Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
|
|
- ebrew Δραγούμης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Σεπτεµβρίου ακαδηµαϊκού έτους 29-2 Τρίτη, 3 Αυγούστου 2 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Θέµα ( µονάδα) Θεωρούµε το πεπερασµένο σώµα F 2 4 = F 2 [x]/x 4 + x+, και έστω α F 2 4 πρωταρχική ϱίζα του x 4 + x +. α) Να ϐρεθεί η παραγοντοποίηση του πολυωνύµου x 4 + x + στο F 2 4. ϐ) Να ϐρεθεί το αντίστροφο στοιχείο ως προς τον πολλαπλασιασµό του στοιχείου α 3 + α 2. γ) Να δειχθεί ότι το στοιχείο α 7 είναι ϱίζα του πολυωνύµου x 4 + x 3 +. Θέµα 2 ( µονάδα) α) Να ϐρεθούν όλα τα υποσώµατα των πεπερασµένων σωµάτων (i) F 2 32 και (ii) F 3 42 και να κατασκευασθεί το πλέγµα υποσωµάτων τους. ϐ) Να ϐρεθεί το πλήθος των (i) ανάγωγων και (ii) των πρωταρχικών πολυωνύµων ϐαθµού πάνω στο F 2. Θέµα 3 (2 µονάδες) α) Χρησιµοποιώντας το κριτήριο που ϐασίζεται στον αλγόριθµο του Berlekamp να αποδειχθεί ότι το πολυώνυµο f(x) = x x + είναι ανάγωγο στο F 3 [x]. ϐ) Χρησιµοποιώντας τον αλγόριθµο του Berlekamp να παραγοντοποιηθεί σε γινόµενα ανάγωγων πολυωνύµων το f(x) = x 4 + x 3 + x 2 + στο F 2 [x]. Θέµα 4 ( µονάδα) α) Χρησιµοποιώντας τα κυκλοτοµικά πολυώνυµα να παραγοντοποιηθεί σε γινόµενο ανάγωγων πολυωνύµων το x 8 στο F 3 [x], δεδοµένου ότι τα µόνα (µονικά) ανάγωγα πολυώνυµα ϐαθµού 2 στο F 3 [x] είναι τα: x 2 +, x 2 + x + 2, x x + 2. ϐ) Να διερευνηθεί αν τα παρακάτω κυκλοτοµικά πολυώνυµα είναι ανάγωγα ή όχι πάνω στο δοσµένο σώµα: (i) Q (x) στο F 5, (ii) Q (x) στο F 3, και να ϐρεθεί το πλήθος και ο ϐαθµός των ανάγωγων πολυωνύµων που αναλύονται (αν αναλύονται). Θέµα 5 ( µονάδα) Να υπολογιστούν τα παρακάτω κυκλοτοµικά πολυώνυµα: (i) Q 2 (x), (ii) Q 25 (x), (iii) Q 32 (x), (iv) Q 3 (x). Θέµα (2 µονάδες) Θεωρούµε δυαδική κωδικο-συνάρτηση f : B 3 B 7 µε γεννήτορα πίνακα G =. α) Να ϐρεθούν οι κωδικολέξεις και το πλήθος των λαθών που εντοπίζει και διορθώνει ο κώδικας. ϐ) Να ϐρεθεί ο πίνακας συνδρόµων-πλευρικών οδηγών της f. γ) Ενα µήνυµα κωδικοποιείται µε την εξής αντιστοιχία _ A E O S T M N και λαµβάνουµε,,. Να αποκωδικοποιηθεί το µήνυµα. Θέµα 7 (2 µονάδες) Το πολυώνυµο x 9 παραγοντοποιείται στο F 2 ως εξής x 9 = (x + )(x 2 + x + )(x + x 3 + ). α) Να ϐρεθεί το πολυώνυµο-γεννήτορας του ελάχιστου δυαδικού κυκλικού κώδικα µήκους 9 που περιέχει την κωδικολέξη. ϐ) Εστω C ο δυαδικός κυκλικός κώδικας µήκους 9 µε πολυώνυµο γεννήτορα το g(x) = + x 3 + x. Να ϐρεθεί ο γεννήτορας πίνακας του C. γ) Μια λέξη κωδικοποιείται µε τον C και λαµβάνεται ως w =. Να αποκωδικοποιηθεί η λέξη w, δεδοµένου ότι ο C εντοπίζει 2-λάθη και διορθώνει -λάθος. Εύχοµαι κάθε επιτυχία
