Ανάλυση σε Πεπερασμένο Όγκο Αναφοράς. Τρόποι επίλυσης προβλημάτων Μηχανικής Ρευστών. Θεωρητική ανάλυση συστήματος
|
|
- Όσιρις Σερπετζόγλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Ανάλυση σε Πεπεασμένο Όκο Αναφοάς Τόποι επίλυσης ποβλημάτων Μηχανικής Ρευστών Θεωητική ανάλυση συστήματος Πεπεασμένοόκοαναφοάς Διαφοική ανάλυση σε απειοστό όκο Πειαματική ανάλυση Συστήματα Οι νόμοι της Μηχανικής Γάφονται ια συστήματα Συστήματα μάζα ύλης με συκεκιμένη ταυτότητα και καθοισμένη ποσότητα m Νόμος διατήησης μάζας Η μάζα του ευστού πααμένει αμετάβλητη m t 0 Ποσότητα κίνησης Εάν το πειβάλλον ασκεί δυνάμεις στο σύστημα η μάζα του θα επιταχυνθεί m t Ενέεια Εάν ποστεθεί θεμότητα στο σύστημα ή πααχθεί έοαπότοσύστημαη ενέεια του θα μεταβληθεί E Q W t t t
2 Όκος Αναφοάς Μηχανική στεεών Παακολουθούμε το σύστημα και παατηούμε τι συμβαίνει σε αυτό Μηχανική ευστών Παατηούμε την συμπειφοά σε καθοισμένη πειοχή ή όκο αναφοάς Εξετάζουμε συκεκιμένες πειοχές και όχι συκεκιμένες μάζες ευστού Θεώημα μεταφοάς του Renls Συσχετίζει την χονική παάωο των ιδιοτήτων του συστήματος με την μεταβολή ανά μονάδα χόνου μιας ιδιότητας στον B bm b μάζα, ποσότητα κίνησης, ενέεια B b m ποσότητα της B ανά μονάδα μάζας 3 Εισοή & Εκοή Q Το διάνυσμα της ταχύτητας έχει θετική κατεύθυνση όταν κατευθύνεται πος τα έξω από τον Qut Qin 4
3 Εισοή & Εκοή bm B B B B bm bm b bm net ut in ut in M M ΔM ΔM ss, tδ t O, tδt ut in B B ΔB ΔB ss, tδ t O, tδt ut in 5 Θεώημα Μεταφοάς του Renls Bss BtΔ t BO, t lim t Δ t 0 Δt BO, t Δt ΔBut ΔBin BO, t lim Δ t 0 Δt B B ΔB ΔB lim lim Δ t 0 Δt Δ t 0 Δt BO B net t Bss b b t t O O, t Δt O, t ut in E 6 3
4 Εξίσωση Συνεχείας Θεώημα Μεταφοάς B M B M b m m Bss b b t t O E 0 t 0 O E E Μη μόνιμη οή Μόνιμη οή 7 Δίνεται Εξίσωση συνέχειας 0 t O Παάδειμα δεξh in in ut ut t h 0 δεξ in in ut ut t in 0.*0.x0 in0.005 * m/ s h 0, 0 t E m s 8 4
5 Επιλοή που ακολουθεί την επιφάνεια του νεού Εξίσωση συνέχειας Παάδειμα CS 0 t 0 B BB t π π 43; B 46; 4 B h 0 B 4 B BB t h BB > 0 η επιφάνεια ανυψώνεται t B h B 9 Εξίσωση Bernulli 0 5
6 Εξίσωση Euler Ρευστό σωματίδιο επιταχύνεται στην κατεύθυνση l υπό την επίδαση δυνάμεων πίεσης και βαύτητας χωίς δυνάμεις τιβής Δεύτεος νόμος του Νεύτωνα l Mal Δ Δ ΔΔ Wsinα ΔlΔal Δ Δ lsinα Δlal al l l al l a Τοπική επιτάχυνση: Αν έχουμε μόνιμη οή l 0 l Υδοστατική κατανομή πίεσης Παάδειμα Δίνεται: Μόνιμη οή. Ρευστό επιβαδύνεται με υθμό 0.3. Να υπολοιστεί: Η κλίση της πίεσης στην κατεύθυνση οής συνατήσει του ειδικού βάους. lw l a l l l a l 0.3 sin l l 30 6
7 Δίνεται: 0 kn/m 3, B - kpa. Να υπολοιστεί: Ηκατεύθυνση της επιτάχυνσης του ευστού. Παάδειμα ertical a a B a,000 a 0,000 a. > 0 η επιτάχυνση έχει κατεύθυνση πος επάνω B m 3 Παάδειμα Ποια κλίση πίεσης al απαιτείται ια να l επιταχύνει νεό σε ένα al οιζόντιο αωό κατά l l 6 m/s? / *6 / al k m m s l 6000 N / m l 4 7
8 Παάδειμα Δίνεται: Μόνιμη οή. Ηταχύτητα μεταβάλλεται αμμικά με την απόσταση στο ακοφύσιο. Να υπολοιστεί: Ηκλίσηπίεσης στο μέσον του ακοφυσίου ax x ax x x / 8030/ ft/s 55 ft/s /x ft/s / ft 50 ft/s/ft slu 4.59Kf slu 3.74 lb 5 Παάδειμα 6 8
9 9 7 Εξίσωση Bernulli Μόνιμη οή, χωίς τιβές, πάνω σε αμμές οής Θεώηση μόνιμης οής στην κατεύθυνση της αμμής οής s είναι στην κατεύθυνση της οής, και t είναι εφαπτομένη της αμμής οής Cnstant 0 s s s a s t Πιεζομετικό φοτίο Φοτίο ταχύτητας 8 Παάδειμα Δίνεται: Η ταχύτητα στην έξοδο δεξαμενής είναι 6 m/s an h 5 m. Να υπολοιστεί: Η πίεση στη θέση. Λύση: Εξίσωση Bernulli kpa h h Pint Pint
