ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:
|
|
- Ἀριστείδης Παπάζογλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΤΣΟΝΟΜΟΙ ΠΡΑΚΣΟΡΕ ΕΡΓΑΙΑ ΕΞΑΜΗΝΟΤ HEARTSTONE ΑΛΕΞΑΝΔΡΟ ΛΟΤΚΟΠΟΤΛΟ ΑΜ:
2 ΕΙΑΓΩΓΗ Το Heartstone είναι ζνα ψθφιακό παιχνίδι καρτϊν που διεξάγιεται πάνω ςτο Battle.net, ζναν διακομιςτι τθσ εταιρίασ Blizzard. Το παιχνίδι αποτελείται από δυο αντίπαλουσ παίχτεσ οι οποίοι μποροφν να διαλζξουν ανάμεςα από ζναν αρικμό ειδϊν του παιχνιδιοφ, το κακζνα προςφζροντασ μια ξεχωριςτι εμπειρία. Σε κάκε είδοσ θ διεξαγωγι του παιχνιδιοφ είναι θ ίδια και το μόνο που αλλάηει είναι θ αμοιβζσ και το επίπεδο δυςκολίασ. Κάκε παίχτθσ ζχει κατοχι του μια ουςιϊδθσ ςυλλόγθ από βαςικζσ κάρτεσ τθν οποία μπορεί να εμπλουτίςει με ςπάνιεσ και πιο δυνατζσ κάρτεσ, παίρνοντάσ τεσ ςαν αμοιβι ςτθν ολοκλιρωςθ του είδουσ Arena. Κάκε είδοσ παιχνιδιοφ αποτελείται από ζναν αρικμό αγϊνων. Ο κάκε αγϊνασ αποτελείται από δφο αντίπαλουσ παίχτεσ, παίχτθσ εναντίον παίχτθ ι παίχτθσ εναντίον υπολογιςτι, οι οποίοι μποροφν να τραβοφν κάρτεσ από τθν τράπουλά τουσ. Η τράπουλα αποτελείται από τριάντα κάρτεσ που ζχει επιλζξει ο παίχτθσ από τθ ςυλλογι του για να παίξει ςτον αγϊνα. Ο κάκε παίχτθσ εκπροςωπείται από ζναν ιρωα, ζναν χαρακτιρα δθλαδι από τον κόςμο του Warcraft (άλλο παιχνίδι τθσ εταιρίασ), ο οποίοσ ιρωασ ανικει ςε μια κλάςςθ θ οποία κακορίηει τθν τράπουλα και του δίνει μοναδικζσ δυνάμεισ. Κάκε ιρωασ ζχει 30 πόντουσ ηωισ και όταν αυτοί μθδενιςτοφν ςτον αγϊνα ο παίχτθσ που ελζγχει τον ιρωα χάνει. Ο αγϊνασ αποτελείται από γφρουσ όπου ςτον κάκε γφρο παίηει μόνο ο παίχτθσ που είναι θ ςειρά του. Στον γφρο του ο παίχτθσ μπόρει να τραβιξει μια κάρτα από τθν τράπουλά του, να παιξει όςεσ κάρτεσ μπορεί από αυτζσ που ζχει ςτο χζρι του,
3 να επιτεκεί ςτισ κάρτεσ του αντιπάλου ι ςτον ίδιο τον αντίπαλο, όλα τα προθγοφμενα μαηί και όποτε κζλει να πάει πάςο. Κάνενασ δεν μπορεί να διακόψει το γφρο του αντιπάλου. Για να παιχτεί μια κάρτα πρζπει να ζχει λιγότερουσ ι ίςουσ πόντουσ πθγισ (mana) με τον παίχτθ, ο οποίοσ ξεκινά με ζνα πόντο πιγθσ και ςε κάκε γφρο ανανεϊνονται και αυξάνονται κατα ζνα με μζγιςτο τουσ δζκα πόντουσ. Οι κάρτεσ τοποκετοφνται ςτο μιςό κομμάτι τθσ αρζνασ που αντιςτοιχεί ςτον παίχτθ που τισ ζπαιξε. Οταν ο αγϊνασ ξεκινιςει μοιράηονται ςτον παίχτθ που ξεκινά τρεισ κάρτεσ και ςτον άλλο παίχτθ τζςςερισ κάρτεσ και μια κάρτα που του δίνει ζνα πόντο πθγισ. Άφου μοιραςτοφν οι κάρτεσ αυτζσ οι παίχτεσ μπόρουν να δϊςουν πίςω ςτθν τράπουλα ζναν αρικμό καρτϊν από αυτζσ που τουσ μοιράςτθκαν προθγουμζνωσ και να τραβιξουν τον ίδιο αρικμό. Αυτι είναι θ μοναδικι φορά που ςυμβαίνει αυτό και αμζςωσ μετά ξεκινά ο γφροσ και παίηει ο παίχτθσ που κλθρϊκθκε να παίξει πρϊτοσ. Ραράδειγμα αρζνασ:
4 HEARTSTONE ΚΑΙ ΔΙΚΣΤΑ BAYES Με τθ βοικεια κάποιων ςτατιςτικϊν που αναφζρονται ςτισ κάρτεσ και ςτισ κλάςςεισ των θρϊων κα προςπακιςουμε με τθ βοικεια του κανόνα Bayes και των δικτυϊν Bayes να εξάγουμε κάποιεσ πικανότθτεσ που κα μασ βοθκιςουν να προβλζψουμε τισ κάρτεσ του αντιπάλου και τθν πικανότθτα χρθςιμοποίθςείσ τουσ. Σαν δείγμα για τα ςτατιςτικά ςτοιχζια χρθςιμοποιικθκαν τράπουλεσ παιχτϊν και οι τριάντα πρϊτεσ ςε δθμοτικότθτα κάρτεσ (πιο χρθςιμοποιθμζνεσ). Ξεκινάμε με τον παρακάτω πίνακα κλάςςεων: Κλάςςθ Αρικμόσ Ρικανότθτα P(K) τραπουλϊν Warlock ,6 % Priest ,9 % Shaman ,7 % Hunter ,1 % Druid ,8 % Rogue ,9 % Paladin ,5 % Warrior % Mage ,5 % Σε κάκε κάρτα υπάρχουν ξεχωριςτά ςτατιςτικά γιϋ αυτό κα παρουμε ςαν παράδειγμα τθν παρακάτω κάρτα, θ οποία ονομάηεται Defender of Argus.
5 Για τθν παραπάνω κάρτα υπάρχουν τα παρακάτω ςτατιςτικά: Κάρτα Αρικμόσ τραπουλϊν Ρικανότθτα P(C) που τθν περιζχουν Defender of Argus % Για τισ τράπουλεσ που τθν περιζχουν ξζρουμε τα εξισ: Κλάςςθ τράπουλασ Αρικμόσ Ρικανότθτα P(K C) τραπουλϊν Warlock ,6 % Priest ,7 % Shaman ,2 % Hunter % Druid ,2 % Rogue ,3 % Paladin ,5 % Warrior 971 3,7 % Mage ,3 %
6 Μζχρι τϊρα ζχουμε το εξισ ςχιμα: Σε κάκε γφρο θ οποιαδιποτε κάρτα ζχει διαφορετικι πικανότθτα να εμφανιςτεί (ζςτω ότι παίηουμε πρϊτοι): Γφροσ (G) Ρικανότθτα P(H) 1 1/30 + 1/29 + 1/28 2 1/27 3 1/26 4 1/ Πποτε το ςχιμα γίνεται:
7 Εςτϊ τϊρα ότι κζλουμε να βροφμε τθν πικανότθτα να εμφανιςτεί θ παραπάνω κάρτα ςτο χζρι του αντιπάλου, γνωρίηοντασ ότι ο αντίπαλοσ είναι Shaman και είμαςτε ςτον τζταρτο γφρο ζχωντασ παίξει πρϊτοι: Βρίςκουμε πρϊτα τθν πικανότθτα να υπάρχει θ κάρτα ςτθν τράπουλα του αντιπάλου, δεδομζνου ότι ο αντίπαλοσ ανικει ςτθν κατθγορία Shaman: K=Shaman ( ) ( ) ( ) ( ) Ραρατθροφμε ότι το ποςοςτό είναι ικανοποιθτικό για να μασ δϊςει πλθροφορία ςχετικά με τθν κάρτα και τθν τράπουλα του αντιπάλου και δεδομζνου ότι υπάρχουν 743 κάρτεσ ςτο παιχνίδι ςυμπεραίνουμε ότι θ κάρτα χρθςιμοποιείται ςυχνά.
