Ψηφιακές Τηλεπικοινωνίες
|
|
- Ξέρξης Κωνσταντίνου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής
2 Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης, υπάρχουν Υβριδικές λύσεις Η ψηφιακή μετάδοση όμως έχει σαφή πλεονεκτήματα, π.χ.: μεγαλύτερη ανοσία σε θόρυβο, παρεμβολές και παραμορφώσεις ευελιξία στην ανταλλαγή εύρους ζώνης και ισχύος Προσφέρει νέες δυνατότητες πολυπλεξίας τεχνικές κρυπτογράφησης και προστασίας ευκολία υλοποίησης σε VLSI (και γενικά σε διάφορες πλατφόρμες υλικου) Η Ψηφιακή Μετάδοση απαιτεί Ψηφιακά Δεδομένα Αν τα δεδομένα είναι Αναλογικά, θα πρέπει να μετατραπούν σε Ψηφιακά (πώς ;) Ερώτηση: Χάνεται πληροφορία κατά τη μετατροπή A/D; 2
3 Θεωρία Πληροφορίας; Βασικοί Στόχοι στις Ψηφιακές Τηλεπικοινωνίες: η αποδοτική αναπαράσταση των δεδομένων που εξάγει μια πηγή πληροφορίας η αποδοτική μετάδοση της πληροφορίας πάνω από ένα κανάλι Με το πρώτο ζήτημα ασχολείται η κωδικοποίηση πηγής (source coding) θα μας απασχολήσει στα αμέσως επόμενα μαθήματα Με το δεύτερο ζήτημα ασχολείται η κωδικοποίηση καναλιού (channel coding) θα μας απασχολήσει σε μεθεπόμενα μαθήματα Τα δύο αυτά αντικείμενα ανήκουν στον ευρύτερο χώρο της Θεωρίας Πληροφορίας (Ιnformation Τheory) 3
4 Κωδικοποίηση Πηγής Στόχος: η αποδοτική αναπαράσταση/κωδικοποίηση/συμπίεση της πληροφορίας/σήματος/εξόδου μιας πηγής Ερωτήματα που προκύπτουν: πώς ορίζεται η πληροφορία μιας πηγής; μπορώ να τη μετρήσω μαθηματικά; πότε μια πηγή παράγει περισσότερη πληροφορία; τι παθαίνει η πληροφορία μιας πηγής όταν εφαρμόζω κάποια επεξεργασία (π.χ. μετατροπή A/D); πόσο πολύ μπορώ να συμπιέσω τα δεδομένα μιας πηγής; Απαντήσεις δίνονται μέσα από τη Θεωρία Πληροφορίας και ιδιαίτερα τη θεωρία και τις τεχνικές κωδικοποίησης πηγής 4
5 Πηγές Πληροφορίας Η έξοδος της πηγής είναι κάτι τυχαίο και άγνωστο μια τυχαία διαδικασία Παραδείγματα ειδών πληροφορίας: Ήχος, ομιλία, εικόνα, video Bits, χαρακτήρες ASCII Βιο-ιατρικά σήματα, Γεωλ. Σήματα, Δεδομένα πλοήγησης,... και πολλά άλλα. Διάκριση ως προς το χρόνο (ή και χώρο): συνεχούς χρόνου (π.χ. σήμα μουσικής) διακριτού χρόνου (π.χ. κείμενο) Διάκριση ως προς τις δυνατές τιμές (αλφάβητο): συνεχείς τιμές (π.χ. αναλογικό σήμα) διακριτές τιμές (π.χ. ASCII) 5
6 Πηγές Πληροφορίας (2) Μετατροπή πηγής από συνεχούς σε διακριτού χρόνου δειγματοληψία το σήμα πρέπει να έχει πεπερασμένο εύρος ζώνης αν είναι κατωπερατό με μέγιστη συχνότητα f max, τότε η συνθήκη Nyquist μας λέει ότι αρκεί να το δειγματοληπτήσω με fs 2 f max και τότε μπορώ να ανακατασκευάσω το αναλογικό σήμα από τα δείγματα χωρίς απώλειες Οι πηγές που μας ενδιαφέρουν, έχουν περιορισμένο εύρος ζώνης ή μπορούμε να το περιορίσουμε εμείς με φιλτράρισμα Συμπέρασμα: αρκεί να μελετήσω τις πηγές διακριτού χρόνου Ερώτημα: Πώς γίνεται η δειγματοληψία στοχαστικού σήματος; 6