10 Παάδειμα Δίνεται: D0.76 m,.54 cm, h.0 m Να υπολοιστεί: Θέση Λύση: Εξίσωση Bernulli h h 4.8 m/ s Θέση 9 Παάδειμα Σωλήνας enturi Δίνεται: Νεό 0 C, m/s, 50 kpa, D6 cm, 3 cm Να υπολοιστεί: και 3 Λύση: Εξίσωση συνεχείας D Εξίσωση Bernulli D Ακοφύσιο: Η ταχύτητα αυξάνεται η πίεση ελαττώνεται Αντίστοιχα fr 3, r 3 3 D Διαχυτήας: η ταχύτητα ελαττώνεται και η πίεση αυξάνεται 4 [ D / ] ,000 [ 6 / 3 ] Pa 0kPa 3 50kPa Η πτώση πίεσης ανακτάται πλήως αφού υποθέσαμε οή χωίς τιβές Εάν νωίζουμε την πτώση πίεσης και /D, μποούμε να υπολοίσουμε την ταχύτητα και την παοχή 4 [ / D ] 0 0
11 Σωλήνας Pitt οή σε ανοικτό αωό l l Σωλήνας Pitt οή σε κλειστό αωό lw Pie 0 H l
12 Σωλήνας Prantl [ h h 3 Εφαμοή Σωλήνας Prantl - k k H k l l l H k k k H k h h / H / H k k k 4
13 Εξίσωση Ποσότητας Κίνησης Θεώημα μεταφοάς του Renls Bss b b t t B b ταχύτητα; B ss ποσότητα κίνησης συστήματος ss Mss t t t Διανυσματική εξίσωση -- 3 συνιστώσες, π.χ. u i j wk x x u u t 5 Παάδειμα Δίνεται: Φλέβα που κινείται στην ατμόσφαια ποσκούει σε εμπόδιο Να υπολοιστεί: a Η δύναμη που ασκείται στον πυθμένα του δοχείου και b ηδύναμη που ασκείται στο εμπόδιο. Λύση: x u u t u cs 70 cs 70 π 97 N 999* *0.03 / 40 cs70 T5 C u i j W N 0 m/s 30 mm u cs70 Tank m0 k 0 L sin70 6 3
14 Παάδειμα t N W sin 70 N W sin * sin N u i j W N u cs70 sin70 7 Δίνεται: Εικόνα Να υπολοιστεί: Η οιζόντια δύναμη που απαιτείται να συκατήσει το έλασμα στη θέση του Λύση: Παάδειμα T5 C Q0.4 m 3 /s B 75 kpa i B B B B *75000/ 999.3m / s B u u x t u CS Q 999* 0.4* kn 8 4
15 Παάδειμα Δίνεται: Να υπολοιστούν: Οι εξωτεικές δυνάμεις στην κατεύθυνση x και που χειάζονται ια συκατήσουν την καμπύλη. Λύση: u u u x t cs30 cs30 Q cs30 0.9*000* cs knπος τα αιστεά x 8 m/s Q0.0 m 3 /s 7 m/s x 9 Παάδειμα t CS sin30 sin 30 Q sin30 0.9*000*0.7sin knπος τα κάτω 8 m/s Q0.0 m 3 /s 7 m/s x 30 5
16 Παάδειμα Δίνεται:Στη θέση η πίεση είναι ίση με P. Στη θέση το νεό εξέχεται στην ατμόσφαια. Το βάος του σωλήνα είναι W. Να υπολοιστεί: Ηδύναμηπου εφαμόζεται στις φλάντζες ια να συκατηθεί ο σωλήνας στη θέση του Λύση: Εξίσωση συνεχείας Q P00 kpa, ae Q0.60 m 3 /s Q / 0.6/ π *0.3 / m / s Εξίσωση ποσότητας κίνησης x u u t x x 00, 000 π *0.3 / 4 *8.49*000*0.6 x 4,35 N t Wb Wf *980 48N D30 cm Όκος νεού0.0 m 3 W500 N W b W f 3 x x Δίνεται: Δέσμη νεού διαμέτου 6 cm κινούμενη με ταχύτητα 0 m/s ποσπίπτει σε πτεύιο έλικα που κινείται με ταχύτητα 7 m/s. Να υπολοιστεί: Η δύναμη που ασκείται στοπτεύιοαπότονεό. Λύση: Επιλοή C που κινείται με το πτεύιο με σταθεή ταχύτητα. Παάδειμα x x u u t C CS x [ ] cs45 [ ] cs π *0.06 / 4 cs45 x 85.7 N t C CS sin 45 [ ] sin π *0.06 / 4sin N 3 6
17 7 33 Παάδειμα Να υπολοιστεί: Ηδύναμηλόω πιέσεων στην στο θυόφαμα Λύση: Υποθέτουμε: an are ομοιόμοφες δηλαδή η πίεση είναι υδοστατική ] [ ] [ b Q Q b b Q u u t G G G x CS C x
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΑΣΚΗΣΕΙΣ
ΔΥΝΑΜΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ Η μέτηση της ταχύτητας οής ενός εστού μέσα σε ένα σωλήνα γίνεται με τη σσκεή Prandtl (σωλήνας Pitot) (βλέπε Σχήμα). Η σσκεή ατή αποτελείται από δο πολύ λεπτούς σωλήνες,
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ. Ηµεροµηνία: Μ. Τετάρτη 12 Απριλίου 2017
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 07 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ A Α. α Α. β Α3. γ Α4. δ Α5. α. Λάθος ΘΕΜΑ Β ΦΥΣΙΚΗ Ηµεοµηνία: Μ. Τετάτη Απιλίου 07 β. Σωστό γ. Λάθος δ. Λάθος
