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα, για τις αντίστοιχες αλγεβρικές τιμές των ταχυτήτων των δύο σωμάτων πριν από την κρούση τους προκύπτει ότι:
ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑ (10) ΘΕΜΑ Α ΠΡΟΤΕΙΝΟΜΕΝΕΣ
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς
Διαβάστε περισσότεραΕνεργειακή Θεώρηση των Ταλαντώσεων
Κεφάλαιο : Ενεργειακή Θεώρηση των Ταλαντώσεων Κεφάλαιο : Ενεργειακή Θεώρηση των Ταλαντώσεων Ο μηχανισμός της ταλάντωσης ενός μηχανικού συστήματος είναι η συνεχής ιακίνηση ενέργειας μεταξύ των ελαστικών
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 3) ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότερα1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.
ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη Αυγούστου 05 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Οµάδα Α Θέµα Α Α.. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια
Διαβάστε περισσότερα1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Β.
ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη Αυγούστου 05 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Οµάδα Β Θέµα Α Α.. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ. (εξεταστέα ύλη: κρούσεις, ελατήρια, μηχανική ρευστών, κινηματική στερεού, φαινόμενο Doppler)
ΜΑΡΤΙΟΣ 07 ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (εξεταστέα ύλη: κρούσεις, ελατήρια, μηχανική ρευστών, κινηματική στερεού, φαινόμενο Doppler) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Διάρκεια εξέτασης: 0.800sec (& κάθε ένα μετράει ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,
Διαβάστε περισσότεραΦυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.
Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 7 ο μάθημα 1 Σύνοψη προηγούμενου κεφαλαίου Κεφάλαιο 10 Συστήματα σωματιδίων
Διαβάστε περισσότεραΟδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 4/11/013 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΕΚΦΩΝΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 06 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 06 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από -4 να γράψετε
Διαβάστε περισσότεραΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ
ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ Προσοχή στα παρακάτω!!!!! 1. Σχεδιάζουμε το σώμα σε μια θέση της κίνησής του, (κατά προτίμηση τυχαία) και σημειώνουμε εκεί όλες τις δυνάμεις που ασκούνται στο σώμα.
Διαβάστε περισσότεραΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 4 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2019: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α1α. (β) Α1β. (β) Αα. (γ) Αβ. (α) Αα. (γ) Αβ. (δ) Α4α. (α) Α4β. (γ) Α5. α. Σ β. Λ γ. Λ δ. Σ ΘΕΜΑ Β Β1.
Διαβάστε περισσότεραΒ. Το μέγιστο ύψος σε m και cm,όπου θα ανέβει η μπάλα πρίν αρχίσει να κατεβαίνει. Η επιτάχυνση της βαρύτητας είναι: g = 10 m /sec 2.
ΕΝΩΣΗ ΦΥΣΙΚΩΝ ΒΟΡΕΙΟΥ ΕΛΛΑΔΑΣ (Ε.Φ.Β.Ε.) Θέματα Εξετάσεων Β τάξης Γυμνασίου 14/4/019 Θέμα 1 ο Συμπαγές υλικό επιπλέει μέσα σε νερό, με ένα ποσοστό 80%, του όγκου του μέσα στο νερό. Αν η πυκνότητα του νερού
Διαβάστε περισσότεραΔΙΑΛΕΞΗ 5 Γεωστροφική Ισορροπία Εξισώσεις Αβαθούς Ωκεανού
ΔΙΑΛΕΞΗ 5 Γεωστοφική Ισοοπία Εξισώσεις Αβαθούς Ωκεανού Πειεχόµενα: q Υδοστατική ισοοπία q Αδανιακές κινήσεις q Γεωστοφική ισοοπία q Εφαµογές q Εξισώσεις κίνσς αβαθούς ωκεανού V Ω Naier-Sokes Eqaion ( )
Διαβάστε περισσότεραιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Διαβάστε περισσότεραΚεφάλαιο 2 Εισαγωγή στα ροϊκά φαινόμενα
Κεφάλαιο Εισαγωγή στα οϊκά φαινόμενα Σύνοψη Η έννοια του ανοικτού συστήματος (όγκος ελέγχου) Ρυθμός μεταβολής των ιδιοτήτων του συστήματος Νόμος της συνέχειας Νόμος της ομής (δυνάμεις) Γενικευμένη εξίσωση
Διαβάστε περισσότεραΚεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4
Διαβάστε περισσότεραΚυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ
ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος
Διαβάστε περισσότεραα. Από τη μάζα του σώματος που ταλαντώνεται. β. Μόνο από τα πλάτη των επιμέρους απλών αρμονικών ταλαντώσεων.
ιαγώνισμα στη φυσική θετικού προσανατολισμού Ύλη: μηχανικές ταλαντώσεις ιάρκεια 3 ώρες ΘΕΜΑ Α Στις προτάσεις Α1 έως Α8 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου ~~ Διάρκεια: 3 ώρες ~~
Επαναληπτικό Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου ~~ Διάρκεια: 3 ώρες ~~ Θέμα Α 1. Σε χορδή έχει δημιουργηθεί στάσιμο κύμα. Δύο σημεία Α και Β που δεν είναι δεσμοί απέχουν μεταξύ τους απόσταση
Διαβάστε περισσότερα