7 Πληροφορία Επικεντρωνόμαστε στις πηγές πληροφορίας με διακριτό αλφάβητο (λόγω ευκολίας αλλά όχι μόνο) Θα δούμε και λίγα πράγματα για πηγές με συνεχές αλφάβητο Αλφάβητο Διακριτής Πηγής: s, s,, 1 2 s Παράδειγμα: Το αλφάβητό μας είναι το αποτέλεσμα ποδοσφαιρικού αγώνα ανάμεσα στις ομάδες s 1 : 1 s 2 : Χ s 3 : 2 Μπαρτσελόνα - ΑΕΤΟΣ Ρίου Πατρών Πότε δίνεται περισσότερη πληροφορία; όταν τυχαίνει το σύμβολο s 1 ή το s 3 ; με τι σχετίζεται η πληροφορία που φέρει κάθε σύμβολο; 7
8 Μέτρο Πληροφορίας 1. Η πληροφορία ενός συμβόλου θα πρέπει να είναι μια φθίνουσα συνάρτηση της πιθανότητας εμφάνισης 2. Μικρή αλλαγή στην πιθανότητα μικρή αλλαγή στην πληροφορία (συνεχής συνάρτηση) 3. Έστω ότι συνδυάζω δύο πηγές και φτιάχνω μια τρίτη: Φ 1 : καιρός στην Ελλάδα το φθινόπωρο Φ 2 : η βαθμολογία στο μάθημα των Ψ.Τ. Αν είναι ανεξάρτητες, τότε η πληροφορία της σύνθετης πηγής θα πρέπει να είναι το άθροισμα των πληροφοριών των δύο πηγών πιθανότητα σύνθετου συμβόλου 8
9 Μέτρο Πληροφορίας Σύνοψη ιδιοτήτων του μέτρου της πληροφορίας: ( ) 1 I s for p s k 0 0 ( ) 1 I s for p s k ( ) ( ) I s I s for p s p s k l k l k I s, s I s I s s, s ά ά k k l k l k l 5. Μικρή αλλαγή στην πιθανότητα μικρή αλλαγή στην πληροφορία (συνεχής συνάρτηση) 9
10 Μέτρο Πληροφορίας (2) Πληροφορία ενός συμβόλου (Information) s i με πιθανότητα εμφάνισης p(s i ) I s i log 1 p s Βάση του λογαρίθμου συνήθως χρησιμοποιείται το 2 με μονάδα μέτρησης bit (1 bit είναι η λαμβανόμενη ποσότητα πληροφορίας όταν προκύπτει ένα από δύο ισοπίθανα σύμβολα μιας δυαδικής πηγής) γενικά δεν ταυτίζεται με το bit που γνωρίζουμε ως δυαδικό ψηφίο i log p s i Σύνθετη πηγή (αν οι αρχικές είναι ανεξάρτητες):, I s a I s I a i j i j 10
11 Μέτρο Πληροφορίας (3) Παρατηρήσεις: 1. Φθίνουσα 2. Πεδίο ορισμού (που ορίζεται;) 3. Όρια (τι συμβαίνει στα άκρα;) 4. Είναι συνεχής; 11
12 Διακριτή Πηγή Χωρίς Μνήμη Discrete Memoryless Source (DMS): διακριτού χρόνου διακριτού αλφαβήτου τα σύμβολα στην έξοδό της είναι ανεξάρτητα ακολουθούν συγκεκριμένη κατανομή πιθανότητας Περιγράφεται πλήρως από: το αλφάβητο και τις πιθανότητες εμφάνισης s,, 1 sn p,, 1 pn Ειδικές Περιπτώσεις: Δυαδική Πηγή Χωρίς Μνήμη: 0,1 p,1 p Για p=0.5, Δυαδική Συμμετρική Πηγή Χωρίς Μνήμη 12
13 Εντροπία Η εντροπία μιας DMS ορίζεται ως N log2 H pi s p p i i i i i1 i1 Φυσική Σημασία: εκφράζει τη μέση αβεβαιότητα που έχω για την πηγή είναι ο μέσος όρος της πληροφορίας των συμβόλων N Όσο μεγαλύτερη εντροπία έχει μια πηγή, τόσο περισσότερη πληροφορία φέρει, και τόσο περισσότερα bits χρειάζονται για την κωδικοποίησή της Ορισμός της εντροπίας ενός φυσικού συστήματος στην Στατιστική Μηχανική (εκφράζει τον βαθμό τυχαιότητας) 2 ος Νόμος Θερμοδυναμικής: Η εντροπία ενός κλειστού συστήματος που δεν είναι σε ισορροπία τείνει να αυξάνεται. J kln 13
