Naloge. Na ta list ne pišite odgovorov. Uporabite ocenjevalno polo. Vsak rezultat mora imeti pravilno enoto in primerno število veljavnih mest.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Naloge. Na ta list ne pišite odgovorov. Uporabite ocenjevalno polo. Vsak rezultat mora imeti pravilno enoto in primerno število veljavnih mest."

Transcript

1 Tekmovanje iz naravoslovja Šolsko tekmovanje 6. november 013 Čas reševanja: 90 minut. Dovoljeni pripomočki: računalo, ravnilo, kotomer, šestilo, kemični svinčnik, svinčnik, radirka. Periodni sistem je na zadnji strani. Naloge Na ta list ne pišite odgovorov. Uporabite ocenjevalno polo. Vsak rezultat mora imeti pravilno enoto in primerno število veljavnih mest. Konstante N A = 6, mol 1 R = 8, J K 1 mol 1 F = As mol 1 c m s 1 e 0 = 1, As G = 6, m 3 kg 1 s µ 0 4π 10 7 V s A 1 m 1 ɛ 0 µ 1 0 c 8, F m 1 h = 6, Js σ = 5, W m K 4 m u = 1 u = 1, kg k B = 1, J K 1 1. Za vsak proces označite, ali gre za kemijsko ali fizikalno spremembo. A. Sublimacija suhega ledu. B. Ločitev emulzije olja in vode. C. Gašenje apna. Č. Kaljenje jekla. D. Soljenje poledenele ceste. E. Nastanek ozonske luknje. F. Rjavenje železa. G. Raztapljanje šumeče tablete v vodi..1. Katera oblika ogljika je najstabilnejša pri sobnih pogojih? (1 točka) A. Diamant. B. Grafit. C. Fuleren. Č. Nanocevke... Kateri izmed elementov ne tvori znanih spojin? (1 točka) A. Helij. B. Zlato. C. Ksenon. Č. Uran.

2 .3. Katera snov ne prevaja električnega toka? (1 točka) A. Grafit. B. Raztopina broma v heksanu. C. Zlitina železa in ogljika. Č. Ioniziran zrak med udarom strele..4. Koliko znaša ph vodne raztopine NaOH s koncentracijo 10 7 M? (1 točka) A. 6,8. B. 7,0. C. 7,. Č. 7,6..5. Katerih vezi ni med delci v vodni raztopini diaminsrebrovega(i) klorida? (1 točka) A. Vodikovih. B. Koordinacijskih. C. Kovalentnih. Č. Kovinskih Elektronska konfiguracija elementa M je 1s s p 6 3s 3p 6 4s 3dxy 3dxz 1 3dyz 1 1 3dx y 3d 1 z. Katera trditev pravilno opisuje element M? (1 točka) A. M se raztaplja v zlatotopki. B. M burno reagira z vodo. C. M je žlahtna kovina. Č. M je diamagneten. 3.. Zapišite elektronsko konfiguracijo iona M 3+. (1 točka) 4. Narišite Lewisove formule naslednjih spojin. (4 točke) A. CCl 4 B. BF 3 C. KN 3 Č. HNO 3 5. Pri uvajanju vročega žvepla v vodno raztopino kalijevega hidroksida poteče reakcija disproporcionacije. Zapišite urejeno enačbo reakcije z agregatnimi stanji, če veste, da nastane tudi kalijev tiosulfat s formulo K S O 3. (,5 točke) 6. Kalij kristalizira v telesno centrirani kubični celici. Polmer kalijevega atoma znaša 0,9 nm. Izračunajte gostoto kalija.

3 7. Na spodnjih skicah so prikazane atomske orbitale s, p, 3d, 4f, 5s v naključnem zaporedju. Pod vsako skico vpišite pravilno ime orbitale. (,5 točke) (prerez) (prerez) 8. Katera trditev pravilno opisuje organizacijske ravni v organizmu? (1 točka) A. Celica organ tkivo organski sistem organizem atom molekula. B. Atom molekula celica tkivo organ organski sistem organizem. C. Molekula atom celica organ tkivo organski sistem organizem. Č. Tkivo celica organ - organski sistem organizem atom molekula. 9. Znanstveniki so v jezeru na Antarktiki odkrili do sedaj neznano vrsto enoceličnega organizma, veliko manj kot 0,001 mm. V javnost so pricurljale samo informacije, da organizem nima mitohondrijev in kloroplastov ter jedrne ovojnice. Katere celične strukture so za neznan organizem zagotovo še značilne? Obkrožite črki pred pravilnima odgovoroma. A. Endoplazemski retikel. B. Ribosomi. C. Lizosomi. Č. Celična stena. D. Kapsida. 10. Dijaki so v poskusu proučevali, kako na hitrost rasti stebla in korenin pri fižolu vpliva količina vode. V ta namen so po tri fižolova semena, ki so se razvila na isti rastlini, posadili v sedem posod s 500 g substrata. Na navodilih substrata je pisalo, da morajo rastline zalivati s 60 ml vode dnevno. Dijaki so posode označili s črkami A, B, C, Č, D, E in F ter jih zalivali z različno količino vode. Po 40 dneh so izmerili dolžino stebla in dolžino korenin pri vseh rastlinah. Rezultati so prikazani v spodnji tabeli. Odgovorite na vprašanja s podatki iz tabele in uvoda. Oznaka posode Količina vode Povprečna dolžina stebla treh rastlin Povprečna dolžina korenin treh rastlin v eni posodi po 40 dneh v eni posodi po 40 dneh A 0 ml 0 cm 0 cm B 0 ml 9 cm 13 cm C 40 ml 34 cm 16 cm Č 60 ml 35 cm 1 cm D 80 ml 9 cm 1 cm E 100 ml 18 cm 8 cm F 00 ml 0 cm 0 cm Kaj je v tem poskusu neodvisna spremenljivka? (1 točka) A. Čas. B. Dolžina stebla. C. Dolžina korenin. Č. Količina substrata.

4 10.. Kaj je v tem poskusu odvisna spremenljivka? Obkrožite črki pred pravilnima odgovoroma. A. Čas. B. Dolžina stebla. C. Dolžina korenin. Č. Količina substrata. D. Količina dodane vode S katero črko je v tabeli označen kontrolni poskus? (1 točka) Kaj je bil vzrok za razlike v izmerjeni dolžini stebla rastlin v različnih posodah? (1 točka) A. Čas. B. Količina substrata. C. Vrsta fižolovih semen. Č. Količina dodane vode Kaj lahko zaključite samo na osnovi rezultatov poskusa, ki so prikazani v tabeli? Obkrožite črki pred pravilnima trditvama. A. Semena fižola propadejo samo, če jih ne zalivamo. B. Za rast korenin je najpomembnejša količina substrata. C. Dnevna količina vode, ki presega 60 ml, zavre rast stebla. Č. Povečanje količine vode vpliva na povečano dolžino stebla. D. Najdaljše korenine zrastejo pri manjši količini vode kot najdaljše steblo. E. Prevelika količina vode povzroči propad rastline zaradi pomanjkanja kisika v substratu. 11. Dijak je za mikroskopiranje uporabljal mikroskop z okularjem, ki ima 15x povečavo in tri objektive s povečavami 4x, 10x in 40x. Mikroskopiral je glive kvasovke, ki jim je moral določiti velikost. Za določitev velikosti je dijak uporabil okularno merilce, ki je vgravirano v okular. Ker je okularno merilce za vsak mikroskop drugačno, ga je moral pred uporabo umeriti. To je storil z objektnim merilcem. Objektno merilce je objektno stekelce, na katerem je natisnjena 1 mm dolga skala, razdeljena na 100 enakih delov z razmiki 0,01 mm. Po umeritvi okularnega merilca je dijak objektno merilce odstranil in začel delo. Na osnovi zapisanih podatkov in skice, ki prikazuje umerjanje okularnega merilca, odgovorite na zastavljeno vprašanje. Povečava objektiva, na kateri je dijak umerjal merilce: 10x Skica, ki jo je videl pri umerjanju: okularno merilce objektno merilce Koliko znaša velikost razdelka na objektnem merilcu pri uporabi objektiva z 10x povečavo? µm (1 točka) 11.. Spodnja shema prikazuje eno glivo kvasovko v vidnem polju pri opazovanju z objektivom s 40x povečavo. Določite dolžino celice v µm.

5 11.3. Kaj izmed naštetega je približno enake velikosti kot gliva kvasovka? (1 točka) A. Virus. B. Kloroplast. C. Rdeča krvnička pri človeku. Č. Bakterija Escherichia coli. 1. Znanstvenik je proučeval živalske celice različnih tkiv. Celici, ki sta pripadali različnim tkivom, je označil s črkama X in Y. Obe celici je opazoval pod mikroskopom v 0,5 % sladkorni raztopini. Opazil je, da se je prostornina obeh celic začela povečevati in se je povečevala 1 minuto. Po eni minuti se prostornina celice X ni več povečevala, prostornina celice Y pa se je povečevala, dokler celica Y ni počila. Kaj je lahko zaključil na osnovi izvedenega opazovanja? Obkrožite črki pred pravilnima trditvama. A. Na začetku opazovanja je bila raztopina za celico X hipertonična, za celico Y pa hipotonična. B. Na začetku opazovanja je bila notranjost celice X glede na raztopino hipertonična, notranjost celice Y pa glede na raztopino hipotonična. C. Na začetku opazovanja je bila koncentracija vode v raztopini, v kateri sta bili celici, večja kot koncentracija vode v posamezni celici. Č. Na začetku opazovanja je bila notranjost celice Y v primerjavi z notranjostjo celice X hipertonična. D. Raztopina, v kateri sta bili celici, je bila za obe celici hipertonična. 13. Dijak je dve epruveti, A in B, napolnil z vodo s ph = 6,5. V vsako izmed epruvet je potopil vodno rastlino. Epruveto A je postavil za 4 ur na svetlobo, epruveto B pa za 4 ur v temo. Po 4 urah je v vsaki izmed epruvet izmeril ph. Kateri trditvi pravilno opisujeta rezultate poskusa? A. V epruveti A se je ph znižal. B. V epruveti B se je ph znižal. C. V epruveti A se je ph zvišal. Č. V epruveti B se je ph zvišal. D. V epruveti A se je ph zvišal, v epruveti B pa je ostal nespremenjen. E. V obeh epruvetah je ph ostal nespremenjen. 14. Katere izmed mutacij lahko otrok praviloma podeduje le od svoje matere? (1 točka) A. Samo mutacije na kromosomu X. B. Samo mutacije na kromosomu Y. C. Mutacije na kromosomih X in Y. Č. Mutacije na telesnih kromosomih. D. Mutacije v genomu mitohondrijev. 15. Katera trditev pravilno prikazuje pretok energije v ekosistemu? (1 točka) A. Rastline rastlinojedci mesojedci. B. Sonce rastline rastlinojedci mesojedci. C. Rastline rastlinojedci ali vsejedci mesojedci. Č. Sonce rastline ali rastlinojedci vsejedci ali mesojedci. D. Razkrojevalci rastline rastlinojedci mesojedci.

6 16. Voziček preko lahkega škripca povežemo z utežjo z maso 50 g, kakor je prikazano na spodnji skici. Na voziček je pritrjen silomer, ki meri silo, F v, s katero je napeta vrvica. Ko voziček spustimo, se giblje premo enakomerno pospešeno. V tem času prepotuje pot 45 cm. Trenje in zračni upor zanemarimo. Merjenje ponovimo še štirikrat, vsakokrat dodamo utež z maso 50 g na desni strani, s čimer povečamo celotno maso, ki jo označimo z m u. Merimo čas, t, v katerem voziček prepotuje razdaljo 45 cm, in silo, s katero je napeta vrvica, F v. F v 45 cm m u Dopolnite tabelo meritev. Izračunajte pospešek pri posamezni meritvi in ga vpišite v tabelo. zap. št. m u [kg] F v [N] t [s] a [m s ] 1 0,05 0,40 0,67 0,10 0,70 0,51 3 0,15 0,95 0,4 4 0,0 1,10 0,39 5 0,5 1,5 0, V koordinatni sistem narišite graf pospeška vozička v odvisnosti od sile, s katero je napeta vrvica. Narišite točke, ki ustrezajo meritvam, in premico, ki se najbolje prilega meritvam. Izračunajte naklon premice z ustrezno enoto. Z enačbo ali v besedah pojasnite fizikalni pomen naklona premice na svojem grafu. (7 točki) Podlago zamenjamo s hrapavo podlago in ponovimo zadnjo meritev, ko je masa uteži na desni strani 50 g. Silomer na vozičku pokaže silo 1,50 N, kar pomeni, da se voziček še vedno giblje pospešeno. Izračunajte koeficient trenja med podlago in vozičkom. (6 točk) Hrapavo podlago nagnemo, tako da je voziček na klancu z naklonskim kotom 5, kot prikazuje spodnja slika. Uporabite koeficient trenja iz prejšnjega vprašanja. Še enkrat ponovimo zadnjo meritev, pri kateri je masa na desni strani enaka 50 g. Izračunajte, kolikšno silo pokaže silomer. (5 točk) F v 5 m u

7 PERIODNI SISTEM ELEMENTOV I 1 VIII 18 1 H 1,008 II III 13 IV 14 V 15 VI 16 VII 17 He 4, Li 6,941 4 Be 9,01 5 B 10,81 6 C 1,011 7 N 14,007 8 O 15,999 9 F 18, Ne 0, Na,993 1 Mg 4, Al 6,98 14 Si 8, P 30, S 3,06 17 Cl 35,45 18 Ar 39, K 39,093 0 Ca 40,078 1 Sc 44,956 Ti 47,867 3 V 50,94 4 Cr 5,996 5 Mn 54,938 6 Fe 55,845 7 Co 58,933 8 Ni 58,693 9 Cu 63, Zn 65,38 31 Ga 69,73 3 Ge 7,63 33 As 74,9 34 Se 78,95 35 Br 79, Kr 83, Rb 85, Sr 87,6 39 Y 88, Zr 91,4 41 Nb 9,906 4 Mo 95,96 43 Tc (98) 44 Ru 101,07 45 Rh 10,91 46 Pd 106,4 47 Ag 107,87 48 Cd 11,41 49 In 114,8 50 Sn 118,71 51 Sb 11,76 5 Te 17,60 53 I 16,90 54 Xe 131, Cs 13,91 56 Ba 137, * 7 Hf 178,49 73 Ta 180,95 74 W 183,84 75 Re 186,1 76 Os 190,3 77 Ir 19, 78 Pt 195,08 79 Au 196,97 80 Hg 00,59 81 Tl 04,38 8 Pb 07, 83 Bi 08,98 84 Po (09) 85 At (10) 86 Rn () Fr (3) 88 Ra (6) # 104 Rf (65) 105 Db (68) 106 Sg (71) 107 Bh (70) 108 Hs (77) 109 Mt (76) 110 Ds (81) 111 Rg (80) 11 Cn (85) 113 Uut (84) 114 Fl (89) 115 Uup (88) 116 Lv (93) 117 Uus (94) 118 Uuo (94) * Lantanoidi 57 La 138,91 58 Ce 140,1 59 Pr 140,91 60 Nd 144,4 61 Pm (145) 6 Sm 150,36 63 Eu 151,96 64 Gd 157,5 65 Tb 158,93 66 Dy 16,50 67 Ho 164,93 68 Er 167,6 69 Tm 168,93 70 Yb 173,05 71 Lu 174,97 # Aktinoidi 89 Ac (7) 90 Th 3,04 91 Pa 31,04 9 U 38,03 93 Np (37) 94 Pu (44) 95 Am (43) 96 Cm (47) 97 Bk (47) 98 Cf (51) 99 Es (5) 100 Fm (57) 101 Md (58) 10 No (59) 103 Lr (6)

8 Prazna stran

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ04.01 5 ο Γυμνάσιο Αγ. Παρασκευής Όπως συμβαίνει στη φύση έτσι και ο άνθρωπος θέλει να πετυχαίνει σπουδαία αποτελέσματα καταναλώνοντας το λιγότερο δυνατό

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2

ΛΥΣΕΙΣ. 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 ΛΥΣΕΙΣ 1. Χαρακτηρίστε τα παρακάτω στοιχεία ως διαµαγνητικά ή παραµαγνητικά: 38 Sr, 13 Al, 32 Ge. Η ηλεκτρονική δοµή του 38 Sr είναι: 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 5s 2 Η ηλεκτρονική δοµή του

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες

Ατομικό βάρος Άλλα αμέταλλα Be Βηρύλλιο Αλκαλικές γαίες Χημικά στοιχεία και ισότοπα διαθέσιμα στο Minecraft: Education Edition Σύμβολο στοιχείου Στοιχείο Ομάδα Πρωτόνια Ηλεκτρόνια Νετρόνια H Υδρογόνο He Ήλιο Ευγενή αέρια Li Λίθιο Αλκάλια Ατομικό βάρος 1 1 0

Διαβάστε περισσότερα

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2007 Για τη A τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΙΣ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ

Διαβάστε περισσότερα

ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ

ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ ΟΜΗ ΑΤΟΜΟΥ ΚΑΙ ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Παππάς Χρήστος - Επίκουρος Καθηγητής Κβαντισμένα μεγέθη Ένα μέγεθος λέγεται κβαντισμένο όταν παίρνει ορισμένες μόνο διακριτές τιμές, δηλαδή το σύνολο των τιμών του δεν

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 4: Περιοδικό σύστημα των στοιχείων Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ.

ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. ΣΥΣΤΑΣΗ ΤΟΥ ΦΛΟΙΟΥ ΤΗΣ ΓΗΣ. Η σύσταση του φλοιού ουσιαστικά καθορίζεται από τα πυριγενή πετρώματα μια που τα ιζήματα και τα μεταμορφωμένα είναι σε ασήμαντες ποσότητες συγκριτικά. Η δημιουργία των βασαλτικών-γαββρικών

Διαβάστε περισσότερα

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του

Μάθημα 12ο. O Περιοδικός Πίνακας Και το περιεχόμενό του Μάθημα 12ο O Περιοδικός Πίνακας Και το περιεχόμενό του Γενική και Ανόργανη Χημεία 201-17 2 Η χημεία ΠΠΠ (= προ περιοδικού πίνακα) μαύρο χάλι από αταξία της πληροφορίας!!! Καμμία οργάνωση των στοιχείων.

Διαβάστε περισσότερα

1. Η Ανόργανη Χημεία και η εξέλιξή της

1. Η Ανόργανη Χημεία και η εξέλιξή της 1. Η Ανόργανη Χημεία και η εξέλιξή της Σύνοψη Παρουσιάζονται οι ορισμοί της Προχωρημένης Ανόργανης Χημείας, της Χημείας Στερεάς Κατάστασης, καθώς επίσης και της Οργανομεταλλικής και Βιοανόργανης Χημείας

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Naloge. 1. Za vsak predmet ali snov označite, ali gre za čisto snov ali zmes. (2 točki) C. Steklo.

Naloge. 1. Za vsak predmet ali snov označite, ali gre za čisto snov ali zmes. (2 točki) C. Steklo. Tekmovanje iz naravoslovja Šolsko tekmovanje. november 0 Čas reševanja: 90 minut. Dovoljeni pripomočki: računalo, ravnilo, kotomer, šestilo, kemični svinčnik, svinčnik, radirka. Periodni sistem je na zadnji

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic.

ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ( ) ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 25 o C. Ημιαντιδράσεις αναγωγής , V. Antimony. Bromine. Arsenic. ΠΑΡΑΡΤΗΜΑ V. ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C ΠΑΡΑΡΤΗΜΑ V. Πρότυπα δυναμικά αναγωγής ΠΡΟΤΥΠΑ ΔΥΝΑΜΙΚΑ ΑΝΑΓΩΓΗΣ ΣΤΟΥΣ 5 o C, V, V Auminum Bervium A ( H ) e A H. 0 Be e Be H. 1 ( ) [ ] e A F. 09 AF

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE

ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE ΑΣΚΗΣΗ 2. Σπάνιες Γαίες (Rare Earth Elements, REE) Εφαρμογές των κανονικοποιημένων διαγραμμάτων REE Θεωρητικό Μέρος REE και Περιοδικός Πίνακας H 1 Li 3 Na K Rb Cs Fr 11 19 37 55 87 Be Mg Ca Sr 4 12 20

Διαβάστε περισσότερα

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2011.. 42.. 2 Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ˆ 636 ˆ ˆ Šˆ Œ ˆŸ ˆŒˆ - Šˆ Œ Š ˆ ˆ 638 Š ˆ ˆ ˆ : ˆ ˆŸ 643 ˆ ˆ Šˆ Š 646 Œ ˆ Šˆ 652 Œ ˆ Šˆ Š ˆ -2 ˆ ˆ -2Œ 656 ˆ ˆ Šˆ Š œ Š ˆ Œ

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ Τµήµατα ΧΗΜΕΙΑ 1. Φυτικής Παραγωγής 2. Επιστ. & Τεχνολ. Τροφίµων Τετάρτη 9.30-10.15 Παρασκευή 11.30 13.15 ΕΡΓΑΣΤΗΡΙΟ Φυτική Παραγωγή Πέµπτη 8.30-12.30 Επιστ. & Τεχνολ. Τροφίµων Τετάρτη

Διαβάστε περισσότερα

Μάθημα 9ο. Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας

Μάθημα 9ο. Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας Μάθημα 9ο Τα πολυηλεκτρονιακά άτομα: Θωράκιση και Διείσδυση Το δραστικό φορτίο του πυρήνα Ο Περιοδικός Πίνακας και ο Νόμος της Περιοδικότητας Πολύ-ηλεκτρονιακά άτομα Θωράκιση- διείσδυση μεταβάλλει την

Διαβάστε περισσότερα

Na/K (mole) A/CNK

Na/K (mole) A/CNK Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA

Διαβάστε περισσότερα

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα

Κεφάλαιο 8. Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα Κεφάλαιο 8 Ηλεκτρονικές Διατάξεις και Περιοδικό Σύστημα 1. H απαγορευτική αρχή του Pauli 2. Η αρχή της ελάχιστης ενέργειας 3. Ο κανόνας του Hund H απαγορευτική αρχή του Pauli «Είναι αδύνατο να υπάρχουν

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 2012 ΓΙΑ ΤΗ Β ΤΑΞΗ ΛΥΚΕΙΟΥ KYΡIAKH 18 MAΡTIOY 2012 ΔΙΑΡΚΕΙΑ:ΤΡΕΙΣ (3) ΩΡΕΣ ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ Να μελετήσετε

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων

Κεφάλαιο 1. Έννοιες και παράγοντες αντιδράσεων Κεφάλαιο 1 Έννοιες και παράγοντες αντιδράσεων Σύνοψη Το κεφάλαιο αυτό είναι εισαγωγικό του επιστημονικού κλάδου της Οργανικής Χημείας και περιλαμβάνει αναφορές στους πυλώνες της. Ειδικότερα, εδώ παρουσιάζεται

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014. ÄÉÁÍüÇÓÇ ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 23 Απριλίου 2014 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A4 και δίπλα

Διαβάστε περισσότερα

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C 0.5 0.45 0.4 0.35 0.3 Sample BKC-10 Mn BKC-10 grt Path A Path B Path C 0.12 0.1 0.08 Mg 0.25 0.06 0.2 0.15 0.04 0.1 0.05 0.02 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Core Rim 0.9 0.8 Fe 0 0 0.01 0.02

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη Β τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ

ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ Για τη Β τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΓΚΥΠΡΙΑ ΕΝΩΣΗ ΕΠΙΣΤΗΜΟΝΩΝ ΧΗΜΙΚΩΝ ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΧΗΜΕΙΑΣ 007 Για τη Β τάξη Λυκείων ΥΠΟ ΤΗΝ ΑΙΓΙΔΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ ΝΑ ΜΕΛΕΤΗΣΕΤΕ ΜΕ ΠΡΟΣΟΧΗ ΤΙΣ ΓΕΝΙΚΕΣ ΟΔΗΓΙΕΣ

Διαβάστε περισσότερα

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H

ΙΑΦΑ Φ ΝΕΙ Ε ΕΣ Ε ΧΗΜΕ Μ Ι Ε ΑΣ ΓΥΜΝ Μ ΑΣΙΟΥ H Hταξινόµηση των στοιχείων τάξη Γ γυµνασίου Αναγκαιότητα ταξινόµησης των στοιχείων Μέχρι το 1700 µ.χ. ο άνθρωπος είχε ανακαλύψει µόνο 15 στοιχείακαι το 1860 µ.χ. περίπου 60στοιχεία. Σηµαντικοί Χηµικοί της

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ) ελτίο της Ελληνικής Γεωλογικής Εταιρίας τοµ. XXXVI, 2004 Πρακτικά 10 ου ιεθνούς Συνεδρίου, Θεσ/νίκη Απρίλιος 2004 Bulletin of the Geological Society of Greece vol. XXXVI, 2004 Proceedings of the 10 th

Διαβάστε περισσότερα

I. Ιδιότητες των στοιχείων. Χ. Στουραϊτη

I. Ιδιότητες των στοιχείων. Χ. Στουραϊτη I. Ιδιότητες των στοιχείων Χ. Στουραϊτη ΠΕΡΙΕΧΟΜΕΝΑ 1. Περιοδικός Πίνακας 2. Χημικοί δεσμοί 3. Καταστάσεις της ύλης 4. Γεωχημικές ταξινομήσεις 5. Πυρήνας και ραδιενέργεια 6. Ασκήσεις 2 Συγγράμματα Κεφλαιο

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6,

Ασκήσεις. 5Β: 1s 2 2s 2 2p 2, β) 10 Νe: 1s 2 2s 2 2p 4 3s 2, γ) 19 Κ: 1s 2 2s 2 2p 6 3s 2 3p 6, Ασκήσεις 1. Να γίνει η ηλεκτρονιακή δόμηση για τα ακόλουθα άτομα στη θεμελιώδη τους κατάσταση: 29Cu, 33As, 38Sr, 42Mo, 55Cs. Πόσα ηλεκτρόνια έχει η εξωτερική τους στιβάδα και πόσα ασύζευκτα ηλεκτρόνια

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Κεφάλαιο 1ο-ΟΞΕΙΔΩΑΝΑΓΩΓΗ 1 ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το

Διαβάστε περισσότερα

ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΟΡΥΚΤΟΥ (MB)

ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΟΡΥΚΤΟΥ (MB) ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΟΡΥΚΤΟΥ (MB) Oρυκτό: A x B y C z A x B y C z (MB) = x*a (AB) + y*b (AB) + z*c (AB) Κοβελλίνης (Cv): CuS Ατομικά βάρη: Cu=64, S=32 Cv (ΜΒ) = Cu (AB) + S (AB) = 64 + 32 = 96 Χαλκοπυρίτης (Cp):

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ

ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ ΠΡΟΕΤΟΙΜΑΣΙΑ ΙΑΛΥΜΑΤΩΝ ΓΙΑ ΧΗΜΙΚΗ ΑΝΑΛΥΣΗ ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή στις φασµατοµετρικές τεχνικές ανάλυσης 2. Προετοιµασία δειγµάτων 3. ιαλυτοποίηση δειγµάτων ΤΕΧΝΙΚΕΣ ΑΝΑΛΥΣΗΣ ΙΑΛΥΜΑΤΩΝ Ατοµική Φασµατοσκοπία

Διαβάστε περισσότερα

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h.

3. Υπολογίστε το μήκος κύματος de Broglie (σε μέτρα) ενός αντικειμένου μάζας 1,00kg που κινείται με ταχύτητα1 km/h. 1 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 1. Ποια είναι η συχνότητα και το μήκος κύματος του φωτός που εκπέμπεται όταν ένα e του ατόμου του υδρογόνου μεταπίπτει από το επίπεδο ενέργειας με: α) n=4 σε n=2 b) n=3 σε n=1 c)

Διαβάστε περισσότερα

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ Τι είναι ο αριθμός οξείδωσης Αριθμό οξείδωσης ενός ιόντος σε μια ετεροπολική ένωση ονομάζουμε το πραγματικό φορτίο του ιόντος. Αριθμό οξείδωσης ενός

Διαβάστε περισσότερα

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ.

Υ ΑΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Κ. Π. ΧΑΛΒΑ ΑΚΗΣ ΜΥΤΙΛΗΝΗ 2004. Καθηγητής Περ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ Υ ΑΤΙΚΗ ΧΗΜΕΙΑ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΥΤΙΛΗΝΗ 2004 Κ. Π. ΧΑΛΒΑ ΑΚΗΣ Καθηγητής Περ. Μηχανικής ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ...1 1 ΕΙΣΑΓΩΓΗ...3

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιο σας τον αριθµό κάθε µίας από τις ερωτήσεις A1 έως A5 και δίπλα

Διαβάστε περισσότερα

Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š

Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 3 Ÿ - ˆ ˆ Šˆ Œ ˆ Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š œ Š.. ƒμ Ê μ 1,. Œ. Ö Ê μ 1,. ˆ. ± 1, Œ.. μ É Ó 2,,.. ²μ 2, ˆ.. ˆ²ÓÎ ±μ 3 1 ƒ μ²μ Î ± É ÉÊÉ, Œμ ± 2 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 3 ÊÎ μ-

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις

Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις Εξαιρέσεις στις ηλεκτρονιακές διαμορφώσεις Ακολουθώντας τους κανόνες δόμησης των πολυηλεκτρονιακών ατόμων που αναπτύχθηκαν παραπάνω, θα διαπιστώσουμε ότι σε ορισμένες περιπτώσεις παρατηρούνται αποκλίσεις

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εργαστήριο Τεχνολογίας Υλικών

ΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εργαστήριο Τεχνολογίας Υλικών ΤΕΙ ΚΡΗΤΗΣ Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εργαστήριο Τεχνολογίας Υλικών Μάθημα:ΤΕΧΝΟΛΟΓΙΑ ΥΛΙΚΩΝ ΔΙΔΑΣΚΩΝ: ΣΑΒΒΑΚΗΣ ΚΩΣΤΑΣ Καθηγητής ΤΕΙ Πληροφορίες Διδάσκων (Θεωρία): Κ. Σαββάκης Γραφείο

Διαβάστε περισσότερα

Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου"

Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου ΕΛΛΗΝΙΚΗ ΑΡΧΗ ΓΕΩΛΟΓΙΚΩΝ ΚΑΙ ΜΕΤΑΛΛΕΥΤΙΚΩΝ ΕΡΕΥΝΩΝ (Ε.Α.Γ.Μ.Ε.) Αναλυτικά Εργαστήρια: Η συμβολή της Χημείας στην κοιτασματολογική έρευνα και στην υποστήριξη της δραστηριότητας του μεταλλευτικού κλάδου"

Διαβάστε περισσότερα

µακρόβια φυσικά ραδιενεργά ισότοπα AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ-γ (2 o ΜΕΡΟΣ)

µακρόβια φυσικά ραδιενεργά ισότοπα AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ-γ (2 o ΜΕΡΟΣ) AΣΚΗΣΗ 6 ΦΑΣΜΑΤΟΣΚΟΠΑ ΑΚΤΝΩΝ-γ (2 o ΜΕΡΟΣ) - Μέτρηση φυσικής ρδιενέργεις - Προσδιορισµός στοιχείων µε νετρονική ενεργοποίηση Εισγωγή 1. Φυσική ρδιενέργει Η φυσική ρδιενέργει προέρχετι πό την κτινοολί (ενέργει)

Διαβάστε περισσότερα

5. Ηλεκτρονικές Δομές και Περιοδικότητα

5. Ηλεκτρονικές Δομές και Περιοδικότητα 5. Ηλεκτρονικές Δομές και Περιοδικότητα ΠΕΡΙΕΧΟΜΕΝΑ: Spin ηλεκτρονίου και απαγορευτική αρχή του Pauli Αρχή δόμησης και περιοδικός πίνακας Αναγραφή ηλεκτρονικών δομών με χρησιμοποίηση του περιοδικού πίνακα

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014

ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ. Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 ΕΤΗΣΙΑ ΑΝΑΦΟΡΑ ΠΡΟΣ ΤΗΝ ΕΠΙΤΡΟΠΗ ΔΙΑΧΕΙΡΙΣΗΣ ΥΓΡΟΤΟΠΟΥ Σύνοψη συμπληρωματικών δράσεων διαχείρισης των νερών στην Πρέσπα για το έτος 2014 Άγιος Γερμανός, Φεβρουάριος 2015 Ομάδα συγγραφής Βαλεντίνη Μάλιακα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 14 Απριλίου 2018 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης

Διαβάστε περισσότερα

Studies in Magnetism and Superconductivity under Extreme Pressure

Studies in Magnetism and Superconductivity under Extreme Pressure Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 1-1-2011 Studies in Magnetism and Superconductivity under Extreme Pressure Wenli Bi Washington

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΗ ΓΕΩΧΗΜΕΙΑ. Αριάδνη Αργυράκη

ΑΝΑΛΥΤΙΚΗ ΓΕΩΧΗΜΕΙΑ. Αριάδνη Αργυράκη ΑΝΑΛΥΤΙΚΗ ΓΕΩΧΗΜΕΙΑ Αριάδνη Αργυράκη ΕΙΣΑΓΩΓΗ 1. Αναλυτική χημεία και γεωεπιστήμες 2. Ταξινόμηση μεθόδων ανάλυσης 3. Επιλογή μεθόδων ανάλυσης ΟΡΙΣΜΟΣ- ΣΤΟΧΟΙ Αναλυτική Γεωχημεία εφαρμογή της Αναλυτικής

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ Υ ΑΤΙΚΩΝ & Ε ΑΦΙΚΩΝ ΠΟΡΩΝ ΕΠΙΒΑΡΥΝΣΗ ΜΕ ΒΑΡΕΑ ΜΕΤΑΛΛΑ Ε ΑΦΩΝ ΤΗΣ

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Φυσική ραδιενέργεια περιβάλλοντος και ραδιενεργός ρύπανση. Π. Κρητίδης και Ε. Φλώρου Εργαστήριο Ραδιενέργειας Περιβάλλοντος ΙΠΤ-Α, ΕΚΕΦΕ «Δημόκριτος»

Φυσική ραδιενέργεια περιβάλλοντος και ραδιενεργός ρύπανση. Π. Κρητίδης και Ε. Φλώρου Εργαστήριο Ραδιενέργειας Περιβάλλοντος ΙΠΤ-Α, ΕΚΕΦΕ «Δημόκριτος» Φυσική ραδιενέργεια περιβάλλοντος και ραδιενεργός ρύπανση Π. Κρητίδης και Ε. Φλώρου Εργαστήριο Ραδιενέργειας Περιβάλλοντος ΙΠΤ-Α, ΕΚΕΦΕ «Δημόκριτος» Φυσικά ραδιενεργά στοιχεία Παράδειγμα από την οικογένεια

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ (Επιλέγετε δέκα από τα δεκατρία θέματα) ΘΕΜΑΤΑ 1. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; Γιατί; (α) Από τα στοιχεία Mg, Al, Cl, Xe, C και Ρ, τον μεγαλύτερο

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΑ 2-3) ( ) ΘΕΜΑ Α Α1.

Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΑ 2-3) ( ) ΘΕΜΑ Α Α1. Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΑ 2-3) (5 2 2017) ΘΕΜΑ Α Α1. Επιλέξτε τη σωστή απάντηση σε καθεμία από τις επόμενες ερωτήσεις : 1. Σε ποια από τις επόμενες ενώσεις το χλώριο έχει μεγαλύτερο αριθμό

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 4 ΣΤΟΙΧΕΙΟΜΕΤΡΙΑ ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΠΑΝΤΗΣΕΙΣ: 1. Τι είναι ατομικό και τί μοριακό βάρος; Ατομικό βάρος είναι ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη η μάζα του ατόμου από το 1/12 της

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

AΝΑΛΟΓΙΑ ΜΑΖΩΝ ΣΤΟΧΕΙΩΝ ΧΗΜΙΚΗΣ ΕΝΩΣΗΣ

AΝΑΛΟΓΙΑ ΜΑΖΩΝ ΣΤΟΧΕΙΩΝ ΧΗΜΙΚΗΣ ΕΝΩΣΗΣ 2 ο Γυμνάσιο Καματερού 1 ΦΥΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΥΛΗΣ 1. Πόσα γραμμάρια είναι: ι) 0,2 kg, ii) 5,1 kg, iii) 150 mg, iv) 45 mg, v) 0,1 t, vi) 1,2 t; 2. Πόσα λίτρα είναι: i) 0,02 m 3, ii) 15 m 3, iii) 12cm

Διαβάστε περισσότερα

RAPPORT CEA-R-6201 MARIE-MARTINE BÉ, CHRISTOPHE DULIEU, VANESSA CHISTÉ. "NUCLÉIDE-LARA - Bibliothèque des émissions alpha, X et gamma"

RAPPORT CEA-R-6201 MARIE-MARTINE BÉ, CHRISTOPHE DULIEU, VANESSA CHISTÉ. NUCLÉIDE-LARA - Bibliothèque des émissions alpha, X et gamma RAPPORT CEA-R-6201 MARIE-MARTINE BÉ, CHRISTOPHE DULIEU, VANESSA CHISTÉ "NUCLÉIDE-LARA - Bibliothèque des émissions alpha, X et gamma" La bibliothèque NUCLÉIDE-LARA présente, pour près de 400 radionucléides

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ

ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ ΓΕΝΙΚΑ ΓΙΑ ΤΗΝ ΟΞΕΙΔΩΣΗ ΚΑΙ ΤΗΝ ΑΝΑΓΩΓΗ Ορισμοί : -Αριθμός οξείδωσης: I)Σε μία ιοντική ένωση ο αριθμός οξείδωσης κάθε στοιχείου είναι ίσος με το ηλεκτρικό φορτίο που έχει το αντίστοιχο ιόν Παράδειγμα:

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η. Ολική πυριτική Γη = ο σύγχρονος μανδύας + πρωτο-φλοιός = πρωταρχικός μανδύας

ΑΣΚΗΣΗ 1 η. Ολική πυριτική Γη = ο σύγχρονος μανδύας + πρωτο-φλοιός = πρωταρχικός μανδύας ΓΕΩΧΗΜΕΙΑ (Υ4203) ΓΕΩΧΗΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ ΣΤΟ ΕΣΩΤΕΡΙΚΟ ΤΗΣ ΓΗΣ ΑΣΚΗΣΗ 1 η Θεωρητικό μέρος 1. Η σύσταση της γης Ο προσδιορισμός της σύστασης της Γης και των επιμέρους τμημάτων της είναι θεμελιώδους σημασίας

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΧΗΜΕΙΑ Ημερομηνία: Σάββατο 20 Απριλίου 2019 Διάρκεια Εξέτασης: 2 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α1. Δίνεται στοιχείο Χ το οποίο έχει οκτώ ηλεκτρόνια στην εξωτερική του στιβάδα.

Διαβάστε περισσότερα

5. Οργανομεταλλικές Ενώσεις των ΜΜ

5. Οργανομεταλλικές Ενώσεις των ΜΜ 5. Οργανομεταλλικές Ενώσεις των ΜΜ Οι ΟΕ των ΜΜ δεν μοιάζουν με τα κλασικά ανόργανα σύμπλοκα (τυπικές ενώσεις σύνταξης) ιαφορές: Τυπικές ενώσεις σύνταξης Cu(NH 3 ) 2+ 4, Fe(CN) 4 6 Υδατοδιαλυτές Σταθερές

Διαβάστε περισσότερα

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ

Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Χθμικόσ Δεςμόσ (Ομοιοπολικόσ-Ιοντικόσ Δεςμόσ) Οριςμοί, αναπαράςταςη κατά Lewis, ηλεκτραρνητικότητα, εξαιρζςεισ του κανόνα τησ οκτάδασ, ενζργεια δεςμοφ Τβριδιςμόσ Υβριδικά τροχιακά και γεωμετρίεσ Γηαίξεζε

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Βασικά σωματίδια της ύλης

Βασικά σωματίδια της ύλης 1 Βασικά σωματίδια της ύλης Τα βασικά σωματίδια της ύλης είναι τα άτομα, τα μόρια και τα ιόντα. «Άτομο ονομάζουμε το μικρότερο σωματίδιο της ύλης που μπορεί να πάρει μέρος στο σχηματισμό χημικών ενώσεων».

Διαβάστε περισσότερα

..,..,.. ! " # $ % #! & %

..,..,.. !  # $ % #! & % ..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Παραδοχές στις οποίες στις οποίες στηρίζεται ο αριθμός οξείδωσης

Παραδοχές στις οποίες στις οποίες στηρίζεται ο αριθμός οξείδωσης Αριθμός Οξείδωσης ή τυπικό σθένος Είναι ένας αριθμός που εκφράζει την ενωτική ικανότητα των στοιχείων με βάση ορισμένες παραδοχές. Η χρησιμοποίηση του επιβλήθηκε για τους πιο κάτω λόγους : Χρησιμεύει στη

Διαβάστε περισσότερα

Κεφάλαιο 1 Δομή της Γης

Κεφάλαιο 1 Δομή της Γης Κεφάλαιο 1 Δομή της Γης Σύνοψη Στο κεφάλαιο 1 μελετάται εκτενώς η προέλευση των στοιχείων που προέρχονται από τα ορυκτά πετρώματα που βρίσκονται στον φλοιό της γης. Μελετώνται οι διεργασίες της υγροποίησης,της

Διαβάστε περισσότερα

1 o ΓΕΛ ΕΛΕΥΘΕΡΙΟΥ ΚΟΡΔΕΛΙΟΥ ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ, ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1. ΚΕΦΑΛΑΙΟ 1- ΒΑΣΙΚΑ ΜΕΓΕΘΗ-ΣΩΜΑΤΙΔΙΑ - Τι πρέπει να γνωρίζουμε

1 o ΓΕΛ ΕΛΕΥΘΕΡΙΟΥ ΚΟΡΔΕΛΙΟΥ ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ, ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1. ΚΕΦΑΛΑΙΟ 1- ΒΑΣΙΚΑ ΜΕΓΕΘΗ-ΣΩΜΑΤΙΔΙΑ - Τι πρέπει να γνωρίζουμε 1 o ΓΕΛ ΕΛΕΥΘΕΡΙΟΥ ΚΟΡΔΕΛΙΟΥ ΧΗΜΕΙΑ A ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ, ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΚΕΦΑΛΑΙΟ 1- ΒΑΣΙΚΑ ΜΕΓΕΘΗ-ΣΩΜΑΤΙΔΙΑ - Τι πρέπει να γνωρίζουμε 1. Βασικά μεγέθη και μονάδες αυτών που θα χρησιμοποιηθούν

Διαβάστε περισσότερα