Introduction Problem Statement (20 points) (20 points) Grading Rubric (2 points) (2 points) (6 points)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Introduction Problem Statement (20 points) (20 points) Grading Rubric (2 points) (2 points) (6 points)"

Transcript

1 tar zip α 1

2 σ 2 i = α 0 + α 1 ε 2 i 1 + β 1 σ 2 i 1 (X i ) i ε i = X i [X i F i 1 ] σ 2 i = [X i F i 1 ] (x i ) i=1,...,n h(u) = 1 n n i=1 ( 1 ( 2πσ 2 ) ϵ 2 ) i + i 2 σi 2 u = (α 0, α 1, β 1 ) ε i = x i µ i σ1 2 = α 0 /(1 β 1 α 1 ) µ i 0 h u j = 1 n n 1 2σ 2 i=1 i ( ) 1 ε2 i σ 2 i σi 2 u j σ1 2 1 =, α 0 1 β 1 α 1 σ1 2 1 = α 1 (1 β 1 α 1 ) 2, σ1 2 1 = β 1 (1 β 1 α 1 ) 2, σ 2 i α 0 = 1 + β 1 σ 2 i 1 α 0 σ 2 i α 1 = ε 2 i 1 + β 1 σ 2 i 1 α 1 σ 2 i β 1 = σ 2 i 1 + β 1 σ 2 i 1 β 1 i = 2,..., n i = 2,..., n i = 2,..., n (ˆξ) = ξ + 1 n/50 α 0 α 1

3 ,000 ˆα 0 ˆα 1 ˆβ 1 σn+1 2 σ 2 η ˆβ ˆξ (ˆξ)

4 α 0 0 α 1 0 ξ = 0 η < Φ 1 (0.02) / fallassign.jl module Fallassign using Statistics using LinearAlgebra "GARCH(1,1) conditional variance for θ = [α0;α1;β1]" function garch(ϵ,θ) (α0,α1,β1) = θ σ² = fill(nan,length(ϵ)) if α0>0 && α1>0 && β1 0 && α1<1-β1 σ²[1] = α0/(1-β1-α1) for i = 2:length(ϵ) σ²[i] = α0+α1*ϵ[i-1]^2+β1*σ²[i-1] return σ² "GARCH(1,1) conditional variance (α0,α1,β1) partials"

5 function garch_grad(ϵ,θ) (α0,α1,β1) = θ σ² = garch(ϵ,θ) grad = fill([nan;nan;nan],length(ϵ)) if α0>0 && α1>0 && β1 0 && α1<1-β1 grad[1] = [ 1/(1-β1-α1); α0/(1-β1-α1)^2; α0/(1-β1-α1)^2 ] for i = 2:length(ϵ) grad[i] = [ 1+β1*grad[i-1][1]; ϵ[i-1]^2+β1*grad[i-1][2]; σ²[i-1]+β1*grad[i-1][3] ] return grad "negative quasi log-likelihood for GARCH" function qmle_obj(ϵ,θ) σ² = garch(ϵ,θ) return (log.(2π*σ²)+ϵ.^2./σ²)/2 "negative quasi log-likelihood for GARCH (α0,α1,β1) partials" function qmle_grad(ϵ,θ) σ² = garch(ϵ,θ) return (1.-ϵ.^2./σ²)./(2*σ²).*garch_grad(ϵ,θ) "indicator for domain for GP parameters" function valid(z,θ) (β,ξ) = θ if β 0 ξ<-1 maximum(z)>0 return false if ξ<0 && minimum(z) β/ξ return false return true "negative log-likelihood for GP for θ = [β;ξ]" function mle_obj(z,θ) if!valid(z,θ) return fill(nan,length(z)) (β,ξ) = θ if abs(ξ)<eps() return log(β).-z/β

6 return log(β).+(1+1/ξ)log.(1.-ξ*z/β) "negative log-liklihood for GP (β,ξ) partials" function mle_grad(z,θ) if!valid(z,θ) return fill([nan;nan],length(z)) (β,ξ) = θ if abs(ξ)<eps() return [[ (1+z/β)/β; -z/β*(1+z/2β) ] for z in z] return [[ (1-(1+1/ξ)*(1-1/(1-ξ*z/β)))/β; (1+1/ξ)*(1-1/(1-ξ*z/β))/ξ- log(1-ξ*z/β)/ξ^2 ] for z in z] "Newton's method minimizer" function newtmin(h_obj::function,h_grad::function,h_hess::function,u0::vector ;maxiter=100,tol=1.e-8,δ=1.e-4) u1 = u0 h1 = h_obj(u1) if isnan(h1) throw(domainerror(u0,"invalid initial value")) while maxiter>0 u0 = u1 h0 = h1 k = 0 while maxiter>0 && (k==0 isnan(h1) h1-h0>δ*dot(u1-u0,h_grad(u0))) u1 = u0-2.0^k*h_hess(u0)\h_grad(u0) h1 = h_obj(u1) k -= 1 maxiter -= 1 if abs(h1-h0)<tol return u1 return u0 "BHHH solver for maximum likelihood estimates" function bhhh(x::vector,obj::function,grad::function,θ₀::vector) h_obj = θ->mean(obj(x,θ))

7 h_grad = θ->mean(grad(x,θ)) h_hess = θ->cov(grad(x,θ)) return newtmin(h_obj,h_grad,h_hess,θ₀) export garch, qmle_obj, qmle_grad, mle_obj, mle_grad, bhhh # Fallassign # # SCRIPT # using.fallassign using CSV using Statistics "dataset" df = CSV.read("fallassign.csv") dates = df[:date] # assume oldest first tickers = [symb for symb in names(df) if symb!= :Date] "GARCH parameters" parms_garch = Dict{Symbol,Vector{Float64}}() "GP parameters" parms_gp = Dict{Symbol,Vector{Float64}}() for ticker in tickers # prepare invariants x = diff(log.(df[ticker])) # daily log-returns μ = zeros(length(x)) # assume zero conditional means ϵ = x-μ # residuals # fit GARCH (α1₀,β1₀) = (.2,.7) # guess initial GARCH coeffs α0₀ = var(ϵ)*(1-β1₀-α1₀) # match moments θ_garch = bhhh(ϵ,qmle_obj,qmle_grad,[α0₀;α1₀;β1₀]) σ² = garch([ϵ;nan],θ_garch) σ²₁ = pop!(σ²) # forecast # lower tail of standardized returns z = collect(partialsort!(ϵ./sqrt.(σ²),1:div(length(ϵ),50))) # fast sort η = z[] # threshold, empirical 2% quantile # fit GP ξ₀ = (1-mean(z.-η)^2/var(z))/2 # match moments β₀ = -mean(z.-η)*(1-ξ₀) # match moments θ_gp = bhhh(z,mle_obj,mle_grad,[β₀;ξ₀]) # memo results parms_garch[ticker] = [θ_garch;σ²₁] parms_gp[ticker] = [η;θ_gp]

Deming regression. MethComp package May

Deming regression. MethComp package May Deming regression MethComp package May 2007 Anders Christian Jensen Steno Diabetes Center, Gentofte, Denmark acjs@steno.dk Contents 1 Introduction 1 2 Deming regression 1 3 The likelihood function 1 4

Διαβάστε περισσότερα

η π 2 /3 χ 2 χ 2 t k Y 0/0, 0/1,..., 3/3 π 1, π 2,..., π k k k 1 β ij Y I i = 1,..., I p (X i = x i1,..., x ip ) Y i J (j = 1,..., J) x i Y i = j π j (x i ) x i π j (x i ) x (n 1 (x),..., n J (x))

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

Various types of likelihood

Various types of likelihood Various types of likelihood 1. likelihood, marginal likelihood, conditional likelihood, profile likelihood, adjusted profile likelihood, Bayesian asymptotics 2. quasi-likelihood, composite likelihood 3.

Διαβάστε περισσότερα

Introduction to the ML Estimation of ARMA processes

Introduction to the ML Estimation of ARMA processes Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y

Διαβάστε περισσότερα

Supplementary Appendix

Supplementary Appendix Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

FORMULAS FOR STATISTICS 1

FORMULAS FOR STATISTICS 1 FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo

255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo (absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total

Διαβάστε περισσότερα

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,

Διαβάστε περισσότερα

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ Σχολή Διοίκησης και Οικονομίας Κρίστια Κυριάκου ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΜΠΟΡΙΟΥ,ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΝΑΥΤΙΛΙΑΣ Της Κρίστιας Κυριάκου ii Έντυπο έγκρισης Παρουσιάστηκε

Διαβάστε περισσότερα

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,

Διαβάστε περισσότερα

Summary of the model specified

Summary of the model specified Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com

Διαβάστε περισσότερα

Gaussian related distributions

Gaussian related distributions Gaussian related distributions Santiago Aja-Fernández June 19, 009 1 Gaussian related distributions 1. Gaussian: ormal PDF: MGF: Main moments:. Rayleigh: PDF: MGF: Raw moments: Main moments: px = 1 σ π

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata

Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ I. 1. Εισαγωγή 3 ΠΡΟΛΟΓΟΣ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ I. 1. Εισαγωγή 3 ΠΡΟΛΟΓΟΣ ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ xiii ΜΕΡΟΣ I 1. Εισαγωγή 3 1.1 Περί Λειτουργικών Συστημάτων 3 1.1.1 Τι είναι Λειτουργικό Σύστημα (Operating System) 3 1.1.2 To UNIX 4 1.1.3 Η δομή ενός Λειτουργικού Συστήματος 5 1.2

Διαβάστε περισσότερα

Fundamentals of Probability: A First Course. Anirban DasGupta

Fundamentals of Probability: A First Course. Anirban DasGupta Fundamentals of Probability: A First Course Anirban DasGupta Contents 1 Introducing Probability 5 1.1 ExperimentsandSampleSpaces... 6 1.2 Set Theory Notation and Axioms of Probability........... 7 1.3

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα

Διαβάστε περισσότερα

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:

+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα: ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών

Διαβάστε περισσότερα

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008 .. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.

Διαβάστε περισσότερα

.5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation rate.3

Διαβάστε περισσότερα

Modeling heteroskedasticity: GARCH modeling Hedibert Freitas Lopes 5/28/2018

Modeling heteroskedasticity: GARCH modeling Hedibert Freitas Lopes 5/28/2018 Modeling heteroskedasticity: GARCH modeling Hedibert Freitas Lopes 5/28/2018 Glossary of ARCH models Bollerslev wrote the article Glossary to ARCH (2010) which lists several families of ARCH models. You

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Lecture 7: Overdispersion in Poisson regression

Lecture 7: Overdispersion in Poisson regression Lecture 7: Overdispersion in Poisson regression Claudia Czado TU München c (Claudia Czado, TU Munich) ZFS/IMS Göttingen 2004 0 Overview Introduction Modeling overdispersion through mixing Score test for

Διαβάστε περισσότερα

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο

Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική

Διαβάστε περισσότερα

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS

Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία

Διαβάστε περισσότερα

794 Appendix A:Tables

794 Appendix A:Tables Appendix A Tables A Table Contents Page A.1 Random numbers 794 A.2 Orthogonal polynomial trend contrast coefficients 800 A.3 Standard normal distribution 801 A.4 Student s t-distribution 802 A.5 Chi-squared

Διαβάστε περισσότερα

Asymptotic distribution of MLE

Asymptotic distribution of MLE Asymptotic distribution of MLE Theorem Let {X t } be a causal and invertible ARMA(p,q) process satisfying Φ(B)X = Θ(B)Z, {Z t } IID(0, σ 2 ). Let ( ˆφ, ˆϑ) the values that minimize LL n (φ, ϑ) among those

Διαβάστε περισσότερα

Bayesian Data Analysis, Midterm I

Bayesian Data Analysis, Midterm I Bayesian Data Analysis, Midterm I Bugra Gedik bgedik@cc.gatech.edu October 3, 4 Q1) I have used Gibs sampler to solve this problem. 5, iterations with burn-in value of 1, is used. The resulting histograms

Διαβάστε περισσότερα

lecture 10: the em algorithm (contd)

lecture 10: the em algorithm (contd) lecture 10: the em algorithm (contd) STAT 545: Intro. to Computational Statistics Vinayak Rao Purdue University September 24, 2018 Exponential family models Consider a space X. E.g. R, R d or N. ϕ(x) =

Διαβάστε περισσότερα

ΔPersediaan = Persediaan t+1 - Persediaan t

ΔPersediaan = Persediaan t+1 - Persediaan t Lampiran 4 Data Perhitungan Perubahan Persediaan ΔPersediaan = Persediaan t+1 - Persediaan t No Kode Perusahaan 2011 Persediaan t+1 (2012) Persediaan t (2011) ΔPersediaan a b a-b 1 ADES 74.592.000.000

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

HY150a Φροντιστήριο 3 24/11/2017

HY150a Φροντιστήριο 3 24/11/2017 HY150a Φροντιστήριο 3 24/11/2017 1 Assignment 3 Overview Το πρόγραμμα ζητείται να διαβάζει μια λίστα δεδομένων που περιγράφει τα διαθέσιμα τμήματα μνήμης (blocks) ενός ΗΥ. Το πρόγραμμα ζητείται να μεταφορτώνει

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Φωνής

Ψηφιακή Επεξεργασία Φωνής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 8η: Αναγνώριση Ομιλητή Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 9: Speaker Recognition

Διαβάστε περισσότερα

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed

Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής

Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής Εισαγωγή στη Matlab 2 Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Ορισμοί Λογικοί τελεστές f0r loops while loops if else

Διαβάστε περισσότερα

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση

Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Προγραμματισμός Η/Υ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Προγραμματισμός Η/Υ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Προγραμματισμός Η/Υ Ενότητα 2 η : Η Γλώσσα Προγραμματισμού VB.NET (1 ο Μέρος) Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα Λογιστικής & Χρηματοοικονομικής

Διαβάστε περισσότερα

Fitting mixtures of linear regressions

Fitting mixtures of linear regressions Journal of Statistical Computation and Simulation Vol. 80, No. 2, February 2010, 201 225 Fitting mixtures of linear regressions Susana Faria a * and Gilda Soromenho b a Department of Mathematics for Science

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2 HMY 795: Αναγνώριση Προτύπων Διάλεξη 2 Επισκόπηση θεωρίας πιθανοτήτων Θεωρία πιθανοτήτων Τυχαία μεταβλητή: Μεταβλητή της οποίας δε γνωρίζουμε με βεβαιότητα την τιμή (αντίθετα με τις ντετερμινιστικές μεταβλητές)

Διαβάστε περισσότερα

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI 155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia

Διαβάστε περισσότερα

IT & Networking DEVELOPING Essential Python 3. Κωδικός Σεμιναρίου / Code

IT & Networking DEVELOPING Essential Python 3. Κωδικός Σεμιναρίου / Code 2352 Essential Python 3 Κωδικός Σεμιναρίου / Code 2352 Essential Python 3 Σκοπός Εκπαιδευτικού Προγράμματος / Objectives Με την ολοκλήρωση του μαθήματος οι συμμετέχοντες θα: Μπορούν να εγκαταστήσουν την

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ

Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ5 1 4 3 3 4 4 5 4 5 4 2 5 5 4 5 4 4 3 5 4 3 2 1 3 2 3 3 4 3 3 4 2 3 3 2 4 4 4 3 4 5 2 3 2 2 3 3 3 3 3 6 3 3 3 3 4 4 4 5 4 7 4 3 3 4 3 3

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΙΣΤΗΜΟΝΩΝ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΕΛΟΣ IFIP, IOI

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΙΣΤΗΜΟΝΩΝ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΜΕΛΟΣ IFIP, IOI 20 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΦΑΣΗΣ Με εξαίρεση το 3ο θέμα, στα 2 πρώτα, υποβλήθηκαν περισσότερες από μία βέλτιστες λύσεις (100% σημείων επιτυχίας). Από αυτές τελείως

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Table A.1 Random numbers (section 1)

Table A.1 Random numbers (section 1) A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution

Διαβάστε περισσότερα

Φροντιςτήριο. Linked-List

Φροντιςτήριο. Linked-List Φροντιςτήριο Linked-List 1 Linked List Μια linked list είναι μια ακολουθία από ςυνδεδεμένουσ κόμβουσ Κάθε κόμβοσ περιέχει τουλάχιςτον Μια πληροφορία (ή ένα struct) Δείκτη ςτον επόμενο κόμβο τησ λίςτασ

Διαβάστε περισσότερα

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.

Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ. ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει

Διαβάστε περισσότερα

Description of the PX-HC algorithm

Description of the PX-HC algorithm A Description of the PX-HC algorithm Let N = C c= N c and write C Nc K c= i= k= as, the Gibbs sampling algorithm at iteration m for continuous outcomes: Step A: For =,, J, draw θ m in the following steps:

Διαβάστε περισσότερα

Ένα απλό πρόγραμμα C

Ένα απλό πρόγραμμα C Δομή Προγράμματος C pre-processor directives global declarations function prototypes main() local variables to function main ; statements associated with function main ; f1() local variables to function

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΣΠΟΥΔΕΣ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΣΠΟΥΔΕΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΕΠΩΝΥΜΟ: ΡΟΜΠΟΛΗΣ ΟΝΟΜΑ: ΛΕΩΝΙΔΑΣ ΟΝΟΜΑ ΠΑΤΡΟΣ: ΣΑΒΒΑΣ ΧΡΟΝΟΛΟΓΙΑ ΓΕΝΝΗΣΗΣ: 16/1/1977 ΤΟΠΟΣ ΓΕΝΝΗΣΗΣ: ΑΘΗΝΑ ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ: ΟΙΚΟΝΟΜΟΥ 29, 16122, ΑΘΗΝΑ ΔΙΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας

Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Εφαρμογή της μεθόδου πεπερασμένων διαφορών στην εξίσωση θερμότητας Να γραφεί script το οποίο να επιλύει αριθμητικά της γενική εξίσωση θερμότητας με χρήση της προς τα εμπρός παραγώγου ως προς το χρόνο,

Διαβάστε περισσότερα

BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey

BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE Colin Dewey 2007.03.08 1 Importance of protein multiple alignment Phylogenetic tree estimation Prediction of protein secondary structure Critical residue

Διαβάστε περισσότερα

Odometry Calibration by Least Square Estimation

Odometry Calibration by Least Square Estimation Robotics 2 Odometry Calibration by Least Square Estimation Giorgio Grisetti Kai Arras Gian Diego Tipaldi Cyrill Stachniss Wolfram Burgard SA-1 Least Squares Minimization The minimization algorithm proceeds

Διαβάστε περισσότερα

Απλός Προγραµµατισµός στην R

Απλός Προγραµµατισµός στην R Κεφάλαιο 5 Απλός Προγραµµατισµός στην R Η έννοια του προγραµµατισµού στην R ϐασίζεται στη δηµιουργία καινούργιων συναρτήσεων οι οποίες ϑα χρησιµοποιηθούν για περαιτέρω ανάπτυξη της γλώσσας. Το κύριο δοµικό

Διαβάστε περισσότερα

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k) Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=

Διαβάστε περισσότερα

Stabilization of stock price prediction by cross entropy optimization

Stabilization of stock price prediction by cross entropy optimization ,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction

Διαβάστε περισσότερα

Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης

Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από

Διαβάστε περισσότερα

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/

Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 02, 09 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Μη γραμμικές εξισώσεις 2. Η μέθοδος της διχοτόμησης 1 Μη γραμμικές

Διαβάστε περισσότερα

n n 1 n+1 2 2 Farmers in Random Insurance Group Farmers in Random Insurance Group Insured Plots Control Plots 1st Choice Plots Insured plot Adverse Selection Moral Hazard Control plot 1st Choice Plots

Διαβάστε περισσότερα

IR Futures Effective Asset Class ก Efficient Frontier

IR Futures Effective Asset Class ก Efficient Frontier Interest Futures* ก * ก ก ก. ก ก 11 ก ก ก ก ก ( ) ก ก * Interest Futures ก ก ก ก ก ก ก ก ก ก (Synthetic Portfolio) ก * ก ก ก 2 กก IR Futures ก ก (Asset Class) IR Futures Supposedly Most Efficient and Effective

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

Περιεχόμενα. Ιδιότητες του cov(x, Y) Ιδιότητες των εκτιμητών Παράδειγμα. 1 Συσχέτιση Μεταβλητών. 2 Εκτιμητές και κατάλοιπα

Περιεχόμενα. Ιδιότητες του cov(x, Y) Ιδιότητες των εκτιμητών Παράδειγμα. 1 Συσχέτιση Μεταβλητών. 2 Εκτιμητές και κατάλοιπα Περιεχόμενα 1 Συσχέτιση Μεταβλητών Ιδιότητες του cov(x, Y 2 Ιδιότητες των εκτιμητών BEΠ (UPatras Γραμμικά Μοντέλα 4η, 5η Διάλεξη, 2018-19 1 / 12 Συσχέτιση Μεταβλητών Ιδιότητες του cov(x, Y Ένα μέτρο της

Διαβάστε περισσότερα

17TimeThis.h function returns reference pointer to same object { return *this; }

17TimeThis.h function returns reference pointer to same object { return *this; } Προαπαιτούµενη Κάθε οµάδα θα πρέπει να εµπλουτίσει το ίδιο πρόγραµµα, που έκανε την προηγούµενη φορά, προσθέτοντας στην κλάση του έναν ή περισσότερους υπερφορτωµένους τελεστές (όπως , ++, +,-,+=..)

Διαβάστε περισσότερα

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk.

LAMPIRAN. Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan. 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. LAMPIRAN Lampiran I Daftar sampel Perusahaan No. Kode Nama Perusahaan 1. AGRO PT Bank Rakyat Indonesia AgroniagaTbk. 2. BACA PT Bank Capital Indonesia Tbk. 3. BABP PT Bank MNC Internasional Tbk. 4. BBCA

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions An Introduction to Signal Detection Estimation - Second Edition Chapter II: Selected Solutions H V Poor Princeton University March 16, 5 Exercise : The likelihood ratio is given by L(y) (y +1), y 1 a With

Διαβάστε περισσότερα

5.1 logistic regresssion Chris Parrish July 3, 2016

5.1 logistic regresssion Chris Parrish July 3, 2016 5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................

Διαβάστε περισσότερα

Συναρτήσεις και Πίνακες

Συναρτήσεις και Πίνακες Συναρτήσεις και Πίνακες Συναρτήσεις καθιερωμένης βιβλιοθήκης της C++ Συναρτήσεις οριζόμενες από τον χρήστη Μεταβίβαση κατ αξία Συναρτήσεις void και λογικές συναρτήσεις Μεταβίβαση κατ αναφορά Επιστροφή

Διαβάστε περισσότερα