14 Συνάρτηση Δυαδικής Εντροπίας Αν έχω δυαδική DMS Φ={0,1}, με πιθανότητες εμφάνισης {p,1-p}, τότε ορίζεται η συνάρτηση δυαδικής εντροπίας H p plog p 1 p log 1 p b 2 2 Παρατηρήσεις: 1. ελαχιστοποιείται όταν p=0 ή 1, οπότε Η(0)=Η(1)=0 2. μεγιστοποιείται όταν τα σύμβολα είναι ισοπίθανα, Η(0.5)=1 14
15 Εντροπία Ομοιόμορφης Πηγής Είδαμε ότι η εντροπία της δυαδικής DMS μεγιστοποιείται για ισοπίθανα σύμβολα Γενίκευση: Η εντροπία μιας Ν-αδικής DMS μεγιστοποιείται όταν τα σύμβολά της ακολουθούν ομοιόμορφη κατανομή, δηλαδή p i =1/N για i=1,,n. Βλέπε Πρόβλημα 6.7 στο βιβλίο Proakis - Salehi Συμπέρασμα: Η εντροπία φράσσεται ως 0 H log 2 N όπου Ν το πλήθος του αλφαβήτου και το άνω όριο επιτυγχάνεται για ομοιόμορφη πηγή 15
16 Διαφορική Εντροπία Έστω πηγή διακριτού χρόνου αλλά συνεχούς αλφάβητου Έξοδος πηγής: πραγματικός αριθμός, τι σημαίνει αυτό; Απαιτούνται άπειρα bits για αναπαράσταση. Συνεπώς, δεν μπορεί να οριστεί η εντροπία Ορίζω τη διαφορική εντροπία hx f X xlog 2 f X xdx f X (x): η συνάρτηση πυκνότητας πιθανότητας της Χ Η h(x) δεν έχει το διαισθητικό νόημα της εντροπίας μπορεί να πάρει και αρνητικές τιμές 16
17 Διαφορική Εντροπία Ομοιόμορφης Χ ομοιόμορφα κατανεμημένο στο συνεχές διάστημα [0,α] 1 f X x, 0 xa a Διαφορική Εντροπία: a 1 1 hx log2 dxlog2a a a 0 Για α<1, παίρνει αρνητικές τιμές 17
18 Διαφορική Εντροπία Gaussian Χ Gaussian κατανεμημένη Ν(0,σ 2 ) Διαφορική Εντροπία: h X x 2 1 f X x e e Παρατήρηση: Όπως η ομοιόμορφη κατανομή μεγιστοποιεί την εντροπία για τις πηγές διακριτού αλφαβήτου Έτσι η Gaussian κατανομή μεγιστοποιεί τη διαφορική εντροπία για τις πηγές συνεχούς αλφαβήτου log2 2e ln 2 nats bits 2 2 log e 2 18
19 Ρυθμός Εντροπίας Τι γίνεται στην περίπτωση των πηγών με μνήμη; Αν X n η έξοδος της πηγής τη χρονική στιγμή n H(X 2 X 1 ): αβεβαιότητα (καινούργια πληροφορία) που φέρει το X 2, αν γνωρίζω το X 1 Η ποσότητα H(X 2 X 1 ) λέγεται υπό συνθήκη εντροπία και θα οριστεί πλήρως σε επόμενα μαθήματα Ρυθμός Εντροπίας μιας στάσιμης τυχαίας διαδικασίας H X lim H Xn X, X,, X n 1 2 n 1 Φυσική Σημασία: παίζει το ρόλο της εντροπίας για τις πηγές με μνήμη μέτρο πληροφορίας ανά σύμβολο εξόδου της πηγής συγκλίνει σχετικά γρήγορα (δηλ. για μικρό n) 19
20 Κωδικοποίηση Πηγής Στόχος: Η αποδοτική αναπαράσταση μιας Μιαδικής πηγής Στη γενική περίπτωση αποδοτικές αναπαραστάσεις επιτυγχάνονται με Κώδικες Μεταβλητού Μήκους (ΚΜΜ): Ένας ΚΜΜ αξιοποιεί τη γνώση των στατιστικών ιδιοτήτων της πηγής Λειτουργικές απαιτήσεις: Οι κωδικές λέξεις είναι δυαδικές Ο κώδικας είναι μοναδικά αποκωδικοποιήσιμος Μέσο μήκος κώδικα L ps ls N i1 i i 20