8 Αμζςωσ μετά και αφοφ ζχουμε βρει τθν πικανότθτα με τθν οποία θ κάρτα βρίςκεται ςτθν τράπουλα του αντιπάλου βρίςκουμε τθν πικανότθτα να υπάρχει και ςτο χζρι του, δθλαδι να τθν ζχει τραβιξει: ( ) ( ) Ραρατθροφμε ότι το ποςοςτό να κρατά τθν κάρτα ο αντιπαλόσ μασ είναι μικρό και ςτο μζγιςτο κα φτάςει, όπωσ είναι λογίκο το 37,2 %. Για τθν κλάςςθ Warlock όμωσ το ποςοςτό ςυμμετοχισ τθσ κάρτασ ςτθν τράπουλα είναι: ( ) ( ) ( ) ( ) Αλλά το ποςοςτό να υπάρχει ςτο χζρι του αντιπάλου ςτο τζταρτο γφρο είναι: ( ) Μπορεί να φτάςει το ποςοςτό εωσ 58,8 %, αλλά μζχρι να ζχουμε ικανοποιθτικό ποςοςτό ζτςι ϊςτε να μασ φανεί χριςιμο ςε κάποια ςτρατιγικι, το παιχνίδι μάλλον κα ζχει προχωριςθ πολφ.
9 ΤΜΠΕΡΑΜΑΣΑ Σαν ςυμπζραςμα οπότε βλζπουμε ότι αυτά τα ποςοςτά δφςκολα μποροφν να μασ βοθκιςουν να εξάγουμε κάποια ςτρατθγικι από τθν αρχι ι και ακόμα όταν βριςκόμαςτε ςτθν μζςθ του παιχνιδιοφ. Από τθν παραπάνω ζρευνα όμωσ είναι φανερό οτι μερικζσ κάρτεσ ζχουν μεγάλθ ςυμμετοχι ςτισ τράπουλεσ κάποιων κλάςςεων και μποροφμε από εκεί να εξάγουμε κάποια μοτίβα τραπουλϊν για όλεσ τισ κλάςςεισ παιχτϊν. Χρθςιμοποιϊντασ τον πίνακα που δείχνει ςε τι ποςοςτό κάκε κλάςςθσ τράπουλασ ανικει θ κάρτα (μπλε πίνακασ), μποροφμε να κρατάμε το μεγαλφτερο κάκε φορά και να προβλζψουμε τθν τράπουλα του αντιπάλου. Αυτό κα μασ βοθκιςει ςτουσ τελευταίουσ γφρουσ του παιχνιδιοφ για να προβλζψουμε τθν κάρτα του αντιπάλου μασ με ποςοςτό περίπου 60% όπωσ είδαμε παραπάνω ςτο παράδειγμα κλάςςθσ Warlock. ΒΙΒΛΙΟΓΡΑΥΙΑ Το υλικό κακϊσ και τα ςτατιςτικά ςτοιχεία που χρθςιμοποιικθκαν βρίςκονται ςτουσ παρακάτω ςυνδζςμουσ:
10
Αυτόνομοι Πράκτορες. Αναφορά Εργασίας Εξαμήνου. Το αστέρι του Aibo και τα κόκαλα του
Αυτόνομοι Πράκτορες Αναφορά Εργασίας Εξαμήνου Το αστέρι του Aibo και τα κόκαλα του Jaohar Osman Η πρόταςθ εργαςίασ που ζκανα είναι το παρακάτω κείμενο : - ξ Aibo αγαπάει πάρα πξλύ ρα κόκαλα και πάμρα ρα
Διαβάστε περισσότεραΠολυπλέκτες. 0 x 0 F = S x 0 + Sx 1 1 x 1
Πολυπλέκτες Ο πολυπλζκτθσ (multipleer - ) είναι ζνα ςυνδυαςτικό κφκλωμα που επιλζγει δυαδικι πλθροφορία μιασ από πολλζσ γραμμζσ ειςόδου και τθν κατευκφνει ςε μια και μοναδικι γραμμι εξόδου. Η επιλογι μιασ
Διαβάστε περισσότερα= = 124
Λζξεισ Κάκε μακθτισ μζςα ςτθν ομάδα κα πρζπει να ζχει μια αρικμομθχανι. Ζνασ μακθτισ κα διαβάηει φωναχτά τουσ αρικμοφσ. Οι υπόλοιποι μακθτζσ κα τουσ γράφουν ςτθν αρικμομθχανι πατϊντασ κάκε φορά το πλικτρο
Διαβάστε περισσότεραx n D 2 ENCODER m - σε n (m 2 n ) x 1 Παραδείγματα κωδικοποιθτϊν είναι ο κωδικοποιθτισ οκταδικοφ ςε δυαδικό και ο κωδικοποιθτισ BCD ςε δυαδικό.
Κωδικοποιητές Ο κωδικοποιθτισ (nor) είναι ζνα κφκλωμα το οποίο διακζτει n γραμμζσ εξόδου και το πολφ μζχρι m = 2 n γραμμζσ ειςόδου και (m 2 n ). Οι ζξοδοι παράγουν τθν κατάλλθλθ λζξθ ενόσ δυαδικοφ κϊδικα
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 3: Χριςθ εργαλείων ζκφραςθσ, επικοινωνίασ, ανακάλυψθσ και δθμιουργίασ. ΚΕΦΑΛΑΙΟ 7: Υπθρεςίεσ Αναηιτθςθσ ςτον Παγκόςμιο Ιςτό
ΕΝΟΤΗΤΑ 3: Χριςθ εργαλείων ζκφραςθσ, επικοινωνίασ, ΚΕΦΑΛΑΙΟ 7: Υπθρεςίεσ Αναηιτθςθσ ςτον Παγκόςμιο Ιςτό Αναηιτθςθ πλθροφοριϊν, Διεφκυνςθ Ιςτοςελίδασ (URL), κεματικοί Κατάλογοι, Λζξεισ Κλειδιά, Μθχανζσ
Διαβάστε περισσότεραΜεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία).
Μεθολογία αςκιςεων αραίωςησ και ανάμειξησ διαλυμάτων (με τθν ίδια δ. ουςία). Από τθν τράπεηα κεμάτων Α_ΧΘΜ_0_20651 Διακζτουμε υδατικό διάλυμα (Δ1) KOH 0,1 Μ. α)να υπολογίςετε τθν % w/v περιεκτικότθτα του
Διαβάστε περισσότεραΔείκτεσ Διαχείριςθ Μνιμθσ. Βαγγζλθσ Οικονόμου Διάλεξθ 8
Δείκτεσ Διαχείριςθ Μνιμθσ Βαγγζλθσ Οικονόμου Διάλεξθ 8 Δείκτεσ Κάκε μεταβλθτι ςχετίηεται με μία κζςθ ςτθν κφρια μνιμθ του υπολογιςτι. Κάκε κζςθ ςτθ μνιμθ ζχει τθ δικι τθσ ξεχωριςτι διεφκυνςθ. Με άμεςθ
Διαβάστε περισσότεραΔιαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ
Διαχείριςθ του φακζλου "public_html" ςτο ΠΣΔ Οι παρακάτω οδθγίεσ αφοροφν το χριςτθ webdipe. Για διαφορετικό λογαριαςμό χρθςιμοποιιςτε κάκε φορά το αντίςτοιχο όνομα χριςτθ. = πατάμε αριςτερό κλικ ςτο Επιςκεφκείτε
Διαβάστε περισσότεραΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Α ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC (Key Stage II) 9 Μαρτίου 2016 ΧΡΟΝΟΣ: 2 ΩΡΕΣ Λύςεισ : Πρόβλημα 1 (α) Να βρείτε τθν τιμι του για να ιςχφει θ πιο κάτω ςχζςθ: (β) Ο Ανδρζασ τελειϊνει
Διαβάστε περισσότεραΟδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο του Άβακα Αυτζσ οι οδθγίεσ ζχουν ςτόχο λοιπόν να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο του Άβακα. Παρουςίαςη
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ. ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι
ΕΝΟΤΗΤΑ 2: ΤΟ ΛΟΓΙΣΜΙΚΟ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ ΚΕΦΑΛΑΙΟ 5: Γνωριμία με το λογιςμικό του υπολογιςτι Λογιςμικό (Software), Πρόγραμμα (Programme ι Program), Προγραμματιςτισ (Programmer), Λειτουργικό Σφςτθμα (Operating
Διαβάστε περισσότεραΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 3: Εργονομία
ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ Εργονομία, ωςτι ςτάςθ εργαςίασ, Εικονοςτοιχείο (pixel), Ανάλυςθ οκόνθσ (resolution), Μζγεκοσ οκόνθσ Ποιεσ επιπτϊςεισ μπορεί να ζχει θ πολφωρθ χριςθ του υπολογιςτι ςτθν
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium V
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium V Στατιςτική Συμπεραςματολογία Ι Σημειακζσ Εκτιμήςεισ Διαςτήματα Εμπιςτοςφνησ Στατιςτική Συμπεραςματολογία (Statistical Inference) Το πεδίο τθσ Στατιςτικισ Συμπεραςματολογία,
Διαβάστε περισσότεραΠρόςβαςη και δήλωςη μαθημάτων ςτον Εφδοξο
Πρόςβαςη και δήλωςη μαθημάτων ςτον Εφδοξο Τι πρζπει να γνωρίηω πριν ξεκινιςω τθν διαδικαςία 1. Να ζχω κωδικοφσ από τον Κζντρο Δικτφου του ΤΕΙ Ακινασ (είναι αυτοί με τουσ οποίουσ ζχω πρόςβαςθ ςτο αςφρματο
Διαβάστε περισσότεραΑναφορά Εργαςίασ Nim Game
Αναφορά Εργαςίασ Nim Game Αυτόνομοι Πράκτορεσ (ΠΛΗ 513) Βαγενάσ Σωτιριοσ 2010030034 Ειςαγωγή Για τθν εργαςία του μακιματοσ αςχολικθκα με το board game Nim. Ρρόκειται για ζνα παιχνίδι δφο παιχτϊν (2-player
Διαβάστε περισσότεραSlide 1. Εισαγωγή στη ψυχρομετρία
Slide 1 Εισαγωγή στη ψυχρομετρία 1 Slide 2 Σφντομη ειςαγωγή ςτη ψυχρομετρία. Διάγραμμα Mollier (πίεςησ-ενθαλπίασ P-H) Σο διάγραμμα Mollier είναι μία γραφικι παράςταςθ ςε ζναν άξονα ςυντεταγμζνων γραμμϊν
Διαβάστε περισσότεραΕγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες)
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Περιφέρειες) Ιούνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1. Περιφζρεια... 3 1.1 Διαχειριςτήσ Αιτήςεων Περιφζρειασ... 3 1.1.1. Είςοδοσ... 3 1.1.2. Αρχική
Διαβάστε περισσότεραςυςτιματα γραμμικϊν εξιςϊςεων
κεφάλαιο 7 Α ςυςτιματα γραμμικϊν εξιςϊςεων αςικζσ ζννοιεσ Γραμμικά, λζγονται τα ςυςτιματα εξιςϊςεων ςτα οποία οι άγνωςτοι εμφανίηονται ςτθν πρϊτθ δφναμθ. Σα γραμμικά ςυςτιματα με δφο εξιςϊςεισ και δφο
Διαβάστε περισσότεραAux.Magazine Μπιλμπάο, Βιηκάγια, Ιςπανία www.auxmagazine.com Προςωπικά δεδομζνα
Προςωπικά δεδομζνα Η Λείρ Ναγιάλα, θ Σίλβια Αντρζσ, θ Χουάνα Γκαλβάν και θ Γερμάν Καςτανζντα δθμιοφργθςαν τθ δικι τουσ εταιρία, τθν AUXILIARTE FACTORIA το 2004. Ζχοντασ και ςυνειδθτοποίθςαν ότι μοιράηονταν
Διαβάστε περισσότεραΠαράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2
Παράςταςη ακεραίων ςτο ςυςτημα ςυμπλήρωμα ωσ προσ 2 Δρ. Χρήζηος Ηλιούδης Μθ Προςθμαςμζνοι Ακζραιοι Εφαρμογζσ (ςε οποιαδιποτε περίπτωςθ δεν χρειάηονται αρνθτικοί αρικμοί) Καταμζτρθςθ. Διευκυνςιοδότθςθ.
Διαβάστε περισσότεραΕγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Ιοφνιοσ 2013 Περιεχόμενα: Ειςαγωγή... 3 1.Εθνικό Τυπογραφείο... 3 1.1. Είςοδοσ... 3 1.2. Αρχική Οθόνη... 4 1.3. Διεκπεραίωςη αίτηςησ...
Διαβάστε περισσότεραΘεςιακά ςυςτιματα αρίκμθςθσ
Θεςιακά ςυςτιματα αρίκμθςθσ Δρ. Χρήστος Ηλιούδης αρικμθτικό ςφςτθμα αρίκμθςθσ (Number System) Αξία (value) παράςταςθ Οι αξίεσ (π.χ. το βάροσ μιασ ποςότθτασ μιλων) μποροφν να παραςτακοφν με πολλοφσ τρόπουσ
Διαβάστε περισσότεραΕγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο)
Εγχειρίδιο Χρήςησ Προςωποποιημζνων Υπηρεςιών Γ.Ε.ΜΗ. (Εθνικό Τυπογραφείο) Πάτρα, 2013 Περιεχόμενα: Ειςαγωγή... 4 1. Επιμελητήριο... Error! Bookmark not defined. 1.1 Διαχειριςτήσ Αιτήςεων Επιμελητηρίου...
Διαβάστε περισσότεραΣΑΞΗ: Το ςενάριο απευκφνεται ςε παιδιά προςχολικισ θλικίασ. ΤΜΒΑΣΟΣΗΣΑ ΜΕ ΣΟ ΔΕΠΠ ΚΑΙ ΑΠ ΜΑΘΗΜΑΣΙΚΩΝ
ΔΙΔΑΚΣΙΚΟ ΕΝΑΡΙΟ ΓΙΑ ΣΑ ΜΑΘΗΜΑΣΙΚΑ ΣΙΣΛΟ ΔΙΔΑΚΣΙΚΟΤ ΕΝΑΡΙΟΤ «Τα ςχιματα» ΕΜΠΛΕΚΟΜΕΝΕ ΓΝΩΣΙΚΕ ΠΕΡΙΟΧΕ Μακθματικά, Γλϊςςα, Πλθροφορικι ΣΑΞΗ: Το ςενάριο απευκφνεται ςε παιδιά προςχολικισ θλικίασ. ΔΙΑΡΚΕΙΑ:
Διαβάστε περισσότεραΘΥ101: Ειςαγωγι ςτθν Πλθροφορικι
Παράςταςη κινητήσ υποδιαςτολήσ ςφμφωνα με το πρότυπο ΙΕΕΕ Δρ. Χρήστος Ηλιούδης το πρότυπο ΙΕΕΕ 754 ζχει χρθςιμοποιθκεί ευρζωσ ςε πραγματικοφσ υπολογιςτζσ. Το πρότυπο αυτό κακορίηει δφο βαςικζσ μορφζσ κινθτισ
Διαβάστε περισσότεραΤεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων
Τεχνικζσ Ανάλυςησ Διοικητικών Αποφάςεων Ενότητα 7: Ειςαγωγι ςτο Δυναμικό Προγραμματιςμό Κακθγθτισ Γιάννθσ Γιαννίκοσ Σχολι Οργάνωςθσ και Διοίκθςθσ Επιχειριςεων Τμιμα Διοίκθςθσ Επιχειριςεων Σκοποί ενότητασ
Διαβάστε περισσότεραΚάκε δικαίωμα ςυνδζεται με τα άλλα και είναι όλα το ίδιο ςθμαντκά.
Η ΠΑΓΚΟΣΜΙΙΑ ΣΥΜΒΑΣΗ ΤΩΝ ΗΝΩΜΕΝΩΝ ΕΘΝΩΝ ΓΙΙΑ ΤΑ ΔΙΙΚΑΙΙΩΜΑΤΑ ΤΟΥ ΠΑΙΙΔΙΙΟΥ Σε εύκολη γλώσσα «Δικαιϊματα» είναι κάτι που όλοι ζχουμε και πρζπει να μποροφμε να τα εφαρμόηουμε. Όλοι ζχουμε τα ίδια δικαιϊματα.
Διαβάστε περισσότεραΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ. Φιλιοποφλου Ειρινθ
ΕΦΑΡΜΟΓΕ ΒΑΕΩΝ ΔΕΔΟΜΕΝΩΝ ΣΗ ΝΟΗΛΕΤΣΙΚΗ Φιλιοποφλου Ειρινθ Προςθήκη νζων πεδίων Ασ υποκζςουμε ότι μετά τθ δθμιουργία του πίνακα αντιλαμβανόμαςτε ότι ζχουμε ξεχάςει κάποια πεδία. Είναι ζνα πρόβλθμα το οποίο
Διαβάστε περισσότεραΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ
ΡΑΝΕΛΛΘΝΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΧΗΜΕΙΑ ΘΕΤΙΚΘΣ ΚΑΤΕΥΘΥΝΣΘΣ Θζμα Α Α1: γ, Α2: β, Α3: α, Α4: β, A5: β Θζμα Β Β1: Σ ι Λ (ελλιπισ διατφπωςθ), Λ, Σ, Σ, Σ Β2: α) Οι διαφορζσ μεταξφ ς και π δεςμοφ είναι: α. Στον ς
Διαβάστε περισσότεραΓίνετε μζλοσ τθσ ομάδασ Panoramio του
Γίνετε μζλοσ τθσ ομάδασ Panoramio του generations@school Ρροςκζςτε τισ φωτογραφίεσ ςασ ςτο generations@school Επειδι κζλουμε να μπορζςουν όλοι να δουν τα όςα ςπουδαία ςυνζβθςαν κατά τθ διάρκεια τθσ εκδιλωςθσ
Διαβάστε περισσότεραΣχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων
Σχεδίαςη Σφγχρονων Ακολουθιακών Κυκλωμάτων Πίνακεσ Διζγερςησ των FF Όπωσ είδαμε κατά τθ μελζτθ των FF, οι χαρακτθριςτικοί πίνακεσ δίνουν τθν τιμι τθσ επόμενθσ κατάςταςθσ κάκε FF ωσ ςυνάρτθςθ τθσ παροφςασ
Διαβάστε περισσότεραΕ. ε περίπτωςθ που θ διαφορά των δφο ηαριϊν είναι 3 τότε ο παίκτθσ ξαναρίχνει μόνο ζνα ηάρι.
1 ο Σετ Ασκήσεων Δομή Επιλογής - Επανάληψης Άςκθςθ 1θ: Ζνα παιχνίδι με ηάρια παίηεται ωσ εξισ: Α. Ο παίκτθσ αρχικά ποντάρει κάποιο ποςό και ρίχνει δφο ηάρια. Β. Ο παίκτθσ κερδίηει (το ποςό που ζχει ποντάρει)
Διαβάστε περισσότεραΠΑΝΕΠΙΣΘΜΙΟ ΔΤΣΙΚΘ ΜΑΚΕΔΟΝΙΑ ΣΜΘΜΑ ΜΘΧΑΝΙΚΩΝ ΠΛΘΡΟΦΟΡΙΚΘ ΚΑΙ ΣΘΛΕΠΙΚΟΙΝΩΝΙΩΝ. Λειτουργικά υςτιματα, 4 ο Εξάμθνο Ψθφιακι χεδίαςθ ΙΙ, 4 ο Εξάμθνο
ΠΑΝΕΠΙΣΘΜΙΟ ΔΤΣΙΚΘ ΜΑΚΕΔΟΝΙΑ ΣΜΘΜΑ ΜΘΧΑΝΙΚΩΝ ΠΛΘΡΟΦΟΡΙΚΘ ΚΑΙ ΣΘΛΕΠΙΚΟΙΝΩΝΙΩΝ Λειτουργικά υςτιματα, 4 ο Εξάμθνο Ψθφιακι χεδίαςθ ΙΙ, 4 ο Εξάμθνο Νικόλασ Κυπαριςςάσ, 414 Τπεφκυνοι Κακθγθτζσ: Δρ. Μθνάσ Δαςυγζνθσ,
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου)
ΕΠΙΠΕΔΟ 9 10 (Γ Γυμνασίου- Α Λυκείου) 19 Μαρτίου 011 10:00-11:15 3 point/μονάδες 1) Μια διάβαςθ πεηϊν ζχει άςπρεσ και μαφρεσ λωρίδεσ, πλάτουσ 50 cm. ε ζνα δρόμο θ διάβαςθ ξεκινά και τελειϊνει με άςπρεσ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου)
ΕΠΙΠΕΔΟ 11 12 (Β - Γ Λυκείου) 19 Μαρτίου 2011 10:00-11:15 3 point/μονάδες 1) Στθν πιο κάτω εικόνα πρζπει να υπάρχει αρικμόσ ςε κάκε κουκκίδα ϊςτε το άκροιςμα των αρικμϊν ςτα άκρα κάκε ευκφγραμμου τμιματοσ
Διαβάστε περισσότεραΟδθγίεσ Χριςεωσ ταξιμζτρου DIGITAX F1 PLUS S. DIGITAX(DIGITAX PRINTER F1 Plus S ) ΔΙΑΔΙΚΑΣΙΑ ΕΛΕΓΧΟΥ ΤΑΞΙΜΕΤΡΟΥ ΣΕΛ 7 V 2.2
Οδθγίεσ Χριςεωσ ταξιμζτρου DIGITAX F1 PLUS S DIGITAX(DIGITAX PRINTER F1 Plus S ) ΔΙΑΔΙΚΑΣΙΑ ΕΛΕΓΧΟΥ ΤΑΞΙΜΕΤΡΟΥ ΣΕΛ 7 V 2.2 09/2017 1 Προδιαγραφζσ Σροφοδοςία (Vcc): Εφροσ Λειτουργίασ: 9-16 V Φάςμα τθσ ςτακεράσ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Α Γυμνασίου Ενότητα 1β: Ισότητα - Εξίσωση Συγγραφή:
Διαβάστε περισσότεραΠαράςταςη ςυμπλήρωμα ωσ προσ 1
Δρ. Χρήστος Ηλιούδης Θζματα διάλεξησ ΣΤ1 Προςθεςη αφαίρεςη ςτο ΣΤ1 2 ή ΣΤ1 Ονομάηουμε ςυμπλιρωμα ωσ προσ μειωμζνθ βάςθ R ενόσ μθ προςθμαςμζνου αρικμοφ Χ = ( Χ θ-1 Χ θ-2... Χ 0 ) R ζναν άλλον αρικμό Χ'
Διαβάστε περισσότεραΓράφοι. Δομζσ Δεδομζνων Διάλεξθ 9
Γράφοι Δομζσ Δεδομζνων Διάλεξθ 9 Περιεχόμενα Γράφοι Γενικζσ ζννοιεσ, οριςμόσ, κτλ Παραδείγματα Γράφων Αποκικευςθ Γράφων Βαςικοί Οριςμοί Γράφοι και Δζντρα Διάςχιςθ Γράφων Περιοδεφων Πωλθτισ Γράφοι Οριςμόσ:
Διαβάστε περισσότεραΓΕ.Λ ΕΤΔΗΛΟΤ ΙΚΑΡΙΑ ΣΑΞΗ: Β ΛΤΚΕΙΟΤ ΧΟΛΙΚΟ ΕΣΟ: ΘΕΜΑ: ΟΠΣΙΚΕ ΑΠΑΣΕ ΤΠΟΘΕΜΑ: ΟΠΣΙΚΕ ΑΠΑΣΕ ΣΗΝ ΚΑΘΗΜΕΡΙΝΟΣΗΣΑ
ΓΕ.Λ ΕΤΔΗΛΟΤ ΙΚΑΡΙΑ ΣΑΞΗ: Β ΛΤΚΕΙΟΤ ΧΟΛΙΚΟ ΕΣΟ: 2013-2014 ΘΕΜΑ: ΟΠΣΙΚΕ ΑΠΑΣΕ ΤΠΟΘΕΜΑ: ΟΠΣΙΚΕ ΑΠΑΣΕ ΣΗΝ ΚΑΘΗΜΕΡΙΝΟΣΗΣΑ ΜΑΘΗΣΕ: ΓΕΜΙΝΗ ΑΝΣΑ ΚΑΡΝΑΒΑ ΒΑΙΛΙΚΗ ΚΤΡΑΝΗ ΑΝΣΩΝΗ ΛΕΩΝΙΔΟΤ ΔΕΠΟΙΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΣΗ:
Διαβάστε περισσότεραΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ
29/9/2014 το μάκθμα τθσ ευζλικτθσ ηϊνθσ,τα παιδιά χωρίςτθκαν ςε ομάδεσ και ζφτιαξαν τθν δικι τουσ ηωγραφιά χρθςιμοποιϊντασ γεωμετρικά ςχιματα. ΟΜΑΔΑ: ΘΕΟΚΛΗΣΩ-ΑΝΣΡΕΑ-ΝΕΦΕΛΗ ΤΜΜΕΣΡΙΑ: 10 ΚΑΙ 13 ΟΚΣΩΒΡΙΟΤ
Διαβάστε περισσότεραΠωσ δθμιουργώ φακζλουσ;
Πωσ δθμιουργώ φακζλουσ; Για να μπορζςετε να δθμιουργιςετε φακζλουσ ςτο χαρτοφυλάκιό ςασ ςτο Mahara κα πρζπει να μπείτε ςτο ςφςτθμα αφοφ πατιςετε πάνω ςτο ςφνδεςμο Mahara profiles από οποιοδιποτε ςελίδα
Διαβάστε περισσότεραΈνα πρόβλθμα γραμμικοφ προγραμματιςμοφ βρίςκεται ςτθν κανονικι μορφι όταν:
Μζθοδος Simplex Η πλζον γνωςτι και περιςςότερο χρθςιμοποιουμζνθ μζκοδοσ για τθν επίλυςθ ενόσ γενικοφ προβλιματοσ γραμμικοφ προγραμματιςμοφ, είναι θ μζκοδοσ Simplex θ οποία αναπτφχκθκε από τον George Dantzig.
Διαβάστε περισσότεραΣυνεκπαίδευςη ςτο 1 ο Δ.Σ. Παλαιοκάςτρου
Συνεκπαίδευςη ςτο 1 ο Δ.Σ. Παλαιοκάςτρου «Unus pro omnibus, omnes pro uno» Όπωσ υποςτιριξε ο Knight (1983) το ςφγχρονο ςχολείο οφείλει να είναι μια ςπουδή ςτην δημοκρατία. Με αυτιν τθν ιδζα ςαν οδθγό,
Διαβάστε περισσότεραΠόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό. μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ
Πόςο εκτατό μπορεί να είναι ζνα μη εκτατό νήμα και πόςο φυςικό μπορεί να είναι ζνα μηχανικό ςτερεό. Συνιςταμζνη δφναμη versus «κατανεμημζνησ» δφναμησ Για τθν ανάδειξθ του κζματοσ κα λφνουμε κάποια προβλιματα
Διαβάστε περισσότεραΟδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ
Οδηγίεσ προσ τουσ εκπαιδευτικοφσ για το μοντζλο τησ Αριθμογραμμήσ Αυτζσ οι οδθγίεσ ζχουν ςτόχο να βοθκιςουν τουσ εκπαιδευτικοφσ να καταςκευάςουν τισ δικζσ τουσ δραςτθριότθτεσ με το μοντζλο τθσ Αρικμογραμμισ.
Διαβάστε περισσότεραΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ. 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν
ΛΕΙΤΟΥΓΙΚΆ ΣΥΣΤΉΜΑΤΑ 5 ο Εργαςτιριο Ειςαγωγι ςτθ Γραμμι Εντολϊν Τι είναι θ Γραμμι Εντολϊν (1/6) Στουσ πρϊτουσ υπολογιςτζσ, και κυρίωσ από τθ δεκαετία του 60 και μετά, θ αλλθλεπίδραςθ του χριςτθ με τουσ
Διαβάστε περισσότεραΕγχειρίδιο Χρήςησ Support
Εγχειρίδιο Χρήςησ Support Περιεχόμενα 1) Αρχικι Σελίδα...2 2) Φόρμα Σφνδεςθσ...2 3) Μετά τθ ςφνδεςθ...2 4) Λίςτα Υποκζςεων...3 5) Δθμιουργία Νζασ Υπόκεςθσ...4 6) Σελίδα Υπόκεςθσ...7 7) Αλλαγι Κωδικοφ...9
Διαβάστε περισσότεραΠεριοριςμοί μιασ Β.Δ. ςτθν Access(1/3)
Περιοριςμοί μιασ Β.Δ. ςτθν Access(1/3) Το όνομα ενόσ πίνακα, όπωσ και κάκε άλλου αντικειμζνου, μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Το όνομα ενόσ πεδίου μπορεί να ζχει μζγεκοσ ζωσ 64 χαρακτιρεσ. Κάκε
Διαβάστε περισσότεραΔιδάςκων: Κωνςταντίνοσ τεφανίδθσ
ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ ΧΟΛΗ ΘΕΣΙΚΩΝ ΕΠΙΣΗΜΩΝ ΣΜΗΜΑ ΕΠΙΣΗΜΗ ΤΠΟΛΟΓΙΣΩΝ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗ ΗΤ-564 ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΣΑ ΕΠΙΚΟΙΝΩΝΙΑ ΑΝΘΡΩΠΟΤ - ΜΗΧΑΝΗ Διδάςκων: Κωνςταντίνοσ τεφανίδθσ τόχοσ τθσ ςυγκεκριμζνθσ εργαςίασ
Διαβάστε περισσότεραΟι περιπέτειεσ των πουλιών ςτη λίμνη Κουρνά
Οι περιπέτειεσ των πουλιών ςτη λίμνη Κουρνά (Παραμφκι δθμιουργθμζνο από τα παιδιά του Παιδικοφ τακμοφ «Παιδικό Χαμόγελο», Εκπαιδευτικός: Αλζξανδρος Πανταηις, Ρζκυμνο 2013) -«Καλθμζρα αράχνθ!» Είπε λαχανιαςμζνοσ
Διαβάστε περισσότεραΛαμβάνοντασ υπόψη ότι κατά την πρόςθεςη δφο δυαδικϊν ψηφίων ιςχφει: Κρατοφμενο
Αριθμητικά κυκλώματα Ημιαθροιστής (Half Adder) Ο ημιαθροιςτήσ είναι ζνα κφκλωμα το οποίο προςθζτει δφο δυαδικά ψηφία (bits) και δίνει ωσ αποτζλεςμα το άθροιςμά τουσ και το κρατοφμενο. Με βάςη αυτή την
Διαβάστε περισσότεραΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ. 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ
ΛΕΙΣΟΤΡΓΙΚΆ ΤΣΉΜΑΣΑ 7 θ Διάλεξθ Διαχείριςθ Μνιμθσ Μζροσ Γ ελιδοποίθςθ (1/10) Σόςο θ κατάτμθςθ διαμεριςμάτων ςτακεροφ μεγζκουσ όςο και θ κατάτμθςθ διαμεριςμάτων μεταβλθτοφ και άνιςου μεγζκουσ δεν κάνουν
Διαβάστε περισσότεραΣτατιςτικά Μοντζλα και ο Κανόνασ του Bayes
Στατιςτικά Μοντζλα και ο Κανόνασ του Bayes Κϊςτασ Διαμαντάρασ Τμιμα Πλθροφορικισ ΤΕΛ Κεςςαλονίκθσ 1 Ο κανόνασ του Bayes (προφ. Μπζιη): Κυμόμαςτε τισ πικανότθτεσ Θ πικανότθτα ωσ κλάςμα επί ενόσ ςυνόλου:
Διαβάστε περισσότερα: Α ΚΗ ΕΙ ΣΕΧΝΙΚΟΣΑΚΣΙΚΗ Α ΚΗ Η ΠΑ Α
Craig Brown, Former National Coach Team "A" Scotland The Development of the 4-4-2 System Presented at the NSCAA Convention, St. Louis / USA, January 2009 Craig Brown : ΑΚΗΕΙ ΣΕΧΝΙΚΟΣΑΚΣΙΚΗ ΑΚΗΗ ΠΑΑ Οι
Διαβάστε περισσότεραMySchool Πρακτικζσ οδθγίεσ χριςθσ
MySchool Πρακτικζσ οδθγίεσ χριςθσ 1) Δθμιουργία τμθμάτων (ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ, Διαχείριςθ, Διαχείριςθ τμθμάτων) Το πρώτο που πρζπει να κάνουμε ςτο MySchool είναι να δθμιουργιςουμε τα τμιματα που υπάρχουν ςτο
Διαβάστε περισσότεραΔιαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων. (v.1.0.7)
Διαδικαςία Διαχείριςθσ Στθλϊν Βιβλίου Εςόδων - Εξόδων (v.1.0.7) 1 Περίληψη Το ςυγκεκριμζνο εγχειρίδιο δθμιουργικθκε για να βοθκιςει τθν κατανόθςθ τθσ διαδικαςίασ διαχείριςθσ ςτθλών βιβλίου Εςόδων - Εξόδων.
Διαβάστε περισσότεραΜάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ
Μάθημα 9 ο ΤΕΧΝΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΕΙΚΟΝΙΚΗΣ ΜΝΗΜΗΣ Ειςαγωγό Όπωσ είδαμε, ο χϊροσ εικονικϊν διευκφνςεων μνιμθσ που χρθςιμοποιεί κάκε διεργαςία, είναι αρκετά μεγαλφτεροσ από το χϊρο των φυςικϊν διευκφνςεων.
Διαβάστε περισσότεραMegatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox
Megatron ERP Βάςη δεδομζνων Π/Φ - κατηγοριοποίηςη Databox 03 05 ΙΛΤΔΑ ΠΛΗΡΟΦΟΡΙΚΗ Α.Ε. αρμά Ιηαμπζλλα Βαρλάμθσ Νίκοσ Ειςαγωγι... 1 Σι είναι το Databox...... 1 Πότε ανανεϊνεται...... 1 Μπορεί να εφαρμοςτεί
Διαβάστε περισσότεραΔϋ Δθμοτικοφ 12 θ Κυπριακι Μακθματικι Ολυμπιάδα Απρίλιοσ 2011
1. Αν τϊρα είναι Απρίλθσ, ποιοσ μινασ κα είναι μετά από 100 μινεσ; Α. Απρίλθσ Β. Αφγουςτοσ. Σεπτζμβρθσ Δ. Μάρτθσ Ε. Ιοφλθσ 2. Ποιο είναι το αποτζλεςμα των πιο κάτω πράξεων; ; Α. 135 Β. 27. 63 Δ. 21 Ε.
Διαβάστε περισσότεραΕρωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά
Τα νύλιμα! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα ξφλινα πνευςτά τα ξφλινα! 1. Γιατί τα λζμε ξφλινα πνευςτά; Πνευςτά ονομάηονται τα όργανα ςτα οποία ο ιχοσ παράγεται μζςα ςε ζνα ςωλινα απ όπου περνάει ο
Διαβάστε περισσότεραInternet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ
Internet a jeho role v našem životě Το Διαδίκτυο και ο ρόλοσ του ςτθ ηωι μασ Διαδίκτυο: μια πόρτα ςτον κόςμο Πϊσ μπορεί κανείσ ςε λίγα λεπτά να μάκει ποιεσ ταινίεσ παίηονται ςτουσ κινθματογράφουσ, να ςτείλει
Διαβάστε περισσότεραΙδιότθτεσ πεδίων Γενικζσ.
Οι ιδιότθτεσ των πεδίων διαφζρουν ανάλογα με τον τφπο δεδομζνων που επιλζγουμε. Ορίηονται ςτο κάτω μζροσ του παρακφρου ςχεδίαςθσ του πίνακα, ςτθν καρτζλα Γενικζσ. Ιδιότθτα: Μζγεκοσ πεδίου (Field size)
Διαβάστε περισσότεραΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ
ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΛΟΓΙΚΗΣ Λογικι πρόταςθ: Με τον όρο λογικι πρόταςθ (ι απλά πρόταςθ) ςτα μακθματικά, εννοοφμε μια ζκφραςθ με πλιρεσ νόθμα που δζχεται τον χαρακτθριςμό ι μόνο αλθκισ ι μόνο ψευδισ. Παραδείγματα:
Διαβάστε περισσότεραΔΙΑΓΩΝΙΜΟ ΓΙΑ ΣΗΝ ΗΜΕΡΑ ΑΦΑΛΟΤ ΔΙΑΔΙΚΣΤΟΤ
ΔΙΑΓΩΝΙΜΟ ΓΙΑ ΣΗΝ ΗΜΕΡΑ ΑΦΑΛΟΤ ΔΙΑΔΙΚΣΤΟΤ Θζμα: Δυνατότθτεσ και προοπτικζσ του επαγγζλματοσ που κζλω να ακολουκιςω ι των επαγγελμάτων των γονιών μου μζςα από το διαδίκτυο ΧΟΛΕΙΟ: ΓΤΜΝΑΙΟ ΕΤΗΝΟΧΩΡΙΟΤ ΜΑΘΗΣΡΙΑ:
Διαβάστε περισσότεραΑςφάλεια και Προςταςία Δεδομζνων
Αςφάλεια και Προςταςία Δεδομζνων Κρυπτογράφθςθ υμμετρικι και Αςφμμετρθ Κρυπτογραφία Αλγόρικμοι El Gamal Diffie - Hellman Σςιρόπουλοσ Γεώργιοσ ΣΙΡΟΠΟΤΛΟ ΓΕΩΡΓΙΟ 1 υμμετρικι Κρυπτογραφία υμμετρικι (Κλαςικι)
Διαβάστε περισσότεραΕΡΓΑΣΗΡΙΟ ΕΦΑΡΜΟΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ
Στο εργαςτιριο αυτό κα δοφμε πωσ μποροφμε να προςομοιϊςουμε μια κίνθςθ χωρίσ τθ χριςθ εξειδικευμζνων εργαλείων, παρά μόνο μζςω ενόσ προγράμματοσ λογιςτικϊν φφλλων, όπωσ είναι το Calc και το Excel. Τα δφο
Διαβάστε περισσότεραQualifiers: Ο μζγιςτοσ αρικμόσ ςυμμετοχϊν ςε κάκε qualifier είναι 128. Δίνεται θ δυνατότθτα ςτισ ομάδεσ να επιλζξουν ςε ποιο από τα 2 qualifiers
Qualifiers: Ο μζγιςτοσ αρικμόσ ςυμμετοχϊν ςε κάκε qualifier είναι 128. Δίνεται θ δυνατότθτα ςτισ ομάδεσ να επιλζξουν ςε ποιο από τα 2 qualifiers επικυμοφν να διαγωνιςτοφν κατά τθ διάρκεια τθσ ςυμπλιρωςθσ
Διαβάστε περισσότεραΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ
ΗΛΕΚΣΡΟΝΙΚΗ ΤΠΗΡΕΙΑ ΑΠΟΚΣΗΗ ΑΚΑΔΗΜΑΪΚΗ ΣΑΤΣΟΣΗΣΑ Οδηγός Χρήσης Εφαρμογής Ελέγχου Προσφορών Αφοφ πιςτοποιθκεί ο λογαριαςμόσ που δθμιουργιςατε ςτο πρόγραμμα ωσ Πάροχοσ Προςφορϊν, κα λάβετε ζνα e-mail με
Διαβάστε περισσότεραΑ) Ενδεικτικϋσ απαντόςεισ των θεμϊτων
Πανελλόνιεσ εξετϊςεισ Γ Τϊξησ 2011 Ανϊπτυξη Εφαρμογών ςε Προγραμματιςτικό Περιβϊλλον ΘΕΜΑ Α Α) Ενδεικτικϋσ απαντόςεισ των θεμϊτων Α1. Σ/Λ 1. Σωςτι 2. Σωςτι 3. Λάκοσ 4. Λάκοσ 5. Λάκοσ Α2. Σ/Λ 1. Σωςτι 2.
Διαβάστε περισσότεραΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΤΚΕΙΟΤ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ
ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΤΚΕΙΟΤ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ 1) Να γράψετε το τμιμα αλγορίκμου που αντιςτοιχεί ςτο παρακάτω διάγραμμα ροισ. 2) Να γράψετε το τμιμα αλγορίκμου που αντιςτοιχεί
Διαβάστε περισσότεραassessment.gr USER S MANUAL (users)
assessment.gr USER S MANUAL (users) Human Factor January 2010 Περιεχόμενα 1. Γενικζσ οδθγίεσ ςυςτιματοσ... 3 1.1 Αρχικι ςελίδα... 3 1.2 Ερωτθματολόγια... 6 1.2.1 Τεςτ Γνϊςεων Γενικοφ Ρεριεχομζνου... 6
Διαβάστε περισσότεραΔίκτυα Υπολογιςτϊν 2-Rooftop Networking Project
Ονοματεπώνυμα και Α.Μ. μελών ομάδασ Κοφινάσ Νίκοσ ΑΜ:2007030111 Πζρροσ Ιωακείμ ΑΜ:2007030085 Site survey Τα κτιρια τθσ επιλογισ μασ αποτελοφν το κτιριο επιςτθμϊν και το κτιριο ςτο οποίο ςτεγάηεται θ λζςχθ
Διαβάστε περισσότεραΟΤΑΝ ΕΦΥΓΑΝ Τ ΑΓΑΛΜΑΤΑ, ΑΓΓΕΛΙΚΗ ΔΑΡΛΑΣΗ
(Α ΟΜΑΔΑ) ΟΤΑΝ ΕΦΥΓΑΝ Τ ΑΓΑΛΜΑΤΑ, ΑΓΓΕΛΙΚΗ ΔΑΡΛΑΣΗ [1] 1. Ποια πιςτεφεισ ότι είναι τα μθνφματα που ικελε να προβάλει θ ςυγγραφζασ με το βιβλίο; Η ςυγγραφζασ κζλει να τονίςει με τθν Αγγελίνα, το κορίτςι
Διαβάστε περισσότεραVirtualization. Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format.
Virtualization Στο ςυγκεκριμζνο οδηγό, θα παρουςιαςτεί η ικανότητα δοκιμήσ τησ διανομήσ Ubuntu 9.04, χωρίσ την ανάγκη του format. Το virtualization πρόκειται για μια τεχνολογία, θ οποία επιτρζπει το διαχωριςμό
Διαβάστε περισσότεραΖτςι μάηεψα τισ 7 ποιο ςυχνζσ ερωτιςεισ που δζχομαι και τισ απαντϊ ζτςι ϊςτε να λυκοφν οι απορίεσ που μπορεί να ζχεισ.
Γεια, για όςουσ δεν με γνωρίηουν ονομάηομαι Γιάννθσ Χριςτοδοφλου. Αποφάςιςα να δθμιουργιςω αυτό το ebook προκειμζνου να δϊςω μια πιο κακαρι εικόνα για το τι είναι και πωσ δουλεφει το DS Domination. Ζτςι
Διαβάστε περισσότεραw e b t r a i l s. g r Η ΛΕΙΣΟΤΡΓΙΚΟΣΗΣΑ ΣΟΤ ΙΣΟΣΟΠΟΤ J24CLASS.GR
w e b t r a i l s. g r Η ΛΕΙΣΟΤΡΓΙΚΟΣΗΣΑ ΣΟΤ ΙΣΟΣΟΠΟΤ J24CLASS.GR Νίκοσ Καμπιτάκθσ 26 Μαρτίου 2011 Γενικζσ πλθροφορίεσ Δθμιουργία το Νοζμβριο του 2009 Γραφιςτικόσ ςχεδιαςμόσ «κοντά» ςτο παλιό Εξελιγμζνεσ
Διαβάστε περισσότεραΒάςεισ Δεδομζνων Ι. Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό. Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ
Βάςεισ Δεδομζνων Ι Ενότητα 4: Μετατροπή ςχήματοσ Ο/Σ ςε ςχεςιακό Δρ. Τςιμπίρθσ Αλκιβιάδθσ Τμιμα Μθχανικϊν Ρλθροφορικισ ΤΕ Άδειεσ Χρήςησ Το παρόν εκπαιδευτικό υλικό υπόκειται ςε άδειεσ χριςθσ Creative Commons.
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ. Κεφάλαιο 8 Η γλϊςςα Pascal
ΠΡΟΓΡΑΜΜΑΣΙΜΌ ΤΠΟΛΟΓΙΣΏΝ Κεφάλαιο 8 Η γλϊςςα Pascal Παράγραφοσ 8.2 Βαςικοί τφποι δεδομζνων Σα δεδομζνα ενόσ προγράμματοσ μπορεί να: είναι αποκθκευμζνα εςωτερικά ςτθν μνιμθ είναι αποκθκευμζνα εξωτερικά
Διαβάστε περισσότεραΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ Κεφάλαια: (μέχρι ενότητα 8) Ονοματεπϊνυμο:... Ημ/νία:... Τάξθ:...Χρονικι Διάρκεια:... Βακμόσ:
ΧΗΜΕΙΑ Γ ΛΥΚΕΙΟΥ Κεφάλαια:1-2-3-4-5(μέχρι ενότητα 8) Ονοματεπϊνυμο:... Ημ/νία:... Τάξθ:...Χρονικι Διάρκεια:... Βακμόσ: ΘΕΜΑ Α Για τισ προτάςεισ Α1 ζωσ Α5 να γράψετε ςτο τετράδιό ςασ τον αρικμό τθσ πρόταςθσ
Διαβάστε περισσότεραΔΡΑΣΤΗΡΙΟΤΗΤΑ ΣΤΗN ΙΣΤΟΡΙΑ
ΔΡΑΣΤΗΡΙΟΤΗΤΑ ΣΤΗN ΙΣΤΟΡΙΑ ΤΑΞΗ Στ Μάθημα: Ιςτορία Κεφάλαια: 18 Η Επανάςταςθ αρχίηει από τθ Μολδοβλαχία 19 Η Επανάςταςθ εξαπλϊνεται Άμεςοσ ςτόχοσ: Nα παρατθριςουν και να εξερευνιςουν ιςτορικό χάρτθ, να
Διαβάστε περισσότεραΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ ΗΛΕΚΣΡΟΝΙΚΟΤ ΤΣΗΜΑΣΟ ΑΡΧΑΙΡΕΙΩΝ
ΕΝΔΟΠΑΝΕΠΙΣΗΜΙΑΚΟ ΔΙΚΣΤΟ ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ ΗΛΕΚΣΡΟΝΙΚΟΤ ΤΣΗΜΑΣΟ ΑΡΧΑΙΡΕΙΩΝ Εγχειρίδιο διαχειριςτι Πάτρα, Δεκζμβριοσ 2011 το κάτω μζροσ ςτο μενοφ τθσ ςελίδασ διαχείριςθσ, υπάρχει θ επιλογι αρχαιρεςίεσ. Χρθςιμοποιϊντασ
Διαβάστε περισσότεραΕγχειρίδιο: Honeybee Small
ΚΟΚΚΙΝΟΣ ΔΗΜΗΤΡΗΣ Τηλ/Fax: 20 993677 Άγιος Δημήτριος, Αττικής 73 42 Ν. Ζέρβα 29 e-mail: Kokkinos@kokkinostoys.gr www.kokkinostoys.gr Εγχειρίδιο: Honeybee Small HEYBEE SMALL CRANE MACHINE DIP SW 2 3 4 5
Διαβάστε περισσότεραΟ ήχοσ ωσ φυςικό φαινόμενο
Ο ήχοσ ωσ φυςικό φαινόμενο Φφλλο Εργαςίασ Ονοματεπώνυμο. Παραγωγή και διάδοςη του ήχου Ήχοσ παράγεται όταν τα ςωματίδια κάποιου υλικοφ μζςου αναγκαςκοφν να εκτελζςουν ταλάντωςθ. Για να διαδοκεί ο ιχοσ
Διαβάστε περισσότερατα κρουςτά! Ερωτιςεισ & απαντιςεισ για τα κρουςτά
Τα κροσζηά! ΧΟΡΗΓΟΣ Ερωτιςεισ & απαντιςεισ για τα κρουςτά τα κρουςτά! 1. Γιατί ονομάηονται κρουςτά όργανα; Το όνομα «κρουςτά» όργανα προζρχεται από το ριμα κροφω/χτυπώ και δθλϊνει τον τρόπο με τον οποίο
Διαβάστε περισσότεραΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ
ΑΔΡΑΝΕΙΑ ΜΑΘΗΣΕ: ΜΑΡΙΑΝΝΑ ΠΑΡΑΘΤΡΑ ΑΝΑΣΑΗ ΠΟΤΛΙΟ ΠΑΝΑΓΙΩΣΗ ΠΡΟΔΡΟΜΟΤ ΑΝΑΣΑΙΑ ΠΟΛΤΧΡΟΝΙΑΔΟΤ ΙΩΑΝΝΑ ΠΕΝΓΚΟΤ Οριςμόσ: Με τον όρο αδράνεια ςτθ Φυςικι ονομάηεται θ χαρακτθριςτικι ιδιότθτα των ςωμάτων να αντιςτζκονται
Διαβάστε περισσότεραΚαρβέλης Φώτης ΓΟΝΙΔΙΩΜΑΤΙΚΗ ΒΙΒΛΙΟΘΗΚΗ
Καρβέλης Φώτης ΓΟΝΙΔΙΩΜΑΤΙΚΗ ΒΙΒΛΙΟΘΗΚΗ Λόγοι για τουσ οποίουσ κάνουμε γονιδιωματικι βιβλιοκικθ Για οργανιςμοφσ που κινδυνεφουν να εξαφανιςτοφν. Για εκπαιδευτικοφσ λόγουσ. Για να κάνουμε μελζτθ ςτθν εξελικτικι
Διαβάστε περισσότεραΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ
ΦΥΣΙΚΗ vs ΒΙΟΛΟΓΙΑ ΒΙΟΛΟΓΟΙ ΓΙΑ ΦΥΣΙΚΟΥΣ «Προτείνω να αναπτφξουμε πρώτα αυτό που κα μποροφςε να ζχει τον τίτλο: «ιδζεσ ενόσ απλοϊκοφ φυςικοφ για τουσ οργανιςμοφσ». Κοντολογίσ, τισ ιδζεσ που κα μποροφςαν
Διαβάστε περισσότερα3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ
3 θ διάλεξθ Επανάλθψθ, Επιςκόπθςθ των βαςικϊν γνϊςεων τθσ Ψθφιακισ Σχεδίαςθσ 1 2 3 4 5 6 7 Παραπάνω φαίνεται θ χαρακτθριςτικι καμπφλθ μετάβαςθσ δυναμικοφ (voltage transfer characteristic) για ζναν αντιςτροφζα,
Διαβάστε περισσότεραcdna ΒΙΒΛΙΟΘΗΚΗ Καρβέλης Φώτης Φώτο 1
cdna ΒΙΒΛΙΟΘΗΚΗ