x όπου Ε είναι η ολική ενέργεια ανά µονάδα µάζας και Η είναι η ολική ενθαλπία για τις οποίες ισχύει
ΜΕΘΟ ΟΙ ΑΕΡΟ ΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Κ.Χ. ΓΙΑΝΝΑΚΟΓΛΟΥ, Αν. Καθηγητής, Τοµέας Ρευστών, Σχολή Μηχανολόγων Ε.Μ.Π. ΜΟΝΟ ΙΑΣΤΑΤΕΣ ΕΞΙΣΩΣΕΙΣ EULER ιαφοετικές Γαφές των Εξισώσεων
Κεφάλαιο 2 Εισαγωγή στα ροϊκά φαινόμενα
Κεφάλαιο Εισαγωγή στα οϊκά φαινόμενα Σύνοψη Η έννοια του ανοικτού συστήματος (όγκος ελέγχου) Ρυθμός μεταβολής των ιδιοτήτων του συστήματος Νόμος της συνέχειας Νόμος της ομής (δυνάμεις) Γενικευμένη εξίσωση
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. γ Α2. δ Α3. α Α4. δ Α5. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε) Λάθος ΘΕΜΑ Β Β1. α) Σωστή απάντηση είναι η ( i. ) β)
ΠΕΙΡΑΜΑ 10. Aεροδυναµική Στερεών Σωµάτων
ΠΕΙΡΑΜΑ 10 Aεοδυναµική Στεεών Σωµάτων Σκοπός του πειάµατος Σκοπός του πειάµατος αυτού είναι η µελέτη της αντίστασης που αναπτύσσεται κατά τη σχετική κίνηση ενός αντικειµένου µέσα σε ένα αέιο. Οι εξισώσεις
Χειμερινό εξάμηνο 2007 1
ΜΜΚ 3 Μεταφοά Θεμότητας Φυσική Συναγωγή ΜΜΚ 3 Μεταφοά Θεμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Πααγωγής ΜΜK 3 Μεταφοά Θεμότητας Φυσική Συναγωγή (r convction) Στα ποηγούμενα ύο κεφάλαια ασχοληθήκαμε
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του
Κεφάλαιο 2. Κίνηση κατά μήκος ευθείας γραμμής
Κεφάλαιο 2 Κίνηση κατά μήκος ευθείας γραμμής Στόχοι 1 ου Κεφαλαίου Περιγραφή κίνησης σε ευθεία γραμμή όσον αφορά την ταχύτητα και την επιτάχυνση. Διαφορά μεταξύ της μέσης και στιγμιαίας ταχύτητας καθώς
Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις
Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Ιδιότητες των ρευστών Δυνάμεις στα ρευστά Αρχή Αρχιμήδη Πείραμα Torricelli Νόμος Πασκάλ Υδροστατική Αρχή
Ιδιότητες των ρευστών Δυνάμεις στα ρευστά Αρχή Αρχιμήδη Πείραμα Torricelli Νόμος Πασκάλ Υδροστατική Αρχή Ρευστός ο χωρίς σταθερό σχήμα ή όγκο που μπορεί να ρέει, ο ευρισκόμενος σε υγρή ή αέρια κατάσταση
Άσκηση 1. R y. R x. Επίλυση (2.1) (2.2) Q 1 1 = 1 1
Ασκήσεις εφαµογής ισοζυγίου οής γαµ. οµής Άσκηση Ακοφύσιο Α εκτοξεύει κυλινδική φλέβα νεού διαµέτου d c µε υθµό l/. H φλέβα του νεού εισέχεται σε ένα διαχύτη και χωίζεται σε κυλινδικές φλέβες µε διατοµές
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Μηχανική Ρευστών Κεφάλαιο Λυμένα Προβλήματα Πρόβλημα Για το κλειστό δοχείο του παρακάτω σχήματος, όλα τα ρευστά είναι
Υπολογισμός γεωστροφικών ρευμάτων με τη χρήση δεδομένων από CTD. Σύγκριση με αποτελέσματα από A.D.C.P. & Drifters.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΘΑΛΑΣΣΑΣ Υπολογισμός γεωστοφικών ευμάτων με τη χήση δεδομένων από CTD. Σύγκιση με αποτελέσματα από A.D.C.P. & Drifters. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ (Επιβλέπων:
ΑΠΘ ΠΟΛ. ΜΗΧ. Π. ΠΡΙΝΟΣ 2. Υ ΡΟΣΤΑΤΙΚΗ 2.1 ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. F=mα P y =P s P z =P s. -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης
. ΠΙΕΣΗ ΣΕ ΣΗΜΕΙΟ. Υ ΡΟΣΤΑΤΙΚΗ Fmα y s z s -Ηπίεσησ ένα σηµείο του ρευστού είναι ανεξάρτητη της διεύθυνσης . ΜΕΤΑΒΟΛΗ ΤΗΣ ΠΙΕΣΗΣ -Επιφανειακές δυνάµεις (λόω πίεσης) - υνάµεις σώµατος (π.χ. βάρος) Για ακίνητο
, όµως z ΚΑ =3.5 cm, αστάθεια
Άσκηση : Ένας ξύλινος κύος µε πλευά 0cm και ειδικό άος SG0.7 επιπλέει σε νεό. Να υπολογισθούν:. Το ύψος του τµήµατος του κύου που είναι υθισµένο στο νεό. Το µετακεντικό ύψος. Να µελετηθεί η ισοοπία του
Η Φυσική στην Α Λυκείου. Η ΔΙΔΑΣΚΑΛΙΑ 9.