21 Θεώρημα Κωδικοποίησης Πηγής ή «Το Πρώτο Θεώρημα του Shannon» (1948) Χρησιμότητα: πόσο μπορούμε να συμπιέσουμε μια πηγή χωρίς να εισάγουμε σφάλματα; Θεώρημα: Έστω πηγή με εντροπία H που κωδικοποιείται ώστε να παρέχει ρυθμό R(bits/έξοδο πηγής). Αν R H, η πηγή μπορεί να κωδικοποιηθεί με οσοδήποτε μικρή πιθανότητα σφάλματος Αν R<H, όσο πολύπλοκος κι αν είναι ο κωδικοποιητής πηγής, η πιθανότητα σφάλματος θα είναι μακριά από το 0 Σχόλια: Όπου R μπορείτε να θεωρήσετε το μέσο μήκος κώδικα ( ) ο Shannon δίνει την ικανή και αναγκαία συνθήκη όμως δεν προτείνει κάποιο αλγόριθμο/μεθοδολογία για να φτιάξουμε έναν κωδικοποιητή όταν R H R<H : Data compression, Rate-Distortion Theory L 21
22 Απόδειξη Θεωρήματος Έστω DMS με αλφάβητο Φ={α 1,...,α Ν } Παρατηρούμε ταυτόχρονα n εξόδους της πηγής (ένα μπλοκ) Αν το n τείνει στο άπειρο, τότε λογικά αν δω το σύνολο των εξόδων, κάθε σύμβολο εμφανίζεται περίπου τις εξής φορές α 1 : np 1 α 2 : np 2 α Ν : np N Αν επαναλάβω το πείραμα, τα σύμβολα προφανώς θα είναι αλλιώς ανακατεμένα όμως προκύπτουν περίπου ίδιες φορές εμφάνισης Ορισμός: όλες αυτές οι ακολουθίες ονομάζονται τυπικές ακολουθίες (sample entropy» entropy) κάθε μία εμφανίζεται με την ίδια πιθανότητα εμφάνισης (ασυμπτωτικά για μεγάλο n) 22
23 Απόδειξη Θεωρήματος (2) Ερώτηση: πόσες είναι οι τυπικές ακολουθίες; Λύση: Κάθε μία από αυτές εμφανίζεται με πιθανότητα i 2 i i ilog2 i i1 p p typical N N n p log p np np p i i1 i1 Κάθε μη τυπική ακολουθία έχει σχεδόν μηδενική πιθανότητα εμφάνισης (για μεγάλο n) Επομένως, όλες οι δυνατές ακολουθίες εξόδου είναι τυπικές (και μάλιστα εμφανίζονται ισοπίθανα) Αν η πιθανότητα εμφάνισης μίας τυπικής ακολουθίας είναι p typical τότε το πλήθος των τυπικών είναι Κ = 1/p typical Άρα, το πλήθος των τυπικών ακολουθιών είναι N nh X K 2 nh X 23
24 Απόδειξη Θεωρήματος (3) Κωδικοποίηση όλων των δυνατών ακολουθιών το μπλοκ έχει n σύμβολα από αλφάβητο των Ν το μπλοκ έχει N n δυνατές ακολουθίες (ή σύμβολα εκτεταμένης πηγής) απαιτούνται nlog 2 N bits/μπλοκ ή log 2 N bits/έξοδο Αν όμως το n είναι πολύ μεγάλο, μπορώ να αγνοήσω τις μη τυπικές ακολουθίες και να κωδικοποιήσω μόνο τις τυπικές Κωδικοποίηση μόνο των τυπικών ακολουθιών (θεωρώντας την κάθε μία από αυτές ως σύμβολο μιας Κ-αδικής πηγής): log 2 K=nH(X) bits/μπλοκ Η(Χ) bits/έξοδο Πότε υπάρχει σφάλμα: αν εμφανιστεί μη τυπική ακολουθία (αν όμως το n είναι πολύ μεγάλο, η πιθανότητα μη τυπικής - και το σφάλμα - μπορούν να γίνουν οσοδήποτε μικρά) 24
25 Ειδικές Περιπτώσεις Ομοιόμορφη Πηγή: H(X)=log 2 N δε μπορεί να συμπιεστεί κάθε ακολουθία εξόδου είναι δυνατή (τυπική) και ισοπίθανη Πηγές με μνήμη: ο ρυθμός εντροπίας παίζει τον ίδιο ρόλο με την εντροπία για στάσιμες πηγές ο ρυθμός εντροπίας συγκλίνει γρήγορα στην τελική τιμή Παράδειγμα πηγής με μνήμη: αγγλικό κείμενο για n=1 (αγνοώντας τη μνήμη), H(X)=4.03 bits/letter για μπλοκ γραμμάτων (π.χ. n=10) συγκλίνει στην τιμή H(X)=1.3 bits/letter 25