2 2 Ενδεικτικές απαντήσεις των ϑεµάτων Θέµα α) Μας Ϲητείται να παραγοντοποιήσουµε το (ελάχιστο) πολυώνυµο p(x) = x 4 + x + στο πεπερασµένο σώµα F 2 4 ως την επέκταση F 2 [x]/p(x) του ελάχιστου υποσώµατος F 2. Αφού α F 2 4 πρωταρχική ϱίζα του p(x) (α 5 = ), µπορούµε να αναπαραστήσουµε τα στοιχεία του F 2 4 στην µορφή f(a) όπου f(x) είναι τα 2 4 = πολυώνυµα στο F 2 ϐαθµού d 3, και F 2 4 = {,, α, α 2,...α 4 }. Εστω Φ : F 2 4 F 2 4 ο αυτοµορφισµός Frobenius µε τύπο Φ(x) = x 2. Η παραγοντοποίηση του p(x) είναι η εξής p(x) = ( x α )( x Φ(α) )( x Φ 2 (α) )( x Φ 3 (α) ) = ( x α )( x α 2)( x α 4)( x α 8). () Αφού p(α) = τότε ( mod 2), και α 4 + α + = α 4 = α α 4 = α +, (2) α 8 = (α 4 ) 2 = (α + ) 2 = α 2 +, ( mod 2) (3) Χρησιµοποιώντας τις σχέσεις (2) και (3), η () γίνεται p(x) = ( x + α )( x + α 2)( x + α + ) ( x + α 2 + ). ϐ) Μας Ϲητείται να ϐρούµε το αντίστροφο στοιχείο ως προς τον πολλαπλασιασµό του στοιχείου α 3 + α 2. Εστω g(x) = x 3 + x 2. Αφού το p(x) είναι πρωταρχικό πολυώνυµο τότε µ.κ.δ.(p(x), g(x)) =, και αρκεί να ϐρούµε από τον αλγόριθµο του Ευκλείδη τα a(x), b(x) τέτοια ώστε Εχουµε = a(x)p(x) + b(x)g(x) x 4 + x + = (x + )(x 3 + x 2 ) + (x 2 + x + ) x 3 + x 2 = x(x 2 + x + ) + x x 2 + x + = x(x + ) +. Οπότε και παίρνοντας mod p(x) έχουµε = (x 2 + x + )p(x) + (x 2 + x)g(x) [] p(x) = [x 2 + x] p(x) [g(x)] p(x) συνεπώς το αντίστροφο του στοιχείου α 3 + α 2 είναι το α 3 + α. γ) Εστω h(x) = x 4 + x 3 +. Μας Ϲητείται να δείξουµε ότι το στοιχείο α 7 είναι µια ϱίζα του h(x). Αρκεί να δείξουµε ότι h(α 7 ) =. Πράγµατι, έχουµε Θέµα 2 h(α 7 ) = (α 7 ) 4 + (α 7 ) 3 + = α 28 + α 2 + = α 5 α 3 + α 5 α + = α 3 + α + = α 9 α 4 + α 2 α 4 + = (α 3 + α)(α + ) + α 2 (α + ) + = α 4 + α 3 + α 2 + α + α 3 + α 2 + = α 4 + α + = α) Από την ϑεωρία πεπερασµένων σωµάτων γνωρίζουµε ότι όλα τα δυνατά υποσώµατα ενός πεπερασµένου σώµατος F p n, p πρώτος, n ϑετικός ακέραιος, είναι της µορφής F p d όπου d n. (i) Οι διαιρέτες του n = 32 είναι, 2, 4, 8,, 32. Συνεπώς τα υποσώµατα του F 2 8 είναι τα : F 2, F 2 2, F 2 4, F 2 8, F 2, F 2 32 Το πλέγµα των υποσωµάτων δίνεται σχηµατικά από το παρακάτω
3 3 F 2 32 F 2 F 2 8 F 2 4 F 2 2 (ii) Οι διαιρέτες του n = 42 είναι, 2, 3,, 7, 4, 2, 42. Συνεπώς τα υποσώµατα του F 3 4 είναι τα : F 2 F 3, F 3 2, F 3 3, F 3, F 3 7, F 3 4, F 3 2, F 3 42 Το πλέγµα των υποσωµάτων δίνεται σχηµατικά από το παρακάτω F 2 42 F 2 2 F 2 4 F 2 F 2 7 F 2 3 F 2 2 F 2 ϐ) Από την ϑεωρία γνωρίζουµε ότι το πλήθος των ανάγωγων πολυωνύµων ϐαθµού n πάνω στο F p, δίνεται από τον τύπο Π p (n) = µ( n n d )pd d n όπου Οπότε µ( x αν x/y = y ) = ( ) k αν x/y = p p 2 p k για διαφορετικούς πρώτους p i αλλιώς Π 2 () = µ( d )2d = (µ()2 + µ(3)2 2 + µ(2)2 3 + µ()2 ) = 8 (( )2 2 + ( )2 2 + ( ) ) d = ( ) = 54 = 9 Το πλήθος των πρωταρχικών πολυωνύµων ϐαθµού n πάνω στο F p δίνεται από τον τύπο όπου ϕ(n) η συνάρτηση του Euler. Οπότε ϕ(2 ) ϕ(4 ) = = = = ϕ(3) 8 ϕ(p n ) n = ϕ(32 7) = ϕ(32 )ϕ(7) = 3(3 )(7 ) Συνεπώς υπάρχουν 9 ανάγωγα πολυώνυµα ϐαθµού πάνω στο F 2, από τα οποία τα είναι πρωταρχικά.
4 4 Θέµα 3 α) Μια ϐάση του διανυσµατικού χώρου F 3 [x]/f(x) όπου f(x) = x x + είναι η e = {, α, α 2, α 3, α 4 }, όπου α = [x] f. Εχουµε την γραµµική απεικόνιση (αυτοµορφισµό Frobenius) Φ(a) = a 3. Εφαρµόζουµε την απεικόνιση Φ στην ϐάση e και έχουµε Φ() = Φ(α) = α 3 Φ(α 2 ) = α = α α 5 = α 2 + 2α (α 5 = α + 2) Φ(α 3 ) = α 9 = α 3 α = α 3 (α 2 + 2α) = α 5 + 2α 4 = 2α 4 + α + 2 Φ(α 4 ) = α 2 = α α = (α 2 + 2α)(α 2 + 2α) = α α α 2 = α 4 + α 3 + α 2 ( mod 3) οπότε ο πίνακας της Φ στην ϐάση e είναι ο [Φ] {e} = α α 2 α 3 α 4 α α 2 α 3 α Σύµφωνα µε το κριτήριο που ϐασίζεται στον αλγόριθµο του Berlekamp, το f(x) είναι ανάγωγο αν και µόνο αν ker(φ) = και ker(φ I) = F 2. Για να ϐρούµε τον υπόχωρο ker Φ: Για το παρακάτω οµογενές γραµµικό σύστηµα έχουµε ότι x x 2 x 3 x 4 x 5 = x + 2x 4 = 2x 3 + x 4 = x 3 + x 5 = x 2 + x 5 = 2x 4 + x 5 = x = 2x 4 x 2 = 2x 4 x 3 = 2x 4 x 4 = 2x 4 x 5 = x 4 δηλαδή η µοναδική λύση είναι η µηδενική. Άρα kerφ =. Για να ϐρούµε τον υπόχωρο ker(φ I): Για το παρακάτω οµογενές γραµµικό σύστηµα έχουµε ότι x x 2 x 3 x 4 x 5 = 2x 4 = 2x 2 + 2x 3 + x 4 = x 5 = x 2 + 2x 4 + x 5 = 2x 4 = άρα ker(φ I) = F 3 και συνεπώς το f(x) = x 5 + 2x + είναι ανάγωγο πάνω στο F 3. x = x 2 = x 3 = x 4 = x 5 = x F 3 αυθαίρετο x 2 = x 3 = x 4 = x 5 = ϐ) Μια ϐάση του διανυσµατικού χώρου F 3 [x]/f(x) όπου f(x) = x 4 + x 3 + x 2 + είναι η e = {, α, α 2, α 3 }, όπου α = [x] f. Εχουµε την γραµµική απεικόνιση (αυτοµορφισµό Frobenius) Φ(a) = a 2. Εφαρµόζουµε την απεικόνιση Φ στην ϐάση e και έχουµε Φ() = Φ(α) = α 2 Φ(α 2 ) = α 4 = α 3 + α 2 + Φ(α 3 ) = α = α 2 α 4 = α 5 + α 4 + α 2 = α 4 + α 3 + α + α 4 + α 2 = α 3 + α 2 + α οπότε ο πίνακας της Φ στην ϐάση e είναι ο [Φ] {e} = α α 2 α 3 α α 2 α 3 [Φ] {e} I = Για να ϐρούµε τον υπόχωρο ker(φ I): Για το παρακάτω οµογενές γραµµικό σύστηµα έχουµε ότι x x 3 = x 2 x 3 = x x 2 + x 4 = F 2 αυθαίρετο x x 2 + x 4 = 2 = x 4 F 2 x x 4 x 3 = 3 =
5 5 οπότε το τυχαίο v ker(φ I) γράφεται ως v = x x 2 x 2 = x + x 2 και ker(φ I) = {(,,, ),(,,, )}. Το διάνυσµα (,,, ) αντιστοιχεί στο πολυώνυµο h(x) = x + x 3. Από τον αλγόριθµο του Berlekamp γνωρίζουµε ότι τα πολυώνυµα µ.κ.δ(f(x), h(x)) και µ.κ.δ(f(x), h(x) ) είναι ανάγωγοι παράγοντες του f(x). Εκτελώντας τον Ευκλείδιο αλγόριθµο διαίρεσης για την εύρεση µ.κ.δ. πολυωνύµων ϐρίσκουµε ότι: οπότε είναι η ανάλυση σε ανάγωγα πολυώνυµα του f(x). Αναλυτικά έχουµε: Για το µ.κ.δ(f(x), h(x)) Οπότε µ.κ.δ(f(x), h(x)) = x +. Για το µ.κ.δ(f(x), h(x) + ) Οπότε µ.κ.δ(f(x), h(x) + ) = x 3 + x + Θέµα 4 µ.κ.δ(f(x), h(x)) = x + µ.κ.δ(f(x), h(x) ) = x 3 + x + x 4 + x 3 + x 2 + = (x + )(x 3 + x + ) x 4 + x 3 + x 2 + = (x + )(x 3 + x) + (x + ) x 3 + x = (x 2 + x)(x + ) x 4 + x 3 + x 2 + = (x + )(x 3 + x + ) α) Από την ϑεωρία των κυκλοτοµικών πολυωνύµων γνωρίζουµε ότι για τα Q n (x) πάνω σ ένα σώµα F χαρακτηριστικής p µε p n έχουµε x n = d n Q d (x) Εδώ έχουµε το σώµα F 3 και n = 8 και 3 8. Οι διαιρέτες του 8 είναι, 2, 4, 8, οπότε έχουµε Από τη ϑεωρία γνωρίζουµε ότι x 8 = Q (x)q 2 (x)q 4 (x)q 8 (x) Q (x) = x = x + 2 ( mod 3) Q 2 (x) = x + Προφανώς τα πολυώνυµα Q (x), Q 2 (x) είναι ανάγωγα πάνω στο F 3. Αρκεί να υπολογίσουµε τα πολυώνυµα Q 4 (x), Q 8 (x) και να ϐρούµε αν είναι ανάγωγα ή όχι. Στην περίπτωση που δεν είναι ανάγωγα ϑα πρέπει µε κάποιον τρόπο να τα παραγοντοποιήσουµε σε ανάγωγα πολυώνυµα. Από τον ορισµό των κυκλοτοµικών πολυωνύµων έχουµε ότι Q n (x) = d n (x d ) µ(n/d) = d n (x n/d ) µ(d) Οπότε Οµως µ(2 2 ) =, µ() = και µ(2) =, οπότε Αλλιώς, από ιδιότητα των κυκλοτοµικών πολυωνύµων Q 4 (x) = (x 4 ) µ() (x 2 ) µ(2) (x ) µ(4) Q 4 (x) = x4 x 2 = (x2 )(x 2 + ) x 2 = x 2 + Q 4 (x) = Q 2 2(x) = Q 2 (x 2 ) = x 2 +
6 Από το κριτήριο αναγωγιµότητας των κυκλοτοµικών πολυωνύµων ξέρουµε ότι το Q n (x) είναι ανάγωγο πάνω στο F p, p n αν και µόνο αν o n (p) = ϕ(n). Εδώ έχουµε για τον ϐαθµό του Q 4 (x) ότι Επιπλέον ϕ(4) = ϕ(2 2 ) = 2(2 ) = mod mod 4 άρα o 4 (3) = = ϕ(4) και συνεπώς το κυκλοτοµικό πολυώνυµο Q 4 (x) είναι ανάγωγο πάνω στο F 3. Αλλιώς, Q 4 () =, Q 4 () = Q 4 (2) = που σηµαίνει το Q 4 (x) δεν έχει ϱίζες στο F 3 και συνεπώς είναι ανάγωγο στο F 3. Για το Q 8 (x) Q 8 (x) = (x 8 ) µ() (x 4 ) µ(2) (x 2 ) µ(4) (x ) µ(8) Οµως, µ(2 3 ) = µ(2 2 ) =, µ() = και µ(2) =, οπότε Αλλιώς, από ιδιότητα των κυκλοτοµικών πολυωνύµων Εδώ έχουµε για τον ϐαθµό του Q 8 (x) ότι Επιπλέον Q 8 (x) = x8 x 4 = (x4 )(x 4 + ) x 4 = x 4 + Q 8 (x) = Q 2 3(x) = Q 2 (x 4 ) = x 4 + ϕ(8) = ϕ(2 3 ) = 2 2 (2 ) = mod mod 8 άρα o 8 (3) = 2 4 = ϕ(8) και συνεπώς το κυκλοτοµικό πολυώνυµο Q 8 (x) είναι δεν ανάγωγο πάνω στο F 3, και αναλύεται σε 2 ανάγωγα πολυώνυµα ίδιου ϐαθµού 2. Από τα δεδοµένα του ϑέµατος εύκολα συµπεραίνουµε ότι x 4 + = (x 2 + x + 2)(x x + 2) Τελικά έχουµε ότι η ανάλυση του x 8 σε ανάγωγα πολυώνυµα πάνω στο F 3 είναι x 8 = (x + )(x + 2)(x 2 + )(x 2 + x + 2)(x x + 2). ϐ) Από το κριτήριο αναγωγιµότητας των κυκλοτοµικών πολυωνύµων γνωρίζουµε ότι το Q n (x) είναι ανάγωγο πάνω στο F p, p n αν και µόνο αν o n (p) = ϕ(n). Επιπλέον αν d = o n (p) n τότε το Q n (x) αναλύεται σε ϕ(n)/d διαφορετικά ανάγωγα πολυώνυµα πάνω στο F p, ίδιου ϐαθµού d. (i) Για το Q (x) στο F 5 έχουµε: Επιπλέον ϕ() = ϕ(2 3) = ϕ(2)ϕ(3) = (2 )(3 ) = mod 5 2 mod Άρα o (3) = ϕ() = 2 και συνεπώς το Q (x) είναι ανάγωγο πάνω στο F 5. (ii) Για το Q (x) στο F 3 έχουµε: ϕ() = ( ) = Επιπλέον 3 3 mod mod mod mod 3 5 mod Άρα o (3) = 5 = ϕ(). Συνεπώς το Q (x) δεν είναι ανάγωγο πάνω στο F 3 και αναλύεται σε 2 ανάγωγα πολυώνυµα ίδιου ϐαθµού 5.