Η Φυσική στην Α Λυκείου. Η ΔΙΔΑΣΚΑΛΙΑ 9. users.sch.gr/ /yphysicsalyceum9.htm 1/14 Η ομαλή κυκλική κίνηση είναι ΚΙΝΗΣΗ υλικού σημείου, είναι δηλαδή ένα ΦΑΙΝΟΜΕΝΟ κατά το οποίο η θέση ενός υλικού σημείου
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Ανάληψη αξονικού φορτίου από πάσσαλο
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «Αλληλεπίδαση Εδάφους Κατασκευής» 8 ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 6 7 Διδάσκοντες : Γ. Γκαζέτας
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 4 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2019: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α1α. (β) Α1β. (β) Αα. (γ) Αβ. (α) Αα. (γ) Αβ. (δ) Α4α. (α) Α4β. (γ) Α5. α. Σ β. Λ γ. Λ δ. Σ ΘΕΜΑ Β Β1.
Κίνηση κατά μήκος ευθείας γραμμής
Μελέτη κινηματικών εννοιών: Θέση, μετατόπιση, ταχύτητα, μέτρο ταχύτητας, και επιτάχυνση. Διαφορά εννοιών "μετατόπισης - " διαστήματος" και "στιγμιαία "μέση". Μελέτη κίνησης με σταθερή επιτάχυνση. Κίνηση
1) Ηλεκτρικό πεδίο φορτισμένου φύλλου απείρων διαστάσεων
1) Ηλεκτικό πεδίο φοτισμένου φύλλου απείων διαστάσεων Σε αυτό το εδάφιο θα υπολογιστεί το ηλεκτικό πεδίο παντού στο χώο ενός φοτισμένου λεπτού φύλλου απείων διαστάσεων και αμελητέου πάχους όπως αυτό που
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
Φυσική για Μηχανικούς
Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί ως κίνηση σε δυο (αντί
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να
1. ΕΙΣΑΓΩΓΗ. 1.1 Ερευνητικό ενδιαφέρον. 1.2 Επισηµάνσεις από τη βιβλιογραφία. 1.3 Προσέγγιση λύσης προβληµάτων:
. Εευνητικό ενδιαφέον. ΕΙΣΑΓΩΓΗ. Επισηµάνσεις από τη βιβλιογαφία α) Ελλιπείς γνώσεις των πολύπλοκων φυσικών διεγασιών β) Ελάχιστα εφαµόζονται οι νόµοι της Μηχανικής των Ρευστών γ)ελάχιστα βιβλία διεθνώς
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Στην εκτέλεση πέναλτι, ο ποδοσφαιριστής κτυπά ακίνητη μπάλα, με σκοπό να της δώσει ταχύτητα και κατεύθυνση ώστε να σκοράρει. Υπό προϋποθέσεις, η εκτέλεση μπορεί να ιδωθεί
Μηχανική Ρευστών. Αριστοτέλης Μαντόγλου Σχολή Αγρονόµων και Τοπογράφων ΕΜΠ. Αθήνα
Μηχανική Ρευστών Αριστοτέλης Μαντόλου Σχολή Αρονόµων και Τοποράφων ΕΜΠ Αθήνα 006-007 1 Μηχανική Ρευστών Στόχος µαθήµατος Μελέτη των ρευστών όταν βρίσκονται σε ηρεµία (υδροστατική) και σε κίνηση (δυναµική)
1 η Ενότητα Κλασική Μηχανική
Εικόνα: Η κίνηση μπορεί να είναι αναζωογονητική και όμορφη. Αυτά τα σκάφη ανταποκρίνονται σε δυνάμεις αέρα, νερού, και του βάρους του πληρώματος όσο προσπαθούν να ισορροπήσουν στην άκρη του. 1 η Ενότητα
10. Παραγώγιση διανυσµάτων
Κ Χριστοδουλίδης: Μαθηµατικό Συµπλήρωµα για τα Εισαγωγικά Μαθήµατα Φυσικής 51 10 Παραγώγιση διανυσµάτων 101 Παράγωγος διανυσµατικής συνάρτησης Αν οι συνιστώσες ενός διανύσµατος = είναι συνεχείς συναρτήσεις
Φυσική Β Γυμνασίου Συνοπτικές Σημειώσεις Επανάληψης
Φυσική Β Γυμνασίου Συνοπτικές Σημειώσεις Επανάληψης Επιμέλεια: Αγκανάκης Α. Παναγιώτης Κεφάλαιο 1 Φυσικά Μεγέθη: τα μεγέθη που μελετάει η Φυσική Επιστήμη Κατηγορίες: 1. Θεμελιώδη a. Μάζα (kg) b. Μήκος
Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Μαγνητικό πεδίο Νίκος Ν. Αρπατζάνης Μαγνητικοί πόλοι Κάθε μαγνήτης, ανεξάρτητα από το σχήμα του, έχει δύο πόλους. Τον βόρειο πόλο (Β) και τον νότιο πόλο (Ν). Μεταξύ των πόλων αναπτύσσονται
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ. Ύλη: Ευθύγραμμη Κίνηση
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Ον/μο:.. A Λυκείου Ύλη: Ευθύγραμμη Κίνηση 13-11-2016 Θέμα 1 ο : 1) Η έκφραση 2m/s 2 όταν αναφέρεται σε κινητό που εκτελεί ευθύγραμμη κίνηση σημαίνει ότι: α) η θέση του κινητού αλλάζει
Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις
Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση
Συλλογή Ασκήσεων Υδροστατικής
Συλλογή Ασκήσεων Υδοστατικής Άσκηση. ℵ Να βεθεί η τιμή της πίεσης που δείχνει το πιεσόμετο, σε mmhg. Δίνονται οι πυκνότητες υδαγύου Hg 600kg/m, νεού Ν 000 kg/m και αέα Α,9 kg/m. 0 cm cm + 0 Επίλυση Αχικά
Κεφάλαιο 2 Κίνηση σε μία διάσταση. Copyright 2009 Pearson Education, Inc.