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης
Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >
Σημείωμα Αδειοδότησης
Μελέτη Περιπτώσεων στη Λήψη Αποφάσεων Σημείωμα Αδειοδότησης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας
Θεώρημα κωδικοποίησης πηγής
Κωδικοποίηση Kωδικοποίηση πηγής Θεώρημα κωδικοποίησης πηγής Καθορίζει ένα θεμελιώδες όριο στον ρυθμό με τον οποίο η έξοδος μιας πηγής πληροφορίας μπορεί να συμπιεσθεί χωρίς να προκληθεί μεγάλη πιθανότητα
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία
Εισαγωγή στη θεωρία πληροφορίας
Θεωρία πληροφορίας Εισαγωγή στη θεωρία πληροφορίας Τηλεπικοινωνιακά συστήματα Όλα τα τηλεπικοινωνιακά συστήματα σχεδιάζονται για να μεταφέρουν πληροφορία Σε κάθε τηλεπικοινωνιακό σύστημα υπάρχει μια πηγή
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πιθανότητες Πληροφορία Μέτρο
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o
Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Κωδικοποίηση πηγής- καναλιού Μάθημα 9o ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής & Τηλεπικοινωνιών
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣΟΡ Κεφάλαιο 1 : Εισαγωγή στη Θεωρία ωία Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Έννοια της πληροφορίας Άλλες βασικές έννοιες Στόχος
Συμπίεση Πολυμεσικών Δεδομένων
Συμπίεση Πολυμεσικών Δεδομένων Εισαγωγή στο πρόβλημα και επιλεγμένες εφαρμογές Κώστας Μπερμπερίδης Εργαστήριο Σημάτων & Τηλεπικοινωνιών Τμήμα Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Αναπαράσταση Συμπίεση
Ψηφιακές Τηλεπικοινωνίες
Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Αναλογικής Πηγής: Κβάντιση Εισαγωγή Αναλογική πηγή: μετά από δειγματοληψία γίνεται διακριτού χρόνου άπειρος αριθμός bits/έξοδο για τέλεια αναπαράσταση Θεωρία Ρυθμού-Παραμόρφωσης
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 5: Βασική Θεωρία Πληροφορίας Διδάσκων: Γεώργιος Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ιαφορική εντροπία Σεραφείµ Καραµπογιάς
ιαφορική εντροπία Σεραφείµ Καραµπογιάς Για πηγές διακριτού χρόνου µε συνεχές αλφάβητο, των οποίων οι έξοδοι είναι πραγµατικοί αριθµοί, ορίζεται µια άλλη ποσότητα που µοιάζει µε την εντροπία και καλείται
Θέματα Συστημάτων Πολυμέσων
Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
( ) log 2 = E. Σεραφείµ Καραµπογιάς
Παρατηρούµε ότι ο ορισµός της Η βασίζεται στη χρονική µέση τιµή. Για να ισχύει ο ορισµός αυτός και για µέση τιµή συνόλου πρέπει η πηγή να είναι εργοδική, δηλαδή H ( X) ( ) = E log 2 p k Η εντροπία µιας
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά και ψηφιακά συστήματα Μετατροπή
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ
ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος
Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.
Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. 1 Εισαγωγή Αναλογικό σήμα (analog signal): συνεχής συνάρτηση στην οποία η ανεξάρτητη μεταβλητή και η εξαρτημένη μεταβλητή (π.χ.
Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο
Μοντέλο Επικοινωνίας Δεδομένων Επικοινωνίες Δεδομένων Μάθημα 6 ο Εισαγωγή Με τη βοήθεια επικοινωνιακού σήματος, κάθε μορφή πληροφορίας (κείμενο, μορφή, εικόνα) είναι δυνατόν να μεταδοθεί σε απόσταση. Ανάλογα
Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής. Εντροπία Shannon
Αθανάσιος Χρ. Τζέμος Τομέας Θεωρητικής Φυσικής Εντροπία Shannon Ένα από τα βασικά ερωτήματα της θεωρίας της πληροφορίας ήταν ανέκαθεν το πώς θα μπορούσε να ποσοτικοποιηθεί η πληροφορία, ώστε να μπορούμε
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 2η διάλεξη (3η έκδοση, 11/3) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 19 Φεβρουαρίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο
Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1
Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-
Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 1: Χωρητικότητα Καναλιών Το θεώρημα Shannon - Hartley Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Δυαδική σηματοδοσία 2. Μορφές δυαδικής σηματοδοσίας 3.
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 2014-2015 Ρυθμός κωδικοποίησης Ένας κώδικας που απαιτεί L bits για την κωδικοποίηση μίας συμβολοσειράς N συμβόλων που εκπέμπει μία πηγή έχει ρυθμό κωδικοποίησης (μέσο μήκος λέξης) L
Θεωρία της Πληροφορίας 3 ο Εξάμηνο
Σμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Πώς? 13 Διαλέξεις.
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4. Έκδοση v2 με διόρθωση τυπογραφικού λάθους στο ερώτημα 6.3 Στόχος: Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015
EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:
Σεραφείµ Καραµπογιάς. Πηγές Πληροφορίας και Κωδικοποίηση Πηγής 6.3-1
Ο αλγόριθµος Lempel-iv Ο αλγόριθµος Lempel-iv ανήκει στην κατηγορία των καθολικών universal αλγορίθµων κωδικοποίησης πηγής δηλαδή αλγορίθµων που είναι ανεξάρτητοι από τη στατιστική της πηγής. Ο αλγόριθµος
Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης
Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα
ΠΛΗ21 Κεφάλαιο 1. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 1 Εισαγωγή Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι τα Αναλογικά κ τι τα Ψηφιακά Μεγέθη Τι είναι Σήμα, Αναλογικό Σήμα, Ψηφιακό Σήμα Τι είναι Δυαδικό Σήμα
Ψηφιακή Μετάδοση Αναλογικών Σηµάτων
Ψηφιακή Μετάδοση Αναλογικών Σηµάτων Τα σύγχρονα συστήµατα επικοινωνίας σε πολύ µεγάλο ποσοστό διαχειρίζονται σήµατα ψηφιακής µορφής, δηλαδή, σήµατα που δηµιουργούνται από ακολουθίες δυαδικών ψηφίων. Τα
Μάθημα Επισκόπηση των Τηλεπικοινωνιών
Μάθημα Επισκόπηση των Τηλεπικοινωνιών Κωδικοποίηση Πηγής & Καναλιού Μάθημα 8 ο 9 ο ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής & Τηλεπικοινωνιών
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου
Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και
Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)
Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα
Περιεχόμενα της Ενότητας. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς Κατανομές Πιθανότητας. Συνεχείς Κατανομές Πιθανότητας.
Περιεχόμενα της Ενότητας Στατιστική Ι Ενότητα 5: Συνεχείς Κατανομές Πιθανότητας Δρ. Χρήστος Εμμανουηλίδης Επίκουρος Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Συνεχείς Τυχαίες Μεταβλητές. Συνεχείς
Ψηφιακή Επεξεργασία Εικόνας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το
Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 18
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 18 14 Νοεµβρίου, 2006 Γεώργιος Έλληνας Επίκουρος Καθηγητής ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική
Τεχνολογία Πολυμέσων. Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 8: Αρχές κωδικοποίησης Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του
Δίαυλος Πληροφορίας. Η λειτουργία του περιγράφεται από:
Δίαυλος Πληροφορίας Η λειτουργία του περιγράφεται από: Πίνακας Διαύλου (μαθηματική περιγραφή) Διάγραμμα Διαύλου (παραστατικός τρόπος περιγραφής της λειτουργίας) Πίνακας Διαύλου Χρησιμοποιούμε τις υπό συνθήκη
Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 1: Σήματα Συνεχούς Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Σήματα 1. Σκοποί της Θεωρίας Σημάτων 2. Κατηγορίες Σημάτων 3. Χαρακτηριστικές Παράμετροι
II. Τυχαίες Μεταβλητές
II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα 4: Κβάντιση και Κωδικοποίηση Σημάτων Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την
Βασικές λειτουργίες Ανίχνευση πλαισίων Τι κάνει το επίπεδο ζεύξης Χρησιμοποιεί τις υπηρεσίες του φυσικού επιπέδου, ήτοι την (ανασφαλή) μεταφορά δεδομέ
Αρχές σχεδιασμού, μοντέλα αναφοράς, τυποποίηση Μιλτιάδης Αναγνώστου 19 Μαΐου 2011 1/41 Βασικές λειτουργίες Ανίχνευση πλαισίων Επίδραση του θορύβου Παραδείγματα 2/41 Βασικές λειτουργίες Ανίχνευση πλαισίων
Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1
Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.
Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
27-Ιαν-2009 ΗΜΥ (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό
ΗΜΥ 429 2. (ι) Βασική στατιστική (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 1 (ιι) Μετατροπές: αναλογικό-σεψηφιακό και ψηφιακό-σε-αναλογικό 2 Βασικά μέρη συστήματος ΨΕΣ Φίλτρο αντι-αναδίπλωσης
Ημιτονοειδή σήματα Σ.Χ.
Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα
Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη
ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m
Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω:
Σημειώσεις Δικτύων Αναλογικά και ψηφιακά σήματα Ένα αναλογικό σήμα περιέχει άπειρες πιθανές τιμές. Για παράδειγμα ένας απλός ήχος αν τον βλέπαμε σε ένα παλμογράφο θα έμοιαζε με το παρακάτω: Χαρακτηριστικά
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»
Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013)
ΕΕ728 Προχωρηµένα Θέµατα Θεωρίας Πληροφορίας 4η διάλεξη (4η έκδοση, 11/3/2013) ηµήτρης-αλέξανδρος Τουµπακάρης Τµήµα ΗΜ&ΤΥ, Πανεπιστήµιο Πατρών 5 Μαρτίου 2013 ηµήτρης-αλέξανδρος Τουµπακάρης Προχωρηµένα
Μετάδοση πληροφορίας - Διαμόρφωση
Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη
Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης
Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με
Μετάδοση πληροφορίας - Διαμόρφωση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α)
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) 3.1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της εργαστηριακής αυτής άσκησης είναι η μελέτη της παλμοκωδικής διαμόρφωσης που χρησιμοποιείται στα σύγχρονα τηλεπικοινωνιακά
Τμήμα Λογιστικής. Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή. 1 Στέργιος Παλαμάς
ΤΕΙ Ηπείρου Παράρτημα Πρέβεζας Τμήμα Λογιστικής Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές Μαθήματα 6 και 7 Αναπαράσταση της Πληροφορίας στον Υπολογιστή 1 1. Αριθμοί: Το Δυαδικό Σύστημα Οι ηλεκτρονικοί υπολογιστές
Κεφάλαιο 2. Οργάνωση και διαχείριση της Πληροφορίας στον. Υπολογιστή
ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 2 Οργάνωση και διαχείριση της Πληροφορίας στον Υπολογιστή Δεδομένα και Εντολές πληροφορία δεδομένα εντολές αριθμητικά δδ δεδομένα κείμενο εικόνα Επιλογή Αναπαράστασης
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Χρόνου (Ι)
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Διάλεξη 5: Στοχαστικά/Τυχαία Σήματα Διακριτού Χρόνου (Ι) Στοχαστικά σήματα Στα προηγούμενα: Ντετερμινιστικά
ΠΛΗ21 Κεφάλαιο 2. ΠΛΗ21 Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 Δυαδική Κωδικοποίηση
Ψηφιακά Συστήματα: Τόμος Α Κεφάλαιο: 2 Δυαδική Κωδικοποίηση Στόχοι του κεφαλαίου είναι να γνωρίσουμε: Τι είναι Κώδικας Τι είναι αλφάβητο & λέξεις ενός κώδικα Τι είναι οι δυαδικές λέξεις Το πλήθος των λέξεων
Μέρος ΙΙ. Τυχαίες Μεταβλητές
Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Τυχαία Σήματα Γενίκευση τυχαίων διανυσμάτων Άπειρο σύνολο πιθανά αριθμήσιμο από τυχαίες μεταβλητές Παραδείγματα τυχαίων σημάτων: Τηλεπικοινωνίες: Σήμα πληροφορίας
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση
Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης
Θεωρία της Πληροφορίας 3 ο Εξάμηνο
Τμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Κάθε πότε?
