Κατάτµηση εικόνας σε οµοιόµορφες περιοχές
|
|
- Ζαρά Μιαούλης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση εικόνας σε οµοιόµορφες περιοχές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών (region growing) Κατάτµηση µε διαίρεση και ένωση Βιβλιογραφία: Παπαµάρκος [2005]: Κεφάλαιο 4 Πήτας [1999]: Κεφάλαιο 11 Gonzales [2002]: Chapter 10 Gonzales [2004]: Chapter 10 1
2 Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Εισαγωγή Ορισµός κατάτµησης: Κατάτµηση εικόνας ονοµάζουµε τη διαδικασία κατά την οποία µια εικόνα διαχωρίζεται σε οµοιόµορφες ως προς κάποιο κριτήριο περιοχές οι οποίες είναι επιθυµητό να αντιστοιχούν σε αντικείµενα Χρησιµότητα διαδικασίας κατάτµησης: Αποτελεί σύνηθες προστάδιο ανάλυσης εικόνων και σε πολλές περιπτώσεις η επιτυχία της κατάτµησης καθορίζει και τη γενικότερη επιτυχία της περαιτέρω ανάλυσης Ηπεριγραφήαντικειµένων µε βάσηείτετοπερίγραµµα είτετην περιοχή τους απαιτεί τον εντοπισµό τους. Οι µεθοδολογίες εντοπισµού αντικειµένων µε βάση τις ακµές είναι συνήθως µη αποτελεσµατικές (ήστηνκαλύτερηπερίπτωσηχρειάζονται πολλά βήµατα µετεπεξργασίας για να οδηγήσουν σε αντικείµενα) Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Παράδειγµα κατάτµησης Πάνω αριστερά: αρχική εικόνα Αριστερά: Αποτέλεσµα κατάτµησης. Κάθε οµοιόµορφη περιοχή περιγράφεται από ένα ακέραιο αριθµό (όλα τα pixel της περιοχής έχουν την τιµή αυτή) Πάνω: Απεικόνισητωνορίωντωνπεριοχώνεπί τηςαρχικήςεικόναςγιακαλύτερηεπισκόπηση 2
3 Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Η περιοχές που διαχωρίζει να είναι οµοιόµορφες και οµογενείς ως προς κάποιο χαρακτηριστικό όπως: Χρώµα Απόχρωση του γκρι Επιθυµητές ιδιότητες αποτελέσµατος κατάτµησης Το εσωτερικό των περιοχών πρέπει να είναι απλό χωρίς πολλές οπές Γειτονικές περιοχές πρέπει να έχουν σαφώς διαφορετικές τιµές για το χαρακτηριστικό µετοοποίοέγινεο διαχωρισµός Τα όρια των περιοχών πρέπει να είναι απλά, ακριβή και όχι απότοµα Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Για κατάτµηση εικόνων στις οποίες υπάρχουν δυο βασικές περιοχές (αντικείµενο φόντο, όπως για παράδειγµα γράµµατα - σελίδα) µπορεί να χρησιµοποιηθεί διαχωρισµός µε τηχρήσηκατωφλίου: Κατάτµηση µε πολυκατωφλίωση Pixels τα οποία έχουν τιµή φωτεινότητας µικρότερη (µεγαλύτερη) από το κατώφλι θεωρούνται ως pixels που ανήκουν στο αντικείµενο. Τα υπόλοιπα θεωρούνται pixels που ανήκουν στο φόντο. Για κατάτµηση εικόνων µε Ν αντικείµενα (µε διακεκριµένες τιµές φωτεινότητας ή χρώµατος) µπορούµε να χρησιµοποιήσουµε N-1 σε µια τεχνική γνωστή ως πολυκατωφλίωση. 3
4 Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Κατάτµηση µε κατωφλίωση Βασική ιδέα: Τα αντικείµενα (ή οι διακεκριµένες περιοχές) σε µια εικόνα χαρακτηρίζονται από ένα σχετικά οµοιόµορφο χρώµα (ή τιµή φωτεινότητας) Κάθε αντικείµενο µε σχετικάµεγάλο µέγεθος δηµιουργεί µια κατανοµή pixel στο ιστόγραµµα της εικόνας γύρω από τη µέση τιµή φωτεινότητας του (µ Ο ). Αν σ Ο είναι η τυπική απόκλιση φωτεινότητας από τη µέση φωτεινότητα του αντικειµένου τότε η περιοχή που καλύπτει το αντικείµενο µπορεί να προσεγγιστεί από την περιοχή µε τιµή =1 της δυαδικής εικόνας b(x,. 