Κεφάλαιο Κίνηση σε μία διάσταση Copyrigh 9 Pearson Educaion, Inc. Περιεχόμενα Κεφαλαίου Συστήματα Αναφοράς και μετατόπιση Μέση Ταχύτητα Στιγμιαία Ταχύτητα Επιτάχυνση Κίνηση με σταθερή επιτάχυνση Προβλήματα
KΕΦΑΛΑΙΟ 21* ΜΟΝΟ ΙΑΣΤΑΤΗ ΜΟΝΙΜΗ ΡΟΗ ΣΥΜΠΙΕΣΤΟΥ ΜΗ ΣΥΝΕΚΤΙΚΟΥ ΡΕΥΣΤΟΥ
KΕΦΑΛΑΙΟ * ΜΟΝΟ ΙΑΣΤΑΤΗ ΜΟΝΙΜΗ ΡΟΗ ΣΥΜΠΙΕΣΤΟΥ ΜΗ ΣΥΝΕΚΤΙΚΟΥ ΡΕΥΣΤΟΥ. Ισεντοπική οή Στο έκτο κεφάλαιο το βιβλίο απεδείχθη ότι στο µη σνεκτικό εστό οι διαφοικές εξισώσεις το πεδίο οής οδηούν στο σµπέασµα
1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.
1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4
Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής
501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης
16. Να γίνει µετατροπή µονάδων και να συµπληρωθούν τα κενά των προτάσεων: α. οι τρεις ώρες είναι... λεπτά β. τα 400cm είναι...
1. Ο νόµος του Hooke υποστηρίζει ότι οι ελαστικές παραµορφώσεις είναι.των...που τις προκαλούν. 2. Ο τρίτος νόµος του Νεύτωνα υποστηρίζει ότι οι δυνάµεις που αναφέρονται στο νόµο αυτό έχουν... µέτρα,......
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Εικόνα: Μητέρα και κόρη απολαμβάνουν την επίδραση της ηλεκτρικής φόρτισης των σωμάτων τους. Κάθε μια ξεχωριστή τρίχα των μαλλιών τους φορτίζεται και προκύπτει μια απωθητική δύναμη
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Στους αγώνες drag, ο οδηγός θέλει να επιτύχει όσο γίνεται μεγαλύτερη επιτάχυνση. Σε απόσταση περίπου μισού χιλιομέτρου, το όχημα αναπτύσσει ταχύτητες κοντά στα 515
Κεφάλαιο 1.2. Η ζητούμενη ανάλυση φαίνεται. στην εικόνα 6.
Κεφάλαιο... Στην πρώτη περίπτωση οι δυνάμεις έχουν την ίδια κατεύθυνση και έτσι η συνισταμένη τους είναι: F = Fj + F = (80 + 60)Ν ή F=40N ίδιας κατεύθυνσης. Στη δεύτερη περίπτωση οι δυνάμεις έχουν αντίθετη
Εφαρµοσµένη Υδραυλική. 1. Εισαγωγή Οριακό στρώµα
Εφαοσένη Υδαυλική 1. Εισαγωγή Οιακό στώα Παναγιώτης Παπανικολάου Επ. Καθηγητής Σχολή Πολιτικών Μηχανικών ΕΜΠ Αντικείενο της Εφαοσένης Υδαυλικής Υπολογισός των σωληνοειδών (ονοδιάστατων) οών δύο κατηγοιών
ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1 γ Α2 β Α3 γ Α4 β Α5. α Σ, β Σ, γ Λ, δ Λ, ε Σ.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΑΔΑ Β) ΤΡΙΤΗ 0 ΙΟΥΝΙΟΥ 0 ΕΞΕΤΑΖΟΕΝΟ ΑΘΗΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΑ Α Α γ Α β Α γ Α β Α5. α Σ, β Σ, γ
ΑΠΑΝΤΗΣΕΙΣ ΤΕΛΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα 1ο. Θέμα 2ο
ΑΠΑΝΤΗΣΕΙΣ ΤΕΛΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 06-07. α.. β. 3. γ. 4. δ. 5. α. Λάθος. β. Σωστό. γ. Σωστό. δ. Λάθος. ε. Σωστό. Θέμα ο Θέμα ο. Σωστή απάντηση είναι η γ. Εφόσον το σημείο Κ είναι αρχικά κοιλία,
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Μηχανική Στερεού Σώματος - Κύλιση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός Βασικές Έννοιες Μέχρι στιγμής αντιμετωπίζαμε κάθε σώμα που μελετούσαμε την κίνηση του ως υλικό
ΦΥΣ Διαλ Σύνοψη εννοιών. Κινηµατική: Περιγραφή της κίνησης ενός σώµατος. Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση
Κινηµατική ΦΥΣ 111 - Διαλ.04 2 Σύνοψη εννοιών Κινηµατική: Περιγραφή της κίνησης ενός σώµατος Θέση και µετατόπιση Ταχύτητα Μέση Στιγµιαία Επιτάχυνση Μέση Στιγµιαία Κίνηση - Τροχιές ΦΥΣ 111 - Διαλ.04 3!
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ Ο.Π/Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) 25/02/2018 ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 11 Θεμελιώσεις με πασσάλους : Καθιζήσεις πασσάλων 5.1.26 1. Κατηγοίες πασσάλων 2. Αξονική φέουσα ικανότητα μεμονωμένου
ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΧΤΟΥ ΤΥΠΟΥ
ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΧΤΟΥ ΤΥΠΟΥ 1. Γιατί η δύναµη είναι διανυσµατικό µέγεθος; 2. Να διατυπώσετε τον πρώτο νόµο της κίνησης. 3. Ένα αυτοκίνητο κινείται σε ευθεία και το ταχύµετρο δείχνει σταθερά 50km/h. Τι συµπεραίνουµε
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.
Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει
x D 350 C D Co x Cm m m
Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΘΗΓΗΤΗΣ : Ν ΚΩΤΣΟΒΙΝΟΣ ΛΕΚΤΟΡΑΣ : Π. ΑΓΓΕΛΙ ΗΣ ΛΥΣΕΙΣ B ΣΕΙΡΑΣ ΑΣΚΗΣΕΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΚΟΡ ΟΠΟΥΛΟΣ ΗΜΗΤΡΙΟΣ ΑΜ 585 ΑΣΚΗΣΗ Θαλασσινό νεό από ένα εγοστάσιο, βεβαηµένο
Εργ.Αεροδυναμικής, ΕΜΠ. Καθ. Γ.Μπεργελές
ΠΡΟΤΥΠΑ ΡΕΥΣΤΟΜΗΧΑΝΙΚΑ ΠΡΟΒΛΗΜΑΤΑ (Υπολογιστική Ρευστομηχανική-Πεπεασμένες διαφοές) Γ. Μπεγελές Ιανουάιος 6 C 5 4 3 Z 3 3 4 5 6 7 ZC CON:..5..5.3.35.4.45.5.55.6.65.7.75.8.85.9.95 C ΠΕΡΙΕΧΟΜΕΝΑ. Παάδειγμα
ΡΕΥΣΤΑ. Φυσική Θετικού Προσανατολισμου Γ' Λυκείου
ΡΕΥΣΤΑ ΕΙΣΑΓΩΓΗ Ρευστά Με τον όρο ρευστά εννοούμε τα ΥΓΡΑ και τα ΑΕΡΙΑ τα οποία, αντίθετα από τα στερεά, δεν έχουν καθορισμένο όγκο ούτε σχήμα. Τα υγρά είναι ασυμπίεστα και τα αέρια συμπιεστά. Τα υγρά
website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 31 Μαρτίου 2019 1 Δυνάμεις μάζας και επαφής Δυνάμεις μάζας ή δυνάμεις όγκου ονομάζονται οι δυνάμεις που είναι
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη.
Υποστηρικτικό υλικό για την εργασία «Πειραματική διάταξη για τη μελέτη της ροής ρευστού σε σωλήνα» του Σπύρου Χόρτη. Η εργασία δημοσιεύτηκε στο 9ο τεύχος του περιοδικού Φυσικές Επιστήμες στην Εκπαίδευση,
Όνοµα Φοιτητή:... Εξάµηνο:... Αρ. Φοιτ. Ταυτ.:... Θέµα 1 Θέµα 2 Θέµα 3
ΜΗΧΑΝΙΚΗ ΤΟΥ ΣΥΝΕΧΟΥΣ ΜΕΣΟΥ Σχολή Πολιτικών Μηχανικών, Εξ. ιδ. Καθηγητής Ι. Βαδουλάκης Τοµέας Μηχανικής Σ.Ε.Μ.Φ.Ε. ευτέα Αυγούτου Όνοµα Φοιτητή:... Εξάµηνο:... Α. Φοιτ. Ταυτ.:... Θέµα Θέµα Θέµα ΘΕΜΑ ίδεται
Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017
Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν
Διατήρηση της Ενέργειας - Εξίσωση Bernoulli. Α. Ερωτήσεις Πολλαπλής Επιλογής
Διατήρηση της Ενέργειας - Εξίσωση Bernoulli Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ιδανικό ρευστό ρέει σε σωλήνα μεταβλητής διατομής. α. H παροχή του ρευστού μειώνεται όταν η διατομή του σωλήνα αυξάνεται.
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ. t 1 (x 1,y 1 ) Η αρχή ενός οποιουδήποτε ορθογωνίου xy συστήματος συντεταγμένων
ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 1 ( 1, 1 ) ορθογωνίου συστήματος r1 1 1 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ (, ) ορθογωνίου συστήματος r ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 3 ( 3, 3 ) ορθογωνίου συστήματος r3 3 3 ΤΡΟΧΙΑ ΙΑΝΥΣΜΑ ΘΕΣΗΣ 4 ( 4, 4
ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ
ΘΕΜΑ A ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (2016-17) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
Φυσική για Μηχανικούς
Φυσική για Μηχανικούς Μηχανική Εικόνα: Ο πίνακας ελέγχου σε ένα πιλοτήριο βοηθά τον πιλότο να κρατά το αεροσκάφος υπό έλεγχο δηλ. να ελέγχει πόσο γρήγορα ταξιδεύει και σε ποια κατεύθυνση επιτρέποντάς του
β) Ε Φ Α Ρ Μ Ο Γ Η 1 2 α)
Ε ΦΑΡΜΟΓΗ 1 Ένα σώμα μάζας m 800g ισορροπεί ακίνητο πάνω σε λείο οριζόντιο δάπεδο, συνδεδεμένο στο ελεύθερο άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς K 00N / m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια
Κεφάλαιο 1. Κίνηση σε μία διάσταση
Κεφάλαιο 1 Κίνηση σε μία διάσταση Κινηματική Περιγράφει την κίνηση, αγνοώντας τις αλληλεπιδράσεις με εξωτερικούς παράγοντες που ενδέχεται να προκαλούν ή να μεταβάλλουν την κίνηση. Προς το παρόν, θα μελετήσουμε
= = σταθ. Ι. που είναι. Η ροπή αδράνειας ενός σώματος μετρά την κατανομή της μάζας γύρω από τον άξονα περιστροφής, έτσι όσο
Απαντήσεις ΘΕΜΑ Α Α. γ, Α. α, Α3. γ, Α4. α, Α5. Σ, Λ, Λ, Λ, Σ. ΘΕΜΑ Β Β. Σωστή απάντηση είναι η γ. Σε μία τυχαία θέση θα έχουμε: Στ = τf τ w = F g ηµθ θ F Στ = ( c + 0,5g ηµθ) g ηµ θ = c = σταθ. g Άα λοιπό
Πειραματική μελέτη των ευθύγραμμων κινήσεων
Τα προβλήματα α' περίπτωση: Πειραματική μελέτη των ευθύγραμμων κινήσεων Προβλήματα και θεραπείες Υποθέτουμε ότι ένα αυτοκίνητο κινείται σύμφωνα με την εξίσωση: x = 2 t + 1. Κάθε δευτερόλεπτο καταγράφουμε
Κεφάλαιο 8. Ορμή, ώθηση, κρούσεις
Κεφάλαιο 8 Ορμή, ώθηση, κρούσεις Στόχοι 8 ου Κεφαλαίου Ορμή και ώθηση. Διατήρηση της ορμής. Μη ελαστικές κρούσεις. Ελαστικές κρούσεις. Κέντρο μάζας. Η μεταβολή της ορμής ενός σωματίου κατά τη διάρκεια
Ονοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης
Ονοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης ΘΕΜΑ Α Α1. Το ανοιχτό κυλινδρικό δοχείο του σχήματος βρίσκεται εντός πεδίο βαρύτητας με
p = p n, (2) website:
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό
H 2 + x 2 cos ϕ. cos ϕ dϕ =
. Άπειη γαμμική κατανομή ϕοτίου λ Θεωούμε την γαμμική κατανομή ϕοτίου στον άξονα των x και ζητάμε το ηλεκτικό πεδίο στο σημείο A που απέχει από την κατανομή. Το στοιχειώδες τμήμα dx της κατανομής στη θέση
Ασκήσεις Κεφ. 1, Κινηματική υλικού σημείου Κλασική Μηχανική, Τμήμα Μαθηματικών Διδάσκων: Μιχάλης Ξένος, email : mxenos@cc.uoi.gr 10 Απριλίου 2012 1. Αν το διάνυσμα θέσης υλικού σημείου είναι: r(t) = [ln(t
Bernoulli P ρ +gz Ω2 ϖ 2 2
Εθνικό και Καποιστιακό Πανεπιστήμιο Αθηνών, Τμήμα Φυσικής Εξετάσεις στη Δυναμική των Ρευστών, 6 Φεβουαίου 08 Απαντήστε σε 3 από τα 4 θέματα ιάκεια εξέτασης ώες Καλή επιτυχία = bonus εωτήματα) Θέμα ο :
ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ
Έργο και Ενέργεια ΕΡΓΟ ΠΟΥ ΠΑΡΑΓΕΙ ΜΙΑ ΣΤΑΘΕΡΗ ΥΝΑΜΗ Έστω ένα σωμάτιο πάνω στο οποίο εξασκείται μια σταθερή δύναμη F. Έστω ότι η κίνηση είναι ευθύγραμμη κατά την διεύθυνση του διανύσματος F. Το έργο που
Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.
Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που
ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια
ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: Υλικά που δεν έχουν καθορισμένο σχήμα (ρέουν), αλλά παίρνουν εκείνο του δοχείου μέσα στο οποίο βρίσκονται. Υγρά (έχουν καθορισμένο όγκο) Αέρια (καταλαμβάνουν ολόκληρο τον όγκο που
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου
8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου 1. Ένα σύρμα μεγάλου μήκους φέρει ρεύμα 30 Α, με φορά προς τα αριστερά κατά μήκος του άξονα x. Ένα άλλο σύρμα μεγάλου μήκους φέρει
5.1 Μηχανική των ρευστών Δ.
5.1 Μηχανική των ρευστών Δ. 41. Το έμβολο και οι πιέσεις. Ένα κυλινδρικό δοχείο ύψους Η=2m είναι γεμάτο νερό, ενώ κοντά στη βάση F του έχει προσαρμοσθεί κατακόρυφος σωλήνας ύψους h=1m και διατομής =4cm
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία
1 f. d F D x m a D x m D x dt. 2 t. Όλες οι αποδείξεις στην Φυσική Κατεύθυνσης Γ Λυκείου. Αποδείξεις. d t dt dt dt. 1. Απόδειξη της σχέσης.
Αποδείξεις. Απόδειξη της σχέσης N t T N t T. Απόδειξη της σχέσης t t T T 3. Απόδειξη της σχέσης t Ικανή και αναγκαία συνθήκη για την Α.Α.Τ. είναι : d F D ma D m D Η εξίσωση αυτή είναι μια Ομογενής Διαφορική
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 19 Ταλαντώσεις Απλή αρμονική κίνηση ΦΥΣ102 1 Ταλαντώσεις Ελατηρίου Όταν ένα αντικείμενο
3. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOULLI Κίνηση σωµατιδίων ρευστού
. ΚΙΝΗΣΗ ΡΕΥΣΤΟΥ-ΕΞΙΣΩΣΗ BERNOLLI Κίνηση σωµατιδίων ρευστού ύναµη, επιτάχυνση F mα εφαρµογή στην κίνηση σωµατιδίου εύτερος νόµος του NEWTON Επιτάχυνση F mα ΒΑΣΙΚΕΣ ΠΑΡΑ ΟΧΕΣ Ρευστά χωρίς ιξώδες Πίεση-Βαρύτητα
Μοντέλα Ταχέως Περιστρεφόµενων Αστέρων Νετρονίων
ιπλωµατική Εγασία Μοντέλα Ταχέως Πειστεφόµενων Αστέων Νετονίων Πασχαλίδης Βασίλειος Α.Ε.Μ.: 1188 Κατεύθυνση Αστονοµίας Αστοφυσικής Επιβλέποντες Καθηγητές: Κ. Κόκκοτας, Ν. Στεγιούλας 8 Ιουλίου 3 Πλάνο Παουσίασης
Θέση. Χρόνος. Ταχύτητα. Επιτάχυνση
3 η ΕΡΓΑΣΙΑ Τα θέματα είναι ισοδύναμα. Όπου απαιτείται δίνεται η τιμή της επιτάχυνσης της βαρύτητας ως g=9.8m/sec. Ημερομηνία Παράδοσης: 6//006 ΘΕΜΑ 1: A. Σχεδιάστε τα διαγράμματα θέσης-χρόνου, ταχύτητας-χρόνου
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 3) ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Κεφάλαιο 3. Κίνηση σε δύο ή τρεις διαστάσεις
Κεφάλαιο 3 Κίνηση σε δύο ή τρεις διαστάσεις Στόχοι 3 ου Κεφαλαίου Τα διανύσματα της θέσης και της ταχύτητας. Το διάνυσμα της επιτάχυνσης. Παράλληλη και κάθετη συνιστώσα της επιτάχυνσης. Κίνηση βλήματος.
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη
ΑΠΑΝΤΗΣΕΙΣ ΤΕΛΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα 1ο. Θέμα 2ο
ΑΠΑΝΤΗΣΕΙΣ ΤΕΛΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 017-018 1. α.. γ. 3. β. 4. β. 5. α. Λάθος. β. Λάθος. γ. Σωστό. δ. Λάθος. ε. Σωστό. Θέμα 1ο Θέμα ο 1. Σωστή απάντηση είναι η γ. Προκειμένου το σημείο Σ να είναι
Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΜΘΗΜ / ΤΞΗ : ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙ: ΣΕΙΡ: (ΛΥΣΕΙΣ) ΘΕΜ Οδηγία: Να γάψετε στο τετάδιό σας τον αιθμό καθεμιάς από τις παακάτω εωτήσεις -4 και δίπλα το γάμμα που αντιστοιχεί στη σωστή απάντηση..
Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~
Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν
Ταλαντώσεις σώματος αλλά και συστήματος.
σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας
1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πρόβλημα 1 Μηχανική Ρευστών Κεφάλαιο 1 Λυμένα Προβλήματα Μια αμελητέου πάχους επίπεδη πλάκα διαστάσεων (0 cm)x(0
Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλάντωση Doppler Ρευστά -Στερεό Ονοματεπώνυμο Μαθητή: Ημερομηνία: 04-03-2019 Επιδιωκόμενος Στόχος: 80/100 Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΠΕΙΡΑΜΑΤΙΚΗ Υ ΡΑΥΛΙΚΗ ΤΟΜΕΑΣ Υ ΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ Υ ΡΑΥΛΙΚΗΣ Ακ. Έτος 0-. ΜΕΤΡΗΣΕΙΣ ΑΠΩΛΕΙΩΝ ΕΝΕΡΓΕΙΑΣ ΣΕ ΑΓΩΓΟΥΣ ΥΠΟ ΠΙΕΣΗ. Γενικά - αντικείµενο του πειάµατος Οι αγωγοί υπό πίεση αποτελούν ένα από τα βασικά αντικείµενα των Πολιτικών
Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα
Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εργαστηριακή Άσκηση HM 150.01 Περιεχόμενα 1. Περιγραφή συσκευών... 1 2. Προετοιμασία για το πείραμα... 1 3. Πειράματα...
y = u i t 1 2 gt2 y = m y = 0.2 m
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2018 ιδάσκων : Γ. Καφεντζής Πρώτη Σειρά Ασκήσεων - Λύσεις Ασκηση 1. (αʹ) Το χαρτονόµισµα ξεκινά από ηρεµία, u i = 0, και