7 7 Θέµα 5 Για το υπολογισµό των κυκλοτοµικών πολυωνύµων έχουµε: (i) Q 2 (x) = Q 22 5(x) = Q 2 5 (x 2 ) = Q (x 2 ) Αρκεί να υπολογίσουµε το Q (x). Από τον ορισµό των Q n (x) έχουµε Q (x) = (x ) µ() (x 2 ) µ(5) (x 5 ) µ(2) (x ) µ() = (x )(x ) (x 2 )(x 5 ) = (x5 )(x 5 + )(x ) (x )(x + )(x 5 ) = x5 + x + = (x + )(x4 x 3 + x 2 x + ) = x 4 x 3 + x 2 x + x + Συνεπώς, έχουµε Q 2 (x) = Q (x 2 ) = x 8 x + x 4 x 2 + (ii) Q 25 (x) = Q 5 2(x) = Q 5 (x 5 ) Αρκεί να υπολογίσουµε το Q (x). Από τον ορισµό των Q p (x) µε p πρώτο έχουµε Q p (x) = x p + x p x + Συνεπώς, και Q 5 (x) = x 4 + x 3 + x 2 + x + Q 25 (x) = Q 5 (x 5 ) = x 2 + x 5 + x + x 5 + (iii) Q 32 (x) = Q 2 5(x) = Q 2 (x ) = Q 2 (x ) = x + (iv) Εύκολα ϐρίσκουµε ότι Q (x) = x 2 x +, κι έτσι Θέµα Q 3 (x) = Q 2(x) = Q (x ) Q 3 (x) = x 2 x + α) Θεωρούµε την δυαδική κωδικο-συνάρτηση f : B 3 B 7 µε γεννήτορα πίνακα G =. Θα ϐρούµε πρώτα τις κωδικολέξεις της f πολλαπλασιάζοντας τα στοιχεία του B 3 µε τον πίνακα G από αριστερά: f Επειδή min d = 4, ο κώδικας εντοπίζει 4 = [ ] 4 2-λάθη και διορθώνει 2 = -λάθη.
8 8 ϐ) Ο πίνακας ελέγχου-ισοτιµίας H του κώδικα µε γεννήτορα-πίνακα G είναι ο H = Με την ϐοήθεια του πίνακα H κατασκευάζουµε τον παρακάτω πίνακα συνδρόµων-πλευρικών οδηγών της f. σύνδροµα πλευρικοί οδηγοί Ο παραπάνω πίνακας παράγεται παίρνοντας τους πλευρικούς οδηγούς (λέξεις µήκους ελάχιστου ϐάρους) και πολλαπλασιάζοντας µε τον πίνακα H από αριστερά. Αφού εξαντλήσουµε την περίπτωση πλευρικών οδηγών µε ελάχιστο ϐάρος (το ψηφίο εµφανίζεται το πολύ µια ϕορά στην λέξη) συνεχίζουµε µε λέξεις ελάχιστου ϐάρους 2 κοκ. Οπότε έχουµε ένα πλήρη πίνακα σύνδροµων-πλευρικών οδηγών. γ) Το µήνυµα που λαµβάνουµε είναι,,. Παρατηρούµε ότι καµιά λέξη που λάβαµε δεν είναι κωδικολέξη. Οπότε ϑα εφαρµόσουµε τον αλγόριθµο αποκωδικοποίησης για γραµµικούς κώδικες χρησι- µοποιώντας τον πίνακα σύνδροµων-πλευρικών οδηγών που κατασκευάσαµε στο προηγούµενο ϐ) µέρος. Για κάθε µια από τις λέξεις που λάβαµε ϐρίσκουµε το σύνδροµο της και προσθέτουµε στην λέξη τον αντίστοιχο πλευρικό οδηγό. Θέτουµε w = (,,,,,, ), w 2 = (,,,,,, ), w 3 = (,,,,,, ) και έχουµε σύνδροµο πλευρικός οδηγός διορθωµένη λέξη κωδικολέξη αποκωδ/µένο µήνυµα w H = (,,, ) e = (,,,,,, ) w + e = (,,,,,, ) S w 2 H = (,,, ) e 2 = (,,,,,, ) w 2 + e 2 = (,,,,,, ) O w 3 H = (,,, ) e 3 = (,,,,,, ) w 3 + e 3 = (,,,,,, ) S Θέµα 7 α) Μας Ϲητείται να ϐρούµε τον ελάχιστο κυκλικό κώδικα µήκους 9 που περιέχει την κωδικολέξη. Θέτουµε f(x) = x 9, και h(x) = x 2 + x 8, το πολυώνυµο που αντιστοιχεί στην κωδικολέξη. Από την ϑεωρία των κυκλικών κωδίκων γνωρίζουµε ότι το πολυώνυµο-γεννήτορας που µας Ϲητείται είναι το g(x) = µ.κ.δ(f(x), h(x)) Εκτελώντας τον Ευκλείδιο αλγόριθµο διαίρεσης για την εύρεση του µ.κ.δ πολυωνύµων ϐρίσκουµε ότι x 9 = x 9 + ( mod 2) = x(x 8 + x 2 ) + ( + x 3 ) (x 8 + x 2 ) = (x 5 + x 2 )( + x 3 ) Συνεπώς g(x) = + x 3 είναι το Ϲητούµενο πολυώνυµο-γεννήτορας.
9 9 ϐ) Εχουµε έναν κυκλικό κώδικα µήκους 9 µε πολυώνυµο-γεννήτορα g(x) = + x 3 + x, οπότε C : B 3 B 9 και ο κυκλικός κώδικας παράγεται από τον πίνακα G =. γ) Η λέξη που λήφθηκε είναι η w = η οποία αντιστοιχεί στο πολυώνυµο w(x) = x 5 + x 8. Παρατηρούµε ότι x 8 + x 5 = x 2 ( + x 3 + x ) + x 2 οπότε g(x) w(x) και συνεπώς η w δεν είναι κωδικολέξη και ϑα πρέπει να διορθωθεί µε την υπόθεση ότι ο κώδικας C εντοπίζει 2-λάθη και διορθώνει -λάθη. Ο προηγούµενος υπολογισµός δείχνει ότι το σύνδροµο πολυώνυµο του w(x) είναι s(x) = w(x) mod g(x) = x 2 Παρατηρούµε ότι το ϐάρος του πολυωνύµου s(x) είναι wt(s(x)) =, οπότε δεν είναι αναγκαίο να συνεχίσουµε τον αλγόριθµο αποκωδικοποίησης για κυκλικούς κώδικες, και ϑέτουµε e(x) = x 9 s(x) mod (x 9 + ) = x mod (x 9 + ) = x 2 Συνεπώς η διορθωµένη λέξη (πολυώνυµο) w(x) είναι w(x) = w(x) + e(x) = x 2 + x 5 + x 8 = x 2 g(x) Τελικά η λέξη (πολυώνυµο) που κωδικοποιήθηκε µε τον κυκλικό κώδικα C είναι η που αντιστοιχεί στη λέξη B 3. x 2 g(x)/g(x) = x 2
Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη Μαΐου 013 Ασκηση 1. Βρείτε τις τάξεις των
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 12 Ιανουαρίου 2017 Ασκηση 1. Εστω
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 9 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Προτεινοµενες Ασκησεις - Φυλλαδιο 9
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Προτεινοµενες Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html Παρασκευή 29 Μαίου 2015 Ασκηση 1.
Διαβάστε περισσότεραΘέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Εφαρµοσµένων Μαθηµατικών Παν/µίου Κρήτης Εξεταστική περίοδος εαρινού εξαµήνου Πέµπτη, 2 Ιούνη 28 Γραµµική Αλγεβρα II ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας) Θέµα
Διαβάστε περισσότεραΤελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Επανάληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Επανάληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015b/nt015b.html Πέµπτη 1 Ιανουαρίου 016 Ασκηση 1. (1) Να λυθεί
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 22 Μαΐου 2013 Ασκηση 1. (1) Να λυθεί η γραµµική
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 7
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2016/nt2016.html Πέµπτη 7 εκεµβρίου 2016 Ασκηση 1. Για κάθε
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις Επαναληψης. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις Επαναληψης ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt015/nt015.html Τρίτη Ιουνίου 015 Ασκηση 1. (1) Να λυθεί η γραµµική
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x
Διαβάστε περισσότερατη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραL = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε
ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uo.gr/abelga/numbertheory/nt2014/nt2014.html https://stes.google.com/ste/maths4edu/home/14
Διαβάστε περισσότεραΣτο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων.
Κεφάλαιο 4 Πεπερασµένα σώµατα Στο κεφάλαιο αυτό εφαρµόζουµε τη Θεωρία Galois, όπως αυτή αναπτύχθηκε στα δύο προηγούµενα κεφάλαια, στην περίπτωση των πεπερασµένων σωµάτων. 4.1 Βασικές Εννοιες Εστω F ένα
Διαβάστε περισσότεραΚεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές
Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση
Διαβάστε περισσότερα{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)
Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ελάχιστο Πολυώνυµο Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 20 4. Ελάχιστο Πολυώνυµο Στην παρούσα παράγραφο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 4. ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος :
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2015/nt2015.html ευτέρα 30 Μαρτίου 2015 Ασκηση 1. Να ϐρεθούν όλοι
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 7 Απριλίου 2017 Ασκηση 1.
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε
Διαβάστε περισσότεραΠοιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.
Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt016/nt016.html Πέµπτη 7 Οκτωβρίου 016 Ασκηση 1. Βρείτε όλους
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε
Διαβάστε περισσότεραΕφαρμοσμένη Κρυπτογραφία Ι
Εφαρμοσμένη Κρυπτογραφία Ι Κωνσταντίνου Ελισάβετ ekonstantinou@aegean.gr http://www.icsd.aegean.gr/ekonstantinou Ασύμμετρα Κρυπτοσυστήματα κλειδί κρυπτογράφησης k1 Αρχικό κείμενο (m) (δημόσιο κλειδί) Αλγόριθμος
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii2019/laii2019html Παρασκευή 1 Μαρτίου 2019 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai8/lai8html Παρασκευή 6 Οκτωβρίου 8 Υπενθυµίζουµε
Διαβάστε περισσότερα1 Το ϑεώρηµα του Rademacher
Το ϑεώρηµα του Rademacher Νικόλαος Μουρδουκούτας Περίληψη Σε αυτήν την εργασία ϑα αποδείξουµε το ϑεώρηµα του Rademacher, σύµφωνα µε το οποίο κάθε Lipschiz συνάρτηση f : R m είναι διαφορίσιµη σχεδόν παντού.
Διαβάστε περισσότερα* * * ( ) mod p = (a p 1. 2 ) mod p.
Θεωρια Αριθμων Εαρινο Εξαμηνο 2016 17 Μέρος Α: Πρώτοι Αριθμοί Διάλεξη 1 Ενότητα 1. Διαιρετότητα: Διαιρετότητα, διαιρέτες, πολλαπλάσια, στοιχειώδεις ιδιότητες. Γραμμικοί Συνδυασμοί (ΓΣ). Ενότητα 2. Πρώτοι
Διαβάστε περισσότεραf(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )
302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 4 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν
Διαβάστε περισσότεραΛύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3/2/2010
Λύσεις των ϑεµάτων, ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Ι, 3//00 Θέµα ( µονάδα) Θεωρούµε το σύνολο B = {x Q : x < 5}. είξτε ότι sup B = 5. Απάντηση : Για να δείξουµε ότι sup B = 5 αρκεί να δειχθεί ότι α) Το 5 είναι
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html
Διαβάστε περισσότεραιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012
ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.
Διαβάστε περισσότεραΑρµονική Ανάλυση. Ενότητα: L p Σύγκλιση. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L p Σύγκλιση Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 14 εκεµβρίου 2018 Ασκηση
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι
Διαβάστε περισσότεραΑπλές επεκτάσεις και Αλγεβρικές Θήκες
Κεφάλαιο 7 Απλές επεκτάσεις και Αλγεβρικές Θήκες Στο κεφάλαιο αυτό εξετάζουµε τις απλές επεκτάσεις σωµάτων και τις συγκρίνουµε µε τις επεκτάσεις Galois. Επίσης εξετάζουµε τις αλγεβρικά κλειστές επεκτάσεις
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 2
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt014/nt014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 2 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai2017/lai2017html Παρασκευή 20 Οκτωβρίου 2017
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai017/lai017html Παρασκευή 17 Νοεµβρίου 017
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt.html Σάββατο 20 Απριλίου 2013 Ασκηση 1. 1) είξτε ότι η
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να
Διαβάστε περισσότεραΑριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA
Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου
Διαβάστε περισσότεραQR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4
Διαβάστε περισσότεραΚεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)
Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου
Διαβάστε περισσότεραΑλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Αλγεβρικες οµες ΙΙ ιδάσκουσα : Θέµατα προηγουµένων ετών 1 Θέµατα Πολλαπλής Επιλογής Στις ερωτήσεις πολλαπλής επιλογής, εάν
Διαβάστε περισσότεραΠρόβληµα 2 (15 µονάδες)
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΚΡΥΠΤΟΓΡΑΦΙΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ, 2013-2014 ΔΙΔΑΣΚΩΝ: Ε. Μαρκάκης Πρόβληµα 1 (5 µονάδες) 2 η Σειρά Ασκήσεων Προθεσµία Παράδοσης: 19/1/2014 Υπολογίστε
Διαβάστε περισσότερα(x) = δ(x) π(x) + υ(x)
Μάθηµα 12 Κεφάλαιο 4ο: Πολυώνυµα Πολυωνυµικές Εξισώσεις Θεµατικές Ενότητες: Α. ιαίρεση Πολυωνύµων Β. Σχήµα Horner Η ταυτότητα της Ευκλείδειας διαίρεσης Αν ( χ), δ ( χ) δύο πολυώνυµα µε δ ( χ) 0 και βαθµούς
Διαβάστε περισσότεραΚεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη
Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη
Διαβάστε περισσότεραΘεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις
202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα
Διαβάστε περισσότεραΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ. ΛΥΣΕΙΣ 3 ης. Άσκηση 1. , z1. Παρατηρούµε ότι: z0 = z5. = + ) και. β) 1 ος τρόπος: Έστω z = x+ iy, x, = x + y.
ΛΥΣΕΙΣ ης ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Άσκηση 6 6 Λύση: α) 7z + z (cosπ + isi π ) π+ kπ π+ kπ Κατά συνέπεια z (cos + isi ), k,,, 5 Παίρνουµε τις ρίζες 6 6 z (cos + isi ) ( + i ) + i, π π 6 6 6 z (cos + isi ) (cos
Διαβάστε περισσότεραx 2 = b 1 2x 1 + 4x 2 + x 3 = b 2. x 1 + 2x 2 + x 3 = b 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 008-9 ΛΥΣΕΙΣ = 1 (Ι) Να ϐρεθεί ο αντίστροφος του πίνακα 6 40 1 0 A 4 1 1 1 (ΙΙ) Εστω b 1, b, b 3 στο R Να λύθεί το σύστηµα x = b 1 x 1 + 4x + x 3 = b x 1 + x + x
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3. Πολυωνυμικοί-Κυκλικοί Κώδικες. 3.1 Πολυωνυμικοί κώδικες
ΚΕΦΑΛΑΙΟ 3 Πολυωνυμικοί-Κυκλικοί Κώδικες Στα προηγούμενα ασχοληθήκαμε με τους γραμμικούς κώδικες και είδαμε πώς η δομή ενός γραμμικού κώδικα, ως διανυσματικού χώρου, καθιστά τις διαδικασίες κωδικοποίησης
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Ασκησεις - Φυλλαδιο 5
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Α Μπεληγιάννης - Σ Παπαδάκης Ιστοσελιδα Μαθηµατος : http://usersuogr/abelga/numbertheory/nthtml Τετάρτη 10 Απριλίου 2013 Ασκηση 1 Θεωρούµε τις αριθµητικές
Διαβάστε περισσότεραΟρια Συναρτησεων - Ορισµοι
Ορια Συναρτησεων - Ορισµοι Λυγάτσικας Ζήνων Βαρβάκειο Ενιαίο Πειραµατικό Λύκειο 3 Σεπτεµβρίου 205 Εισαγωγή Στην παράγραφο αυτή ϑα δούµε πως προκύπτει η ιδέα του ορίου στην προσπά- ϑεια να ορίσουµε την
Διαβάστε περισσότεραa = a a Z n. a = a mod n.
Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση
Διαβάστε περισσότεραΓραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7
Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Βοηθος Ασκησεων: Χ. Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://www.math.uoi.gr/ abeligia/linearalgebrai/lai.html
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii19/laii19html Παρασκευή 1 Μαρτίου 19 Υπενθυµίσεις
Διαβάστε περισσότερα2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008
2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης
Διαβάστε περισσότερα(i) Αλφάβητο ονοµάζεται το πεπερασµένο σύνολο των συµβόλων (πολλές φορές θα
Κωδικοποίηση. Εισαγωγή και γενικότητες Ορισµός. (i) Αλφάβητο ονοµάζεται το πεπερασµένο σύνολο των συµβόλων (πολλές φορές θα τα ονοµάζουµε γράµµατα) που χρησιµοποιούµε για να καταγράψουµεδιατυπώσουµε ένα
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές λύσεις ΕΡΓΑΣΙΑ η Ηµεροµηνία Αποστολής στον Φοιτητή: 6 Νοεµβρίου 005 Ηµεροµηνία Παράδοσης της Εργασίας
Διαβάστε περισσότεραΕισαγωγή στις Ελλειπτικές Καµπύλες
Εισαγωγή στις Ελλειπτικές Καµπύλες Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 4 Νοεµβρίου 2014, 1/19 Το ϑεώρηµα Riemann-Roch Θεωρούµε µια επιφάνεια Riemann M και το σώµα των F των
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26 ΙΟΥΛΙΟΥ 2009 ΕΥΤΕΡΟ ΜΕΡΟΣ :
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ - ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ-ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ ΑΝΑΛΥΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΙΘΑΝΟΤΗΤΕΣ-ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΙΚΕΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΕΞΕΤΑΣΕΙΣ 26
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 1
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 1 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 25 Φεβρουαβρίου 2016
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων
ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς
Διαβάστε περισσότεραΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 4 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά
Διαβάστε περισσότεραΒασική Άλγεβρα. Ασκήσεις (εκδοχή )
Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler
Διαβάστε περισσότερα1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:
13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i)
Διαβάστε περισσότερα============================================================== Σχηµατίζουµε τον πίνακα µε στήλες τα διανύσµατα v1,v2,v3,u1,u2:
http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ -: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση
Διαβάστε περισσότεραΤο Θεώρημα CHEVALLEY-WARNING
Το Θεώρημα CHEVALLEY-WARNING Ανθή Ζερβού Διδάσκων: Ιωάννης Αντωνιάδης 3/02/2015 1 ΠΕΠΕΡΑΣΜΕΝΑ ΣΩΜΑΤΑ Ορισμός. Εστω Κ σώμα. Χαρακτηριστική του Κ, συμβολίζεται ch(k), είναι ο ελάχιστος φυσικός αριθμός n
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai018/lai018html Παρασκευή 3 Νοεµβρίου 018 Ασκηση
Διαβάστε περισσότεραΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 4 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebrai/lai218/lai218html Παρασκευή 23 Νοεµβρίου 218 Ασκηση 1
Διαβάστε περισσότεραΔιδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Η Κανονική Μορφή Jordan - I Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 35 7 Η Κανονική Μορφή Jordan - I Στην
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι
Διαβάστε περισσότεραΚεφάλαιο 7 Βάσεις και ιάσταση
Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε
Διαβάστε περισσότεραΓραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 7
Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαιο 7 ιασκοντες: Ν. Μαρµαρίης - Α. Μπεληγιάννης Βοηθοι Ασκησεων: Χ. Ψαρουάκης Ιστοσελια Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii.html - - Ασκηση.
Διαβάστε περισσότεραΚεφάλαιο 5. Κυκλοτοµικά πολυώνυµα. 5.1 Ρίζες της µονάδας. char F = p και ο p δεν διαιρεί τον n.
Κεφάλαιο 5 Κυκλοτοµικά πολυώνυµα Σε αυτό το κεφάλαιο εφαρµόζουµε τη ϑεωρία Galois, όπως αυτή αναπτύχθηκε στο Κεφάλαιο 3, για τα πολυώνυµα x n 1 και x n a. Επίσης εξετάζουµε τις κυκλοτοµικές, τις κυκλικές
Διαβάστε περισσότερα