1 αν µ O 3* σ O < f ( x, < µ O + 3* σ O b( x, = 0 αλλού Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Ολική κατωφλίωση Αν η εικόνα µας περιέχει ένα µόνο αντικείµενο σε σχετικά οµοιόµορφο φόντο (background) τότε αρκεί να βρούµε µια τιµή κατωφλίουt για την οποία θα ισχύει ότι αν f(x,>t τότε το pixel µε συντεταγµένες (x, ανήκει στο αντικείµενο, αλλιώς ανήκει στο φόντο Έχει γίνει η υπόθεση ότι το αντικείµενο είναι φωτεινότερο από το φόντο. Αν ισχύει το αντίστροφο τότε αν f(x,<t τότε το pixel µε συντεταγµένες (x, ανήκει στο αντικείµενο, αλλιώς ανήκει στο φόντο. Απότοιστόγραµµα της διπλανής εικόνας προκύπτει ότι: Η µεγάλη κατανοµή pixel αντιστοιχεί στο φόντο περισσότερα pixel ανήκουν στο φόντο, Το αντικείµενο είναι φωτεινότερο από το φόντο (µέση φωτεινότητα του αντικειµένου περίπου ίση µε 180 ενώ µέση φωτεινότητα του φόντου περίπου ίση µε 100) Κατάλληλες επιλογές για το κατώφλι Τ είναι τιµές φωτεινότητας που βρίσκονται ανάµεσα τις δύο κατανοµές 4
5 Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Ολική κατωφλίωση (II) Ολική κατωφλίωση είναι η εφαρµογή της ίδιας τιµής κατωφλίου Τ σε όλη την εικόνα. Στη διπλανή εικόνα φαίνεται το αποτέλεσµα ολικής κατωφλίωσης µε τιµή κατωφλίουτ= 137. Η τιµή αυτή βρίσκεται ενδιάµεσα των µέσων τιµών φωτεινότητας για το αντικείµενο (180) και το φόντο (100). Ορισµένα pixel που έχουν επηρεαστεί από θόρυβο έχουν ταξινοµηθεί εσφαλµένα (άσπρες κουκκίδες στο φόντο και µαύρες κουκκίδες στο αντικείµενο) Τα παραπάνω pixel µπορούν εύκολα να «διορθωθούν» δεδοµένου ότι έχουν διαφορετική τιµή από τη «γειτονία» του µε τηνεφαρµογή βαθυπερατού φιλτραρίσµατος Σε σχέση µε την ολική κατωφλίωση πρέπει να σηµειωθεί ότι: Εφαρµόζεται δύσκολα σε εικόνες µε περισσότερα του ενός αντικείµενα. Για να έχει αποτέλεσµα πρέπει να γνωρίζουµε εκ των προτέρων αν το αντικείµενο είναι πιο φωτεινό απότοφόντοήτοαντίστροφο Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Τοπική κατωφλίωση Όταν η εικόνα έχει επηρεαστεί σε αρκετά µεγάλο βαθµό από θόρυβο η αποτελεσµατικότητα της ολικής κατωφλίωσης είναι µικρή. Όπως φαίνεται στο ιστόγραµµα της διπλανής εικόνας είναι δύσκολο να ξεχωρίσεις τις κατανοµές αντικειµένου και φόντου. Κατά συνέπεια είναι δύσκολη η εκτίµηση της τιµής του κατωφλίου Στην περίπτωση αυτή εφαρµόζεται τοπική κατωφλίωση: Το κατώφλι T δεν είναι ίδιο για όλη την εικόνα αλλά αλλάζει ανάλογα µε τηνπεριοχή(εποµένως Τ = Τ(x,): 1 b( x, = 0 αν αν f ( x, T ( x, f ( x, < T ( x, 5
6 Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Τοπική κατωφλίωση (II) Οι δίπλα εικόνες δείχνουν το αποτέλεσµα της: Εφαρµογής ολικής κατωφλίωσης µε κατώφλι T=128 (πάνω εικόνα) Εφαρµογή τοπικής κατωφλίωσης µε κατώφλι Τ = Τ(x, το οποίο υπολογίζεται µε βάση τα στατιστικά της εικόνας σε µια γειτονιά της εικόνας (κάτω αριστερά εικόνα) Είναι φανερό ότι τα αποτελέσµατα της χρήσης τοπικής κατωφλίωσης είναι σαφώς καλύτερα µε δεδοµένο ότι τα pixels τα οποία έχουν ταξινοµηθούν εσφαλµένα µπορούν εύκολα να διορθωθούν µε βαθυπερατό φιλτράρισµα (κάτω δεξιά εικόνα) Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Η µέθοδος Otsu για την εύρεση του βέλτιστου ολικού κατωφλίου Βασική υπόθεση: Το ιστόγραµµα της εικόνας παρουσιάζει τουλάχιστον διτροπική (bimodal) µορφή (αποτελείται δηλαδή από δύο τουλάχιστον κορυφές) Οι δύο κορυφές θεωρούνται ως δυο κατανοµές πιθανότητας. Επιλέγεται το ολικό κατώφλι Τ ώστε να ελαχιστοποιείται η πιθανότητα εσφαλµένης ταξινόµησης των pixel εντός των δύο κλάσεων Το κριτήριο Otsu µεγιστοποιεί την απόσταση ανάµεσα στη µέση φωτεινότητα των δύο περιοχών (ζυγισµένη µε την πιθανότητα της κάθε κατηγορίας) 6
7 Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Κατάτµηση µε πολυκατωφλίωση Βασική ιδέα: Επέκταση της µεθόδου της ολικής κατωφλίωσης µε χρήσην-1 κατωφλίων ώστε να διαχωρίζονται Νπεριοχές. Κάθε αντικείµενο µε σχετικάµεγάλο µέγεθος δηµιουργεί µια κατανοµή pixel στο ιστόγραµµα της εικόνας γύρω από τη µέση τιµή φωτεινότητας του (µ i ). Τα κατώφλια (Τ 1, Τ 2,, Τ N-1 ) πρέπει να τοποθετηθούν ενδιάµεσα στις επιµέρους κατανοµές: 1 2 F( x, = N f ( x, T T < f ( x, T 1... T N 1 1 < f ( x, Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Κατάτµηση µε πολυκατωφλίωση (II) Ένα από τα βασικά προβλήµατα στη µέθοδο της πολυκατωφλίωσης είναι η εκτίµηση του αριθµού των οµοιόµορφων περιοχών (Ν): Η πλειονότητα των µεθόδων πολυκατωφλίωσης εφαρµόζονται θεωρώντας δεδοµένο το N. Μια δηµοφιλής τεχνική για την εκτίµηση του αριθµού Ν είναι η προσπάθεια µοντελοποίησης του ιστογράµµατος της εικόνας µε κυµαινόµενο αριθµό Γκαουσσιανών κατανοµών Το πλήθος των κατανοµών που αθροιζόµενες µας δίνουν την καλύτερη προσέγγιση στο ιστόγραµµα δίνει και τον ζητούµενο αριθµό Ν. Η µέθοδος αυτή είναι σχετικά περίπλοκη υπολογιστικά
8 Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Ανάπτυξη περιοχών Η ανάπτυξη περιοχών είναι µια τεχνική κατάτµησης η οποία βασίζεται στην συνένωση παροµοίων περιοχών R1, R2 εφόσον πληρείται µια συνθήκη οµοιότητας: D(f(R1),f(R2))<T f(x) = µια συνάρτηση της µεταβλητής x Η διαδικασία ξεκινά από ορισµένες περιοχές οι οποίες έχουν υπολογιστεί αρχικά ως οµοιόµορφες Οι περιοχές αυτές ονοµάζονται περιοχές «σπόροι» (seed areas) Κάθε περιοχή αυξάνεται µέχρι έως ότου δεν πληρείται η συνθήκη οµοιότητας Εισαγωγή Κατάτµηση µε πολυκατωφλίωση Ανάπτυξη περιοχών Κατάτµηση µε διαίρεση και ένωση Ηεικόναµας διαιρείται σε τέσσερα τεταρτηµόρια Αν για κάποιο από τα τεταρτηµόρια δεν πληρείται η συνθήκη οµοιότητας αυτό διασπάται σε τέσσερα και επαναλαµβάνεται η όλη διαδικασία Για κάθε οµοιόµορφο τεταρτηµόριο αποδίδεται µια τιµή φωτεινότητας Τα τεταρτηµόρια που αναλύονται περαιτέρω δηλώνονται µε λογικό 1 Με την ολοκλήρωση της διαδικασίας διαίρεσης ενεργοποιείται η διαδικασία συνένωσης οµοιόµορφων περιοχών µε βάση τις περιοχές που έχουν προκύψει Κατάτµηση µε διαίρεση και ένωση Ητεχνικήαυτήχρησιµοποιείται και για συµπίεση εικόνων (κυρίως δυαδικών ή αποχρώσεων του γκρι) και είναι γνωστή ως κωδικοποίηση Quadtree 8
Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση
ΤΨΣ 50 Ψηφιακή Επεξεργασία Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών και Κατάτµηση µε Κατωφλίωση Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Περιεχόµενα Βιβλιογραφία
Διαβάστε περισσότεραDIP_05 Τμηματοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τμηματοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τμηματοποίηση εικόνας είναι η διαδικασία με την οποία διαχωρίζεται μία εικόνα σε κατάλληλες περιοχές ή αντικείμενα. Για την τμηματοποίηση
Διαβάστε περισσότεραDIP_05 Τµηµατοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_05 Τµηµατοποίηση εικόνας ΤΕΙ Κρήτης ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Τµηµατοποίηση εικόνας είναι η διαδικασία µε την οποία διαχωρίζεται µία εικόνα σε κατάλληλες περιοχές ή αντικείµενα. Για την τµηµατοποίηση εικόνας
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Σημειακή επεξεργασία και μετασχηματισμοί Κατηγορίες μετασχηματισμού εικόνων Σημειακοί μετασχηματισμοί
Διαβάστε περισσότεραΚΕΣ 03: Αναγνώριση Προτύπων και Ανάλυση Εικόνας. KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας. Κατάτµηση Εικόνων:
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Κατάτµηση Εικόνων: Ανίχνευση Ακµών Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 50: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 005 006, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Διαβάστε περισσότεραΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων
Διαβάστε περισσότεραΑκαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
Διαβάστε περισσότεραΜέθοδοι Αναπαράστασης Περιοχών
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιοχών ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Χαρακτηριστικά χώρου Χαρακτηριστικά από µετασχηµατισµό
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 8 η : Κατάτμηση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στην κατάτμηση εικόνας Τεχνικές
Διαβάστε περισσότεραΜάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
Διαβάστε περισσότεραΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ Π. ΑΣΒΕΣΤΑΣ Επ. Καθηγητής Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕΙ Αθήνας Email: pasv@teiath.gr ΠΕΡΙΕΧΟΜΕΝΑ Αναπαράσταση εικόνας Ιστόγραμμα Εξισορρόπηση ιστογράμματος Κατωφλίωση
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Intensity Transformations Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Image Enhancement: είναι
Διαβάστε περισσότεραΨηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ψηφιοποίηση και Ψηφιακή Επεξεργασία Εικόνας Ενότητα 11: Επεξεργασία εικόνας Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και
Διαβάστε περισσότεραΓραµµικοί Ταξινοµητές
ΚΕΣ 3: Αναγνώριση Προτύπων και Ανάλυση Εικόνας KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Γραµµικοί Ταξινοµητές ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου 7 Ncolas sapatsouls
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Διαβάστε περισσότεραΜάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Διαβάστε περισσότεραΑ. Θα καλεί υποπρόγραμμα INPUT που θα διαβάζει τις τιμές του πίνακα MAP.
Διαγώνισμα νάπτυξης Εφαρμογών Γ Λυκείου Θέμα Το GIS είναι ένα υπολογιστικό σύστημα το οποίο χρησιμοποιείται για την συλλογή, αποθήκευση και ανάλυση δεδομένων και πληροφοριών με γεωγραφική διάσταση. Ένα
Διαβάστε περισσότεραΜέθοδοι Αναπαράστασης Περιγραµµάτων
KEΣ 03 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιγραµµάτων Τµήµα Επιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Περιεχόµενα Βιβλιογραφία Περιεχόµενα Ενότητας
Διαβάστε περισσότεραΜάθημα 9 ο. Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 9 ο Κατάτμηση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ Εισαγωγή () Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και αντικείμενα. Μία περιοχή αναμένεται να έχει ομοιογενή χαρακτηριστικά
Διαβάστε περισσότεραΕργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ
ΓΡΑΦΙΚΑ Γέμισμα ΑΛΓΟΡΙΘΜΟΙ ΓΕΜΙΣΜΑΤΟΣ Για τις πλεγματικές οθόνες υπάρχουν: Αλγόριθμοι γεμίσματος:, που στηρίζονται στη συνάφεια των pixels του εσωτερικού ενός πολυγώνου Αλγόριθμοι σάρωσης: που στηρίζονται
Διαβάστε περισσότεραΑσκήσεις Επεξεργασίας Εικόνας
Ασκήσεις Επεξεργασίας Εικόνας. Εύρεση στοιχείων μιας περιοχής με ιδιότητα συγκεκριμένης γειτονιάς Άσκηση. Έστω δύο υποσύνολα πίνακα εικόνας S και S2 η οποία φαίνεται στο σχήμα παρακάτω. Για σύνολο τιμών
Διαβάστε περισσότεραΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ
Ψηφιακή Επεξεργασία Εικόνας-ΚΕΦ. -- ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΤΑΣΕΩΣ Η επεξεργασία εικόνας µέσω του ιστογράµµατος ουσιαστικά αποτελεί µία βασική επεξεργασία εικόνας που ανήκει
Διαβάστε περισσότεραΒιομαθηματικά BIO-156. Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017
Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 17 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 2 : Βελτιστοποίηση εικόνας (Image enhancement) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το
Διαβάστε περισσότεραΕ.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
Διαβάστε περισσότεραΕπεξεργασία Χαρτογραφικής Εικόνας
Επεξεργασία Χαρτογραφικής Εικόνας Διδάσκων: Αναγνωστόπουλος Χρήστος Κώδικες μετρήσεων αντικειμένων σε εικόνα Χρωματικά μοντέλα: Munsell, HSB/HSV, CIE-LAB Κώδικες μετρήσεων αντικειμένων σε εικόνες Η βασική
Διαβάστε περισσότεραn ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4
Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα
Διαβάστε περισσότεραDIP_04 Σημειακή επεξεργασία. ΤΕΙ Κρήτης
DIP_04 Σημειακή επεξεργασία ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός μιας τέτοιας τεχνικής μπορεί να είναι: η βελτιστοποίηση της οπτικής εμφάνισης μιας εικόνας όπως την αντιλαμβάνεται ο άνθρωπος, η τροποποίηση
Διαβάστε περισσότεραDIP_04 Βελτιστοποίηση εικόνας. ΤΕΙ Κρήτης
DIP_04 Βελτιστοποίηση εικόνας ΤΕΙ Κρήτης ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΕΙΚΟΝΑΣ Σκοπός µιας τέτοιας τεχνικής µπορεί να είναι: η βελτιστοποίηση της οπτικής εµφάνισης µιας εικόνας όπως την αντιλαµβάνεται ο άνθρωπος, η τροποποίηση
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή
Διαβάστε περισσότεραΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011. Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών.
1 ΑΝΤΩΝΙΟΣ ΛΥΡΩΝΗΣ ΧΑΝΙΑ 2011 2 Σκοπός Εργασίας Εντοπισμός πλίνθων σε σειρά ορθοφωτογραφιών και εξαγωγή δισδιάστατης αποτύπωσης των τειχών. Ενδεδειγμένες και αξιόπιστες μέθοδοι αποτύπωσης Εμπειρικές Τοπογραφικές
Διαβάστε περισσότεραΕπίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
Διαβάστε περισσότεραΑλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων
Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός
Διαβάστε περισσότεραΓραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία
Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία) Σχεδίαση ευθείας θί με σάρωση (παρουσίαση προβλήματος) σχεδίαση ευθείας AB, με σάρωση, όπου A=(0,1) και B=(5,4) ποιο είναι το επόμενο pixel
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Εισαγωγή Τι είναι η εικόνα; Μια οπτική αναπαράσταση με την μορφή μιας συνάρτησης f(x, y) όπου η
Διαβάστε περισσότεραΣυµπίεση Ψηφιακών Εικόνων: Συµπίεση µε Απώλειες. Πρότυπα Συµπίεσης Εικόνων
ΤΨΣ 5: Ψηφιακή Επεξεργασία Εικόνας ΤΨΣ 5 Ψηφιακή Επεξεργασία Εικόνας Συµπίεση Ψηφιακών Εικόνων: Συµπίεση µε απώλειες Πρότυπα Συµπίεσης Εικόνων Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro
Διαβάστε περισσότεραΜεθοδολογίες παρεµβολής σε DTM.
Μάθηµα : Αλγοριθµικές Βάσεις στη Γεωπληροφορική ιδάσκων : Συµεών Κατσουγιαννόπουλος Μεθοδολογίες παρεµβολής σε DTM.. Μέθοδοι παρεµβολής. Η παρεµβολή σε ψηφιακό µοντέλο εδάφους (DTM) είναι η διαδικασία
Διαβάστε περισσότερα4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων
Διαβάστε περισσότερα2 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 + 1 + 0.5 2 + 0.25 2 + 0.5 0 0.125 + 1 + 0.5 1 0.125 + 1 + 0.75 1 0.125 1/5
IOYNIOΣ 23 Δίνονται τα εξής πρότυπα: x! = 2.5 Άσκηση η (3 µονάδες) Χρησιµοποιώντας το κριτήριο της οµοιότητας να απορριφθεί ένα χαρακτηριστικό µε βάση το συντελεστή συσχέτισης. Γράψτε εδώ το χαρακτηριστικό
Διαβάστε περισσότεραΕνδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
Διαβάστε περισσότεραΕνότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων
Ενότητα 2: Οι Θεµελιώδεις Αρχές των Ψηφιακών Εικόνων Δειγµατοληψία και Κβαντισµός: Μια εικόνα (µπορεί να) είναι συνεχής τόσο ως προς τις συντεταγµένες x, y όσο και ως προς το πλάτος. Για να τη µετατρέψουµε
Διαβάστε περισσότεραΜετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότερα2.3. Ασκήσεις σχ. βιβλίου σελίδας 100 104 Α ΟΜΑ ΑΣ
.3 Ασκήσεις σχ. βιβλίου σελίδας 00 04 Α ΟΜΑ ΑΣ. Έξι διαδοχικοί άρτιοι αριθµοί έχουν µέση τιµή. Να βρείτε τους αριθµούς και τη διάµεσό τους. Αν είναι ο ποιο µικρός άρτιος τότε οι ζητούµενοι αριθµοί θα είναι
Διαβάστε περισσότεραΓραφικά με Η/Υ Αλγ λ ό γ ρ ό ιθ ρ μοι κύκλου & έλλειψης
Γραφικά με Η/Υ Αλγόριθμοι κύκλου & έλλειψης Τεχνική μέσου σημείου (μέσο έ σημείο Q) NE pixel Q Μέσο σημείο M E pixel P = ( x p, y p ) x x + 1 = p Προηγούμενο pixel Επιλογές για το Επιλογές για το τρέχων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΒΕΣ 04: ΣΥΜΠΙΕΣΗ ΚΑΙ ΜΕΤΑ ΟΣΗ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2007 2008, Χειµερινό Εξάµηνο 6 Νοεµβρίου 2007 Φροντιστηριακή Άσκηση 2: (I) Εντροπία,
Διαβάστε περισσότεραΡαδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,
Διαβάστε περισσότεραΒέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη
ΒΕΣ 6 Προσαρµοστικά Συστήµατα στις Τηλεπικοινωνίες Βέλτιστα Ψηφιακά Φίλτρα: Φίλτρα Wiener, Ευθεία και αντίστροφη γραµµική πρόβλεψη 7 Nicolas sapatsoulis Βιβλιογραφία Ενότητας Benvenuto []: Κεφάλαιo Wirow
Διαβάστε περισσότεραΑκαδηµαϊκό Έτος , Χειµερινό Εξάµηνο ιδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ, ΤΜΗΜΑ Ι ΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΨΣ 5: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ακαδηµαϊκό Έτος 5 6, Χειµερινό Εξάµηνο Καθ.: Νίκος Τσαπατσούλης ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Η εξέταση
Διαβάστε περισσότεραΒιομαθηματικά BIO-156
Βιομαθηματικά BIO-156 Τυχαίες μεταβλητές Κατανομές Πιθανοτήτων Ντίνα Λύκα Εαρινό Εξάμηνο, 013 lika@biology.uoc.gr Τυχαία Μεταβλητή τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε απλό ενδεχόμενο
Διαβάστε περισσότερα> μεγαλύτερο <= μικρότερο ή ίσο < μικρότερο == ισότητα >= μεγαλύτερο ή ίσο!= διαφορετικό
5 ο Εργαστήριο Λογικοί Τελεστές, Δομές Ελέγχου Λογικοί Τελεστές > μεγαλύτερο = μεγαλύτερο ή ίσο!= διαφορετικό Οι λογικοί τελεστές χρησιμοποιούνται για να ελέγξουμε
Διαβάστε περισσότεραΘέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
Διαβάστε περισσότεραΣτο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.
ΠΕΡΙΛΗΨΗ Η τεχνική αυτή έκθεση περιλαµβάνει αναλυτική περιγραφή των εναλλακτικών µεθόδων πολυκριτηριακής ανάλυσης που εξετάσθηκαν µε στόχο να επιλεγεί η µέθοδος εκείνη η οποία είναι η πιο κατάλληλη για
Διαβάστε περισσότεραΣυνδυαστικά Λογικά Κυκλώματα
Συνδυαστικά Λογικά Κυκλώματα Ένα συνδυαστικό λογικό κύκλωμα συντίθεται από λογικές πύλες, δέχεται εισόδους και παράγει μία ή περισσότερες εξόδους. Στα συνδυαστικά λογικά κυκλώματα οι έξοδοι σε κάθε χρονική
Διαβάστε περισσότεραΠίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.
Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)
ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,
Διαβάστε περισσότεραΑναγνώριση Προτύπων - Νευρωνικά ίκτυα
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ Αναγνώριση Προτύπων - Νευρωνικά ίκτυα ρ. Χαράλαµπος Π. Στρουθόπουλος Αναπληρωτής Καθηγητής
Διαβάστε περισσότεραΣυμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Παράδειγμα 2: Συμπίεση Εικόνας ΔΠΜΣ ΜΥΑ, Ιούνιος 2011 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας
Διαβάστε περισσότεραΚεφάλαιο 2. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας. Περιεχόμενα. 2.1 Αριθμητικά Συστήματα. Εισαγωγή
Κεφάλαιο. Συστήματα Αρίθμησης και Αναπαράσταση Πληροφορίας Περιεχόμενα. Αριθμητικά συστήματα. Μετατροπή αριθμών από ένα σύστημα σε άλλο.3 Πράξεις στο δυαδικό σύστημα.4 Πράξεις στο δεκαεξαδικό σύστημα.5
Διαβάστε περισσότεραΘέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
Διαβάστε περισσότεραΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά
ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ Αντικείμενο: Εξαγωγή ιστογράμματος εικόνας, απλοί μετασχηματισμοί με αυτό, ισοστάθμιση ιστογράμματος. Εφαρμογή βασικών παραθύρων με την βοήθεια του ΜΑΤLAB
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Διαβάστε περισσότερα1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα
1 ο Εργαστήριο Συντεταγμένες, Χρώματα, Σχήματα 1. Σύστημα Συντεταγμένων Το σύστημα συντεταγμένων που έχουμε συνηθίσει από το σχολείο τοποθετούσε το σημείο (0,0) στο σημείο τομής των δυο αξόνων Χ και Υ.
Διαβάστε περισσότεραΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις
ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]
Διαβάστε περισσότεραΒελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Συχνότητας
ΤΨΣ 150 Ψηφιακή Επεξεργασία Εικόνας Βελτίωση Ποιότητας Εικόνας: Επεξεργασία στο πεδίο της Τµήµα ιδακτικής της Τεχνολογίας και Ψηφιακών Συστηµάτων Πανεπιστήµιο Πειραιώς Εκτίµηση Απόκρισης Περιεχόµενα Βιβλιογραφία
Διαβάστε περισσότερα10-δικό δικό
Προγραμματισμός Η/Υ - Ι Εαρινό Εξάμηνο 2018-2019 Τμήμα Ηλεκτρολόγων Μηχανικών Τ.Ε. Αριθμητικά Συστήματα 1. Εισαγωγή Όπως γνωρίζουμε, οι υπολογιστές χρησιμοποιούν το δυαδικό σύστημα για την αναπαράσταση
Διαβάστε περισσότεραΤηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 10: Ραδιομετρική Ενίσχυση Χωρική Επεξεργασία Δορυφορικών Εικόνων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) Υπολογισμοί Παραμέτρων Πληθυσμού και Στατιστικών Δείγματος
ΟΔΕ 2116 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ ΣΕΛΙΔΑ: 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ
Διαβάστε περισσότεραΑκέραιος Γραμμικός Προγραμματισμός
Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Ιωαννίνων 2018-2019 Ακέραιος Γραμμικός Προγραμματισμός Γκόγκος Χρήστος- Γεωργία Φουτσιτζή Επιχειρησιακή Έρευνα τελευταία ενημέρωση: 12/01/2017 1 Ακέραιος
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 4 η : Βελτίωση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στις τεχνικές βελτίωσης εικόνας
Διαβάστε περισσότερα11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
Διαβάστε περισσότεραΨηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη συμπίεση εικόνας Μη απωλεστικες
Διαβάστε περισσότεραΑσκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Διαβάστε περισσότεραΟΜΑΔΕΣ. Δημιουργία Ομάδων
Δημιουργία Ομάδων Μεθοδολογίες ομαδοποίησης δεδομένων: Μέθοδοι για την εύρεση των κατηγοριών και των υποκατηγοριών που σχηματίζουν τα δεδομένα του εκάστοτε προβλήματος. Ομαδοποίηση (clustering): εργαλείο
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ 1.1 ΕΙΣΑΓΩΓΗ 1.1 1.2 ΤΙ ΕΙΝΑΙ ΜΙΑ ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ 1.2 1.3 ΠΛΗΘΟΣ BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.4 1.4 ΕΥΚΡΙΝΕΙΑ ΕΙΚΟΝΑΣ 1.5 1.5 ΕΠΙΠΕ Α BITS ΜΙΑΣ ΕΙΚΟΝΑΣ 1.8 1.6 Η ΦΥΣΗ ΤΟΥ ΧΡΩΜΑΤΟΣ
Διαβάστε περισσότεραΜάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 7 ο Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι τεχνικές συμπίεσης βασίζονται στην απόρριψη της πλεονάζουσας πληροφορίας Ανάγκες που καλύπτονται Εξοικονόμηση μνήμης Ελάττωση χρόνου και εύρους
Διαβάστε περισσότεραΠοιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς
Ποιοτική & Ποσοτική Ανάλυση εδοµένων Εβδοµάδα 5 η 6 η είκτες Κεντρικής Τάσης και ιασποράς Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης ηµοκρίτειο Πανεπιστήµιο Θράκης Αλεξανδρούπολη, 2014-2015 Εµπειρικές Στατιστικές
Διαβάστε περισσότερα1ο τεταρτημόριο x>0,y>0 Ν Β
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.
Διαβάστε περισσότεραΠολύγωνο αθροιστικών σχετικών συχνοτήτων και διάµεσος µιας τυχαίας µεταβλητής ρ. Παναγιώτης Λ. Θεοδωρόπουλος πρώην Σχολικός Σύµβουλος ΠΕ03 e-mail@p-theodoropoulos.gr Πρόλογος Στην εργασία αυτή αναλύονται
Διαβάστε περισσότερα6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,
Διαβάστε περισσότεραΒουτσκοπούλου Ευαγγελία
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΝΑΠΤΥΞΗ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΤΜΗΜΑΤΟΠΟΙΗΣΗ (SEGMENTATION) ΨΗΦΙΑΚΗΣ ΕΙΚΟΝΑΣ ΚΑΙ ΥΛΟΠΟΙΗΣΗ
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014
ΘΕΜΑ Α A1. Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c σταθερός πραγματικός αριθμός, να αποδείξετε με τη χρήση του ορισμού της παραγώγου ότι (c f (x)) = c f (x), για κάθε x R Μονάδες 7 A2. Πότε μια
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: XX X 2 X M. Κάθε X αντιστοιχεί στην κλάση
Διαβάστε περισσότεραΕργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox
ΚΕΣ 03 Αναγνώριση προτύπων και ανάλυση εικόνας Εργαλεία Προγραμματισμού Ψηφιακής Επεξεργασίας Εικόνας: Το Matlab Image Processing Toolbox Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήμιο Πελοποννήσου
Διαβάστε περισσότεραΘεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Διαβάστε περισσότεραΜοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία
Διαβάστε περισσότεραn + 1 X(1 + X). ) = X i i=1 i=1
ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΣΤΑΤΙΣΤΙΚΗ I: ΕΚΤΙΜΗΤΙΚΗ 6 Σεπτεµβρίου 005 Εξεταστική περίοδος Σεπτεµβρίου 005 ΘΕΜΑΤΑ 1 1. Εστω X (X 1,..., X ) τυχαίο δείγµα από γεωµετρική κατανοµή Ge(), Θ (0, 1). (α) (10 µονάδες)
Διαβάστε περισσότεραDIP_01 Εισαγωγή στην ψηφιακή εικόνα. ΤΕΙ Κρήτης
DIP_01 Εισαγωγή στην ψηφιακή εικόνα ΤΕΙ Κρήτης Πληροφορίες Μαθήματος ιαλέξεις Πέμπτη 12:15 15:00 Αιθουσα Γ7 ιδάσκων:. Κοσμόπουλος Γραφείο: Κ23-0-15 (ισόγειο( κλειστού γυμναστηρίου) Ωρες γραφείου Τε 16:00
Διαβάστε περισσότεραΚατανοµές. Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται από το σχήµα του ιστογράµµατος (histogram).
Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Μάρτιος 2010 Κατανοµές 1. Οµοιόµορφη κατανοµή Η κατανοµή (distribution) µιας µεταβλητής (variable) φαίνεται
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον
Διαβάστε περισσότεραΚωδικοποίηση εικόνων κατά JPEG
Κωδικοποίηση εικόνων κατά JPEG Εισαγωγή Προετοιµασία της εικόνας ρυθµός Ακολουθιακός απωλεστικός ρυθµός Εκτεταµένος απωλεστικός ρυθµός Μη απωλεστικός ρυθµός Ιεραρχικός ρυθµός Τεχνολογία Πολυµέσων 09-1
Διαβάστε περισσότεραΝ. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18
Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου 2017 1 / 18 Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Παράδειγµα: Σχεδιασµός προγράµµατος
Διαβάστε περισσότεραΠαρουσίαση Νο. 5 Βελτίωση εικόνας
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Παρουσίαση Νο. 5 Βελτίωση εικόνας Εισαγωγή Η βελτίωση γίνεται σε υποκειμενική βάση Η απόδοση εξαρτάται από την εφαρμογή Οι τεχνικές είναι συνήθως ad hoc Τονίζει
Διαβάστε περισσότεραΠροσομοίωση Συστημάτων
Προσομοίωση Συστημάτων Παραγωγή τυχαίων αριθμών Άγγελος Ρούσκας Τυχαίοι αριθμοί και τυχαίες μεταβλητές Δεν έχει νόημα να αναφερόμαστε σε ένα τυχαίο αριθμό, αλλά σε ακολουθία τυχαίων αριθμών Οι τυχαίοι
Διαβάστε περισσότερα