Κεφάλαιο 2 Πληροφορία και εντροπία
Κεφάλαιο 2 Πληροφορία και εντροπία Άσκηση. Έστω αλφάβητο Α={0,} και δύο πηγές p και q. Έστω οτι p(0)=-r, p()=r, q(0)=-s και q()=s. Να υπολογιστούν οι σχετικές εντροπίες Η(Α,p/q) και Η(Α,q/p). Να γίνει
Τεχνολογία Πολυμέσων. Ενότητα 3: Ψηφιοποίηση της Πληροφορίας. Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ
Τεχνολογία Πολυμέσων Ενότητα 3: Ψηφιοποίηση της Πληροφορίας Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233
ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα
pdf: X U(a, b) 0, x < a 1 b a, a x b 0, x > b
Πιθανότητες και Αρχές Στατιστικής (8η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 41 Περιεχόμενα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15
Πρόλογος 1. 1 Μαθηµατικό υπόβαθρο 9
Πρόλογος 1 Μαθηµατικό υπόβαθρο 7 1 Μαθηµατικό υπόβαθρο 9 1.1 Η αριθµητική υπολοίπων.............. 10 1.2 Η πολυωνυµική αριθµητική............ 14 1.3 Θεωρία πεπερασµένων οµάδων και σωµάτων.... 17 1.4 Πράξεις
Παναγιώτης Μαθιόπουλος Ph.D.
ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παναγιώτης Μαθιόπουλος Ph.D. Καθηγητής Ψηφιακών Επικοινωνιών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΚΠΑ Professor (1989 2003) Department of Electrical and Computer Engineering The
Μετάδοση σήματος PCM
Μετάδοση σήματος PCM Θόρυβος κατά τη μετάδοση Εύρος ζώνης μετάδοσης Το (διαμορφωμένο) σήμα PCM όταν μεταδίδεται μέσω του διαύλου είναι ένα σήμα συνεχούς χρόνου και έχει το δικό του εύρος ζώνης Το εύρος
Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων
ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 10 : Κωδικοποίηση καναλιού Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Απόσταση και βάρος Hamming Τεχνικές και κώδικες ανίχνευσης &
Συστήματα Επικοινωνιών ΙI
+ Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +
Γραφική αναπαράσταση ενός ψηφιακού σήµατος
γ) Ψηφιακάτα x (n) 3 2 1 1 2 3 n Γραφική αναπαράσταση ενός ψηφιακού σήµατος Αφού δειγµατοληπτηθεί και κβαντιστεί η έξοδος µιας αναλογικής πηγής πληροφορίας, δηµιουργείταιµιαακολουθίααπόκβαντισµένεςτιµές
Αρχές κωδικοποίησης. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 08-1
Αρχές κωδικοποίησης Απαιτήσεις κωδικοποίησης Είδη κωδικοποίησης Κωδικοποίηση εντροπίας Διαφορική κωδικοποίηση Κωδικοποίηση μετασχηματισμών Στρωματοποιημένη κωδικοποίηση Κβαντοποίηση διανυσμάτων Τεχνολογία
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.
Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 7: Κβάντιση και Κωδικοποίηση Σημάτων Προσομοίωση σε Η/Υ Δρ. Ηρακλής
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Πιθανότητες. Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Πιθανότητες Συνάρτηση κατανομής πιθανότητας Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε