Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ
|
|
- Ζένια Ζωγράφου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Εαναλητική εξέταση στο µάθηµα ΕΙ ΙΚΗ ΘΕΩΡΙΑ ΤΗΣ ΣΧΕΤΙΚΟΤΗΤΑΣ 7 Σετεµβρίου ιάρκεια εξέτασης: ώρες Τα θέµατα είναι ισοδύναµα Θέµα (α) Μια ευθεία ΟΡ βρίσκεται στο είεδο xy και σχηµατίζει γωνία θ µε τον άξονα των x, στο αδρανειακό σύστηµα αναφοράς S Ποια είναι η γωνία θ ου σχηµατίζει η ευθεία µε τον άξονα των x στο αδρανειακό σύστηµα αναφοράς S, το οοίο κινείται µε σταθερή ταχύτητα V= V x ˆ ως ρος το σύστηµα S; (β) είξετε ότι το µονοχρωµατικό φως αό µια ηγή ου αοµακρύνεται αό εµάς ακτινικά µε ταχύτητα,6c έχει διλάσιο µήκος κύµατος αό το µήκος κύµατος ου έχει στο σύστηµα της ηγής + Θέµα Ένα ουδέτερο καόνιο διασάται σε δύο ιόνια, + Αν το αραγόµενο αρνητικό ιόνιο είναι ακίνητο, οια είναι η ολική ενέργεια του θετικού ιονίου; Ποια ήταν η ολική ενέργεια του καονίου; ίνονται οι µάζες ηρεµίας: του, m = 498 MeV / c και των ±, m = 4 MeV/ c Θέµα 3 Ένα σωµατίδιο µε µάζα ηρεµίας m και ταχύτητα υ συγκρούεται µε ακίνητο σωµατίδιο µε µάζα ηρεµίας m Τα δύο σωµατίδια ενώνονται σε ένα συσσωµάτωµα µε µάζα ηρεµίας Μ, ου κινείται µε υ= mγυ / mγ ταχύτητα υ είξετε ότι είναι ( ) ( ) και γ M = m m, όου γ = υ / c Θέµα 4 Ποια είναι η ενέργεια κατωφλίου για την αραγωγή αντιρωτονίου ( p ) κατά τη σύγκρουση ηλεκτρονίου (e) µε ακίνητο ρωτόνιο (p) κατά την αντίδραση e+ p e+ p+ p+ p ; ίνονται οι ενέργειες ηρεµίας: του ηλεκτρονίου mpc = 938 MeV mec =,5 MeV και του ρωτονίου
2 Σχετικιστική Κινηµατική: Τυολόγιο Μετασχηµατισµός της θέσης: Αν ένα σύστηµα αναφοράς S' κινείται µε ταχύτητα V x ˆ ως ρος ένα σύστηµα αναφοράς S, και οι άξονες των δύο συστηµάτων συµίτουν όταν t= t =, τότε: V x = γ ( x Vt) y = y z = z t = γ t x c όου V β c γ β Συστολή του µήκους: l= l / γ ( l = µήκος ηρεµίας, δηλ για ράβδο ακίνητη) ιαστολή του χρόνου: t= γ t ( t = ιδιοχρόνος, δηλ για ρολόι ακίνητο) υx V υ y Μετασχηµατισµός της ταχύτητας: υ x =, υ υ xv = υz y υ x γ V, υ = z υ x c V γ c c + β cosθ Φαινόµενο Doppler: λ= λ β Σχετικιστική υναµική: m = m() m= m( υ) = γ m όου γ =, υ = ταχύτητα του σωµατιδίου ( υ / c) 4 p= mυ=γ m υ = mc = γ mc = mc + p c Για φωτόνια: hc = hf = λ = pc p x = γ px V / c p y = py p z = pz = γ Vp x Μετασχηµατισµός ορµής-ενέργειας: ( ) ( ) Ισοδυναµία µάζας-ενέργειας: = m c Ηλεκτροµαγνητισµός: Μετασχηµατισµός του ηλεκτροµαγνητικού εδίου: x = x y = γ( y VBz) z = γ( z + VBy) x = Bx By = γ( By + Vz / c ) Bz = γ( Bz Vy / c ) B
3 Θέµα (α) Μια ευθεία ΟΡ βρίσκεται στο είεδο xy και σχηµατίζει γωνία θ µε τον άξονα των x, στο αδρανειακό σύστηµα αναφοράς S Ποια είναι η γωνία θ ου σχηµατίζει η ευθεία µε τον άξονα των x στο αδρανειακό σύστηµα αναφοράς S, το οοίο κινείται µε σταθερή ταχύτητα V= V x ˆ ως ρος το σύστηµα S; (β) είξετε ότι το µονοχρωµατικό φως αό µια ηγή ου αοµακρύνεται αό εµάς ακτινικά µε ταχύτητα,6c έχει διλάσιο µήκος κύµατος αό το µήκος κύµατος ου έχει στο σύστηµα της ηγής (α) Οι ροβολές της ευθείας άνω στους δύο άξονες του συστήµατος S έχουν µήκη Στο σύστηµα S, αυτά τα µήκη είναι P P x = L cosθ και y = L sinθ P P ( ) x = x / γ = L cos θ / γ και y = y = L sinθ P P Εοµένως, η κλίση θ της ευθείας στο σύστηµα αναφοράς S δίνεται αό τη σχέση tanθ y x P = = ( L ) P L sinθ cos θ / γ = ή θ arctan( γ tanθ) tanθ γ tanθ = (β) Στο φαινόµενο Ντόλερ, η σχέση ανάµεσα στα µήκη κύµατος είναι λ= λ θεωρείται θετικό όταν η ηγή αοµακρύνεται αό εµάς Για β =, 6, είναι + β, όου το β β +,6,6 λ= λ = λ = λ 4= λ, 6, 4
4 + Θέµα Ένα ουδέτερο καόνιο διασάται σε δύο ιόνια, + Αν το αραγόµενο αρνητικό ιόνιο είναι ακίνητο, οια είναι η ολική ενέργεια του θετικού ιονίου; Ποια ήταν η ολική ενέργεια του καονίου; ίνονται οι µάζες ηρεµίας: του, m = 498 MeV / c και των ±, m = 4 MeV/ c Έστω ότι η µάζα ηρεµίας του είναι Μ και των ± είναι m Η διάσαση φαίνεται στο σχήµα Αφού το + είναι το µόνο σωµατίδιο ου κινείται µετά τη διάσαση, η διατήρηση της ορµής υαγορεύει η ορµή του να είναι ίση µε την ορµή p του Αν είναι η ολική ενέργεια του, η διατήρηση της ενέργειας µας δίνει = +, () mc mc γ Όµως, η ολική ενέργεια του + είναι mc γ ( mc ) ( pc) και του καονίου ( Mc ) ( pc) Αντικαθιστώντας τις Εξ () και (3) στην (), έχουµε Υψώνοντας στο τετράγωνο, = = + () = + (3) ( ) Mc + ( pc) = mc + ( mc ) + ( pc) ( Mc ) + ( pc) = ( mc ) + ( mc ) + ( pc) c ( mc ) + ( pc) ( ) ( ) Mc mc = mc και, εοµένως, Αντικαθιστώντας στην Εξ (), M = mc m M = mc + = mc m ή M c = m Η ολική ενέργεια του θετικού ιονίου είναι: Για το καόνιο βρίσκουµε: 498 = = 886 MeV = 4 = 746 MeV 4
5 Θέµα 3 Ένα σωµατίδιο µε µάζα ηρεµίας m και ταχύτητα υ συγκρούεται µε ακίνητο σωµατίδιο µε µάζα ηρεµίας m Τα δύο σωµατίδια ενώνονται σε ένα συσσωµάτωµα µε µάζα ηρεµίας Μ, ου κινείται µε υ= mγυ / mγ ταχύτητα υ είξετε ότι είναι ( ) ( ) και γ M = m m, όου γ = υ / c Οι αρχές διατήρησης δίνουν: Ενέργεια: m c γ c = Mc γ () Ορµή: mγυ = Mγυ () όου γ = υ / c Ααλείφοντας το γινόµενο Mγ ανάµεσα στις Εξ () και (), έχουµε mγυ mγυ = mγυ υ, η οοία δίνει υ= mγ Αό αυτή την τιµή ροκύτει ότι mγ β = β = γ mγ + m Υψώνοντας την Εξ () στο τετράγωνο και αντικαθιστώντας για το M = ( mγ ) = ( mγ ) mγ β, γ γ γ γβ M m m m m m = + +, ( ) /γ, έχουµε = γ β + + γ M m m m m και, τελικά, γ M = m m
6 Θέµα 4 Ποια είναι η ενέργεια κατωφλίου για την αραγωγή αντιρωτονίου ( p ) κατά τη σύγκρουση ηλεκτρονίου (e) µε ακίνητο ρωτόνιο (p) κατά την αντίδραση e+ p e+ p+ p+ p ; ίνονται οι ενέργειες ηρεµίας: του ηλεκτρονίου mpc = 938 MeV mec =,5 MeV και του ρωτονίου Για διαθέσιµη ενέργεια ίση µε την ενέργεια κατωφλίου, τα σωµατίδια ου αράγονται θα είναι ακίνητα στο σύστηµα αναφοράς µηδενικής ορµής Στο σύστηµα αναφοράς του εργαστηρίου, εοµένως, όλα τα αραγόµενα σωµατίδια θα κινούνται µε την ίδια ταχύτητα, έστω β c, όως φαίνεται στο σχήµα Έχουµε, c = 3m c γ () διατήρηση της ενέργειας: e p ( p e) διατήρηση της ορµής: e e ( e ) ( 3 p e) = = + () p c m c m m c βγ όου e και p e είναι η ενέργεια και ορµή, αντίστοιχα, του ροσίτοντος ηλεκτρονίου Η Εξ () δίνει ( 3 ) γ ( 3 ) γ ( ) 4 e = p + e p p + e + p m m c m c m m c m c και η Εξ () ( 3 ) β γ ( ) 4 e p e e = m c c Εξισώνοντας, και διαιρώντας διά ( ) ( ) ( ) 4 c ροκύτει η σχέση p e γ β p p e γ p e 3m m 3m m = Όµως, γ ( β ) = και έτσι p e p e 9m 6m m m + ( 3m m ) γ m m + + = p p e p e Εοµένως, p + e p p + e m 6m m 5m 3m γ = = m 3m m 3m ( 3 ) = m e p e ( + ) p p e 5mp + 3me c m ( ) pc = 4mp + 3me c 3m p e p e Η κινητική ενέργεια του ηλεκτρονίου είναι: ( ) e e e p e = m c = m c Αντικαθιστώντας, βρίσκουµε την ενέργεια κατωφλίου e = ( 938+,5) = 3753 MeV
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Κανονική εξέταση στο µάθηµα Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ ΕΙ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Κανονική εξέταση στο µάθηµα ΕΙ
( ) Φ.27 είξετε ότι, για ένα σωµατίδιο µε µάζα ηρεµίας m 0, το οποίο κινείται µε ταχύτητα υκαι έχει ορµή pκαι κινητική ενέργεια Κ, ισχύει η σχέση ΛΥΣΗ
Φ.7 είξετε ότι, για ένα σωµατίδιο µε µάζα ηρεµίας m 0, το οποίο κινείται µε ταχύτητα υκαι έχει ορµή pκαι κινητική ενέργεια Κ, ισχύει η σχέση pυ = + / K + K m c Η κινητική ενέργεια του σωµατιδίου είναι
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ Κανονικ εξέταση στο µάθηµα ΕΙ ΙΚΗ
1 m2 c 4 E 2 (ζ) Δείξτε ότι σωματίδιο με ολική ενέργεια Ε πολύ μεγαλύτερη της ενέργειας ηρεμίας του mc 2 κινείται με ταχύτητα που δίνεται από τη σχέση
ΤΜΗΜΑ ΦΥΣΙΚΗΣ Διδάσκοντες: Κ. Φουντάς, Σ. Κοέν, Ν. Νικολής. ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ Ι 11 9 13 Θέμα 1 o : (α) Διατυώστε τις δύο αρχές στις οοίες βασίζεται η θεωρία της ειδικής σχετικότητας. [4 μονάδες] (β) Περιγράψτε
5. ΣΧΕΤΙΚΙΣΤΙΚΗ ΥΝΑΜΙΚΗ
5. ΣΧΕΤΙΚΙΣΤΙΚΗ ΥΝΑΜΙΚΗ Σχετικιστικήµάζα. Σχετικιστική ορµή. Αν εξετάσουµε µια σύγκρουση δύο µαζών σε ένα αδρανειακό σύστηµα αναφοράς και επιβάλουµε τη διατήρηση της ορµής, όπως αυτή ορίζεται στην κλασική
ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A
ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου
Σύγχρονη Φυσική 1, Διάλεξη 10, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας
1 Ορμή και Ενέργεια στην Ειδική Θεωρία της Σχετικότητας Σκοπός της δέκατης διάλεξης: 10/11/12 Η κατανόηση των εννοιών της ολικής ενέργειας, της κινητικής ενέργειας και της ορμής στην ειδική θεωρία της
Ο Μετασχηµατισµός του Λόρεντς για τις Συντεταγµένες Θέσης Ενός Συµβάντος
3 ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ Ο Μετασχηµατισµός του Λόρεντς για τις Συντεταγµένες Θέσης Ενός Συµβάντος Έστω ένα αδρανειακό σύστηµα S, και ένα δεύτερο, S, το οποίο κινείται µε ταχύτητα ως προς το πρώτο Επιλέγουµε
Ο µετασχηµατισµός της ορµής και της ενέργειας. x y z x y z
Ο µετασχηµατισµός της ορµής και της ενέρειας Ορµή p Ολική ενέρεια ( p, p, p, ) ( p, p, p, ) S S V p p Ο µετασχηµατισµός της ορµής και της ενέρειας Για σωµατίδιο: ορµή p= m υ ολική ενέρεια = m σ = 1 1 υ
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο
Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Σ Χ Ο Λ Η Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Ω Ν Μ Α Θ Η Μ Α Τ Ι Κ Ω Ν Κ Α Ι Φ Υ Σ Ι Κ Ω Ν Ε Π Ι Σ Τ Η Μ Ω Ν Επαναληπτική εξέταση στο άθηα Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ ΕΙ
Σύγχρονη Φυσική 1, Διάλεξη 11, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων. Επιλεγμένες εφαρμογές της Ειδικής Θεωρίας της Σχετικότητας
1 Επιλεγμένες εφαρμογές της Ειδικής Θεωρίας της Σχετικότητας Σκοπός της ενδέκατης διάλεξης: 08/11/12 Η παρουσίαση εφαρμογών της ειδικής θεωρίας της σχετικότητας σε φαινόμενα τα οποία παρατηρούνται στο
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Οι εξισώσεις του Μάξγουελ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Οι εξισώσεις του Μάξγουελ Η µαθηµατική περιγραφή των νόµων του ηλεκτροµαγνητισµού δίνεται από τις εξισώσεις του Mawell (186), οι οποίες είναι οι εξής: ρ B E E, B, E, B ε µ + µ J. ε t
Φ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε. Α Σ Κ Η Σ Ε Ι Σ. Α. Κινηµατική
Φ Υ Σ Ι Κ Η Ι Σ Ε Μ Φ Ε Α Σ Κ Η Σ Ε Ι Σ Α Κινηµατική Α Η θέση ενός σηµείου πάνω στον άξονα των δίνεται, ως συνάρτηση του χρόνου t, από τη σχέση: ( = 4 + t sin5t (σε m όταν ο χρόνος είναι σε s) Να βρεθεί
5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ
Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται
Εργασία 1 η & Λύσεις 2009/10 Θεματική Ενότητα ΦΥΕ14 " ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΦΥΣΙΚΕΣ ΕΠΙΣΤΗΜΕΣ "
Άσκηση Εργασία η & Λύσεις 9/ Θεματική Ενότητα ΦΥΕ4 Παράδοση 6//9 Αν υοθέσουμε ως στο τρισορθογώνιο σύστημα αξόνων yz ο άξονας των z συμίτει με τη διεύθυνση της κατακόρυφου, να γράψετε αναλυτικά (με την
1. Κινηµατική. x dt (1.1) η ταχύτητα είναι. και η επιτάχυνση ax = lim = =. (1.2) Ο δεύτερος νόµος του Νεύτωνα παίρνει τη µορφή: (1.
1. Κινηµατική Βιβλιογραφία C. Kittel W. D. Knight M. A. Rueman A. C. Helmholz και B. J. Moe Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π. 1998. Κεφ.. {Μαθηµατικό Συµπλήρωµα Μ1 Παράγωγος} {Μαθηµατικό Συµπλήρωµα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 (περίοδος Σεπτεμβρίου 2013-14)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας 7 Οκτωβρίου 2014 περίοδος Σεπτεμβρίου 2013-14 Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου
5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ
Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι, Αθήνα Τηλ.: ,
ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 0 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΑNΔΡIΑNΑ ΜΑΡΤΙΝΟΥ, MSC, ΥΠΟΨΗΦΙΑ ΔΙΔΑΚΤΩΡ ΕΜΠ KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 2013
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στην Ειδική Θεωρία Σχετικότητας 19 Ιουνίου 213 Τα δεδομένα όλων των ερωτημάτων αναφέρονται σε σύστημα μονάδων όπου η ταχύτητα του φωτός c είναι ίση με 1. Σας προτρέπουμε
Στοιχείατης. τηςθεωρίαςτης Σχετικότητας. Άλµπερτ Αϊνστάιν 1905
Στοιχείατης τηςθεωρίαςτης Σχετικότητας Άλµπερτ Αϊνστάιν 1905 Έννοια Συστήµατος Αναφοράς Ένα σταθερό σύστηµα (x,y,z) και t βάσει του οποίου περιγράφουµε ένα φυσικό γεγονός. Συνήθως σύστηµα Εργαστηρίου.
9. Σχετικιστική δυναµική
9. Σχετικιστική δναµική Βιβλιογραφία C. Kittel, W. D. Knight, M. A. Rudeman, A. C. Helmholz και B. J. Moye, Μηχανική. Πανεπιστηµιακές Εκδόσεις Ε.Μ.Π., 998. Κεφ., 3. 9. ιατήρηση της ορµής, σχετικιστική
2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Ασκήσεις σε τρέχοντα µηχανικά κύµατα
Ασκήσεις σε τρέχοντα µηχανικά κύµατα 1. Η ηγή διαταραχής Π αρχίζει τη χρονική στιγµή µηδέν να εκτελεί α.α.τ. λάτους Α=1 cm και συχνότητας f=, Hz. Το κύµα ου δηµιουργεί διαδίδεται κατά µήκος γραµµικού οµογενούς
(α) (β) (γ) [6 μονάδες]
ΤΜΗΜΑ ΦΥΣΙΚΗΣ Διδάσκοντες: Κ. Φουντάς, Σ. Κοέν ΣΥΓΧΡΟΝΗ ΦΥΣΙΚΗ Ι 12 9 2012 Θέμα 1 o : Όταν ένα αδρανειακό σύστημα Ο' κινείται με ταχύτητα V σε σχέση με αδρανειακό σύστημα Ο και η ταχύτητα V είναι στη διεύθυνση
Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi
18 Αλλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (1), Β= g Α Α n όου Α, Β R Jodan µετρήσιµα
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Τρίτη 1 Αυγούστου 2017 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις
Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων
Ασκήσεις στην Φυσική Στοιχειωδών Σωματιδίων 1) Ποιες από τις πιο κάτω αντιδράσεις επιτρέπονται και ποιες όχι βάσει των αρχών διατήρησης που ισχύουν για τις ασθενείς αλληλεπιδράσεις ν μ + p μ + +n ν e +
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013. Ηµεροµηνία: Κυριακή 21 Απριλίου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 1 Αριλίου 013 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις αό Α1-Α4 να γράψετε στο τετράδιο
ΕΡΩΤΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΣΤΗ ΣΧΕΤΙΚΟΤΗΤΑ
ΕΡΩΤΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΣΤΗ ΣΧΕΤΙΚΟΤΗΤΑ υπό Μουσελίμη Φωτίου υπ. Δρ. Φυσικής Παν/μίου Αθηνών ΟΜΑΔΑ Ι 1. Έστω τ είναι ο χρόνος που μετρά ένας σχετικιστικός παρατηρητής στο ιδιοσύστημά του και β είναι η σχετική
Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 2,5 ώρες Σάββατο 23 Ιούλη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 2,5 ώρες Σάββατο 23 Ιούλη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε στο
ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) αφού σύμφωνα με τα πειράματα Mickelson-Morley είναι c =c.
ΣΧΕΤΙΚΟΤΗΤΑ Μετασχηματισμοί Γαλιλαίου. (Κλασική θεώρηση) y y z z t t Το οποίο οδηγεί στο ότι - υ.(άτοπο), αφού σύμφωνα με τα πειράματα Mikelson-Morley είναι. Επίσης y y, z z, t t Το οποίο ( t t ) είναι
ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003
ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 3 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Στις ερωτήσεις - να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Λέγοντας
1 η δεκάδα θεµάτων επανάληψης
1 1 η δεκάδα θεµάτων εανάληψης 1. ίνεται το ολυώνυµο Ρ(x) = x 3 x 2 4x + 4 Να αοδείξετε ότι ο αριθµός ρ = 1 είναι ρίζα του ολυωνύµου i Να βρείτε το ηλίκο της διαίρεσης του ολυωνύµου Ρ(x) µε το ολυώνυµο
Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια
8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.
Θέµα 1 ο Nα γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
50 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 210760170 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 Θέµα 1 ο Nα γράψετε στο τετράδιο σας τον
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος 2010
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξετάσεις στη Θεωρία της Ειδικής Σχετικότητας Ιούνιος Αν θέλετε μπορείτε να επεξεργαστείτε όλα τα προβλήματα σε σύστημα μονάδων όπου η ταχύτητα του φωτός είναι c. Να λύσετε
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 19//013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 υ (m/s) Σώμα μάζας m = 1Kg κινείται σε ευθύγραμμη τροχιά
Εισαγωγή στη Σχετικότητα και την Κοσμολογία ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ
Εισαγωγή στη Σχετικότητα και την Κοσμολογία Διδάσκων: Θεόδωρος Τομαράς, Πανεπιστήμιο Κρήτης ΠΕΡΙΕΧΟΜΕΝΑ ΜΑΘΗΜΑΤΟΣ Εβδομάδα 1 Σχετικότητα 1.1 Η ανεπάρκεια της μηχανικής του Νεύτωνα V1.1.1 Σύντομη εισαγωγή
3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ
3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου
γραπτή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης
γρατή εξέταση στα ΦΥΣΙΚΗ Γ' κατεύθυνσης Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ύλη: Ονοματεώνυμο: Καθηγητές: Εαναλητικό σε όλη την ύλη. Ατρείδης Γιώργος - Κόζυβα Χρύσα Θ Ε Μ Α ο Στις αρακάτω ερωτήσεις να γράψετε
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000
Ζήτηµα 1ο Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα µε το πρότυπο
Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000
Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Ζήτηµα ο Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της εφατοµένης της γραφικής αράστασης της f
Για τις παρακάτω ερωτήσεις 2-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.
46 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 0760470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 007 ΘΕΜΑ. Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ)
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Τηλ.: 10 69 97 985, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 10 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓ Α ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC, ΥΠΟΨΗΦΙΑ Ι ΑΚΤΩΡ ΕΜΠ Ε
Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Όταν
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 2007 ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 007 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η εξίσωση του
Κεφάλαιο 1 : Μετασχηματισμοί Γαλιλαίου.
Κεφάλαιο : Μετασχηματισμοί Γαλιλαίου.. Γεγονότα, συστήματα αναφοράς και η αρχή της Νευτώνειας Σχετικότητας. Ως φυσικό γεγονός ορίζεται ένα συμβάν το οποίο λαμβάνει χώρα σε ένα σημείο του χώρου μια συγκεκριμένη
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ
ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ -ΑΡΜΟΝΙΚΟ ΚΥΜΑ-ΣΤΑΣΙΜΟ Το σηµείο Ο γραµµικού ελαστικού µέσου το οοίο ταυτίζεται µε τον άξονα χ Οχ, εκτελεί ταυτόχρονα δύο Α.Α.Τ ου γίνονται στην ίδια διεύθυνση, κάθετα στον άξονα χ
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000
Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙ ΑΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ 1 ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ A Να γράψετε στο
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ» ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) TEΛΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 4 Ιουνίου 6 Αό τα κάτωθι Θέµατα καλείσθε να λύσετε το ο ου εριλαµβάνει ερωτήµατα αό όλη την ύλη του
3. Ο Rutherford κατά το βοµβαρδισµό λεπτού φύλλου χρυσού µε σωµάτια α παρατήρησε ότι: α. κανένα σωµάτιο α δεν εκτρέπεται από την πορεία του
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό
1.3. Ασκήσεις σχ. βιβλίου σελίδας A ΟΜΑ ΑΣ. 1. i) f(x) = 5 ii) f(x) = x 4 iii) f(x) = x 9
. Ασκήσεις σχ. βιβλίου σελίδας 5 8 A ΟΜΑ ΑΣ (Να βρείτε τις αραγώγους των συναρτήσεων στις ασκήσεις 8). f() 5 f() 4 i f() 9 f () ( 5) 0 f () ( 4 ) 4 i f () ( 9 ) 9 8.. f() f() i f() 5 f () f () ( ) 4 i
ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ η ΕΡΓΑΣΙΑ
15/10/2004 ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΕΥ34 2004-05 1 η ΕΡΓΑΣΙΑ Προθεσμία παράδοσης 15/11/2004 ΑΣΚΗΣΕΙΣ 1) Επιβάτης τραίνου, το οποίο κινείται προς τα δεξιά με ταχύτητα υ = 0.6c στη διεύθυνση του άξονα
ΘΕΜΑ 1 ο. Μονάδες Σε µια εξώθερµη πυρηνική αντίδραση:
ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 2004
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Φεβρουάριος 4 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Απαντήστε µε σαφήνεια και συντοµία. Η ορθή πλήρης απάντηση θέµατος εκτιµάται περισσότερο από τη
Γ ΚΥΚΛΟΣ ΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ
Προτεινόµενα Θέµατα Γ Λυκείου Νοέµβριος 00 Φυσική κατεύθυνσης ΘΕΜΑ Α Στις ροτάσεις αό -4 να βρείτε την σωστή αάντηση.. Μία αό τις αρακάτω σχέσεις εριγράφει την συχνότητα της αµείωτης ηλεκτρικής ταλάντωσης
ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017
Στασίνου 6, Γραφ., Στρόβολος, Λευκωσία Τηλ. 57-78 Φαξ: 57-79 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 7 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Παρασκευή, 9/5/7 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ ΑΠΟ ΤΗΝ ΜΕΡΟΣ Α ln( x). Να υολογίσετε
Κεφάλαιο 6 : Σχετικιστική ενέργεια και ορμή.
Κεφάλαιο 6 : Σχετικιστική ενέργεια και ορμή. 6. Σχετικιστική Ορμή. Ο ορισμός της σχετικιστικής ορμής r πρέπει να ικανοποιεί τις ακόλουθες δύο συνθήκες: Η ολική σχετικιστική ορμή ενός απομονωμένου συστήματος
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αµπελόκηποι, Αθήνα Τηλ.: ,
Ε ΟΥΑΡ ΟΥ ΛΑΓΑΝΑ PhD Τηλ: 1 69 97 985, wwwdlaggr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ: 1 69 97 985, E-mail: dlag@ottgr, wwwdlaggr Ε ΟΥΑΡ ΟΣ ΛΑΓΑΝΑΣ, PhD KENTΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ Τηλ: 1 69
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Τρίτη 1 Αυγούστου 2017 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Β έκδοση Στις ηµιτελείς
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες ευτέρα 3 Σεπτέµβρη 2018 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις
Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Οριζόντια Βολή-Κυκλική Κίνηση-Ορµή Ηλεκτρικό& Βαρυτικό Πεδίο
Επαναληπτικό ιαγώνισµα Β Τάξης Λυκείου Κυριακή 7 Μάη 2017 Οριζόντια Βολή-Κυκλική Κίνηση-Ορµή Ηλεκτρικό& Βαρυτικό Πεδίο Σύνολο Σελίδων: έξι (6) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα
Συστήµατος Αναφοράς. Συγχρονισµός των Ρολογιών Ενός
2. ΠΡΟΛΕΓΟΜΕΝΑ Συστήµατα Αναφοράς Συγχρονισµός των Ρολογιών Ενός Συστήµατος Αναφοράς t A Ρολόι Α t 1 D A t + t + = A 1 t t t t 2 1 1 2 Ρολόι Αναφοράς t 2 D A = t t 2 2 1 ύο Αδρανειακά Συστήµατα Αναφοράς
Εργασία 1 ΑΝ ΙΙΙ 07_08
Εργασία ΑΝ ΙΙΙ 7_8 () t =,sin,cos t t t, t [,9], Για την αραμετρική καμύλη: ( ) Α Να βρεθεί η συνάρτηση μήκους τόξου και μια ισοδύναμη φυσική αραμετρική καμύλη q() s = (()) t s Β Να βρεθεί το σημείο Px
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ
ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 6 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Για τις ηµιτελείς προτάσεις 1.1 έως 1.4 να γράψετε στο
Αλλαγή µεταβλητής στο τριπλό ολοκλήρωµα ( ) Β R Jordan µετρήσιµα υποσύνολα του U. R, ανοικτό µε. y y y συµβολίζει την ορίζουσα του πίνακα Jacobi
8 λλαγή µεταβλητής στο τριλό ολοκλήρωµα Υενθυµίζουµε ( Θεωρηµα ) το γενικό τύο αλλαγής µεταβλητής στο ολλαλό ολοκλήρωµα: f ( y) dy= f ( g( x) ) det J g( x) dx (), Β= g n όου, Β Jodan µετρήσιµα υοσύνολα
Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ιαγώνισµα φυσικής Γ λυκείου σε όλη την υλη Θέµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθμό των ερωτήσεων και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.Μονοχρωµατική
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Τρίτη 1 Αυγούστου 2017 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Γ έκδοση Στις ηµιτελείς
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ 3 Ε_3.ΦλΘΤ(α) ΤΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΘΗΜ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜ Ηµεροµηνία: Κυριακή 8 πριλίου 3 ιάρκεια Εξέτασης: ώρες ΠΝΤΗΣΕΙΣ. δ. γ 3. β 4. γ 5. α. Σωστό, β. Λάθος, γ. Σωστό,
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ÈÅÌÅËÉÏ
ΘΕΜΑ 1ο ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 2 ΙΟΥΝΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο Για κάθε µια από
Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις
Επαναληπτικη άσκηση στην Μηχανική Στερεού-Κρούσεις Σφαίρα Σ 2 µάζας m 2 =m=2kg ηρεµεί στερεωµένη στο αριστερό άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=50n/m το άλλο άκρο του οποίου είναι στερεωµένο
i. 3 ii. 4 iii. 16 Ε 1 = -13,6 ev. 1MeV= 1, J.
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέµα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την ηµιτελή πρόταση.
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει
Ενδεικτικές Λύσεις. Θέµα Α. (α) υ 2 = 0
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.. Σε κάθε κρούση ανάµεσα σε δύο σώµατα µικρών διαστάσεων : (ϐ) η µεταβολή της ορµής του ενός είναι αντίθετη της µεταβολής της ορµής
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ
Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 10 ΙΟΥΝΙΟΥ 2014 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΚΥΜΑΤΑ 010-11 ΘΕΜΑ 1 ο : 1) Κατά τη διάδοση ενός κύματος σ ένα ελαστικό μέσον i) μεταφέρεται ύλη. ii) μεταφέρεται ενέργεια και ύλη. iii) όλα τα σημεία του ελαστικού μέσου έχουν την ίδια
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα
Σύγχρονη Φυσική 1, Διάλεξη 12, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Διαγράμματα Minkowski
1 Διαγράμματα Minkowski Σκοποί της διάλεξης 12: Να εισάγει τα διαγράμματα Minkowski. 18.1.2012 Να περιγράψει την ιδέα του ταυτοχρονισμού στην θεωρία της σχετικότητας με μεθόδους γεωμετρίας. Να εισάγει
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 17 Ε_3.ΦλΘ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 17 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών)
ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σουδών) η Σειρά Ασκήσεων //7 Ι. Σ. Ράτης Ειστροφή µέχρι //7. Η σχέση διασοράς για τη ζώνη αγωγιµότητας Ε c c () ενός κυβικού ηµιαγώγιµου
Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή
Στοιχειώδη Σωμάτια ΙΙ (8ου εξαμήνου, εαρινό 2011-12) Χ. Πετρίδου & Κ. Κορδάς Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ 1 ο. 2= p=q 2 p =2q
ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΚΕΦΑΛΑΙΟ ο. Υποθέτουµε ότι ο είναι ρητός. ηλαδή, υποθέτουµε p ότι υπάρχουν φυσικοί αριθµοί p και q τέτoιοι ώστε : =, p και q δεν έχουν q κοινούς διαιρέτες. Παρατηρούµε ότι ο άρτιος αριθµός.
Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά
Κυµατική ΦΥΕ4 5/7/8 Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ4 Ιούλιος 8 KYMATIKH ιάρκεια: λεπτά Θέµα ο (Μονάδες:.5) A) Θεωρούµε τις αποστάσεις
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Σεπτέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις
α. c. β. c Μονάδες 5
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΕΥΤΕΡΑ 20 ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
U -m g R e + m g y. R e
3 η Εργασία Ηµεροµηνία Αποστολής: 1/3/010 Άσκηση 1 Να αποδείξετε ότι η δυναµική ενέργεια της βαρύτητας σώµατος µάζας m που βρίσκεται σε απόσταση y από την επιφάνεια της Γης, είναι U -m g R e + m g y όπου
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 0 ΜΑΪΟΥ 015 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) Θέμα Α Στις ερωτήσεις Α1-Α4
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 4 ης ΕΡΓΑΣΙΑΣ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ 4 9- ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ 4 ης ΕΡΓΑΣΙΑΣ Προθεσµία παράδοσης 9//9 //9 Άσκηση Α) Στο ΣΑ των δύο παρατηρητών το µήκος της ράβδου είναι L= 5m ενώ το µήκος στο ΣΑ της ράβδου
Κύριε κύριε γιατί δεν ανασηκώνεται;
Κύριε κύριε γιατί δεν ανασηκώνεται; Βλήμα μάζα m 1 =1kg κινείται με ταχύτητα μέτρου υ 1 =6m/ µε κατεύθυνση ου σχηματίζει γωνία φ=30 0 µε την κατακόρυφο και συγκρούεται λαστικά με ακίνητο κιβώτιο μάζας
ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4)
ΘΕΜΑ Ένα αεροπλάνο πετάει οριζόντια σε ύψος h=km µε σταθερή ταχύτητα V=6km/h, ως προς ακίνητο παρατηρητή στο έδαφος. Ο πιλότος αφήνει µια βόµβα να πέσει ελεύθερα: (α) Γράψτε τις εξισώσεις κίνησης (δηλαδή
Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ
Επαναληπτικά Θέµατα ΟΕΦΕ 009 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση Α.1. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2007 ΕΚΦΩΝΗΣΕΙΣ
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΙ ΕΙΣ 007 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜ 1o Στις ερωτήσεις 1- να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα, που αντιστοιχεί στη σωστή απάντηση. 1. Η υπέρυθρη ακτινοβολία
των δύο σφαιρών είναι
ΘΕΜΑ B. Μια μικρή σφαίρα μάζας συγκρούεται μετωπικά και ελαστικά με ακίνητη μικρή σφαίρα μάζας. Μετά την κρούση οι σφαίρες κινούνται με αντίθετες ταχύτητες ίσων μέτρων. Ο λόγος των μαζών των δύο σφαιρών
ΤΡΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΡΙΟΔΟΥ ΠΑΣΧΑ 2009
ΤΡΙΩΡΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΕΡΙΟΔΟΥ ΠΑΣΧΑ 29 ΘΕΜΑ 1 ο Α. Για να ααντήσετε στις αρακάτω τέσσερις ερωτήσεις ολλαλής ειλογής, αρκεί να γράψετε στο φύλλο ααντήσεων τον αριθμό της ερώτησης και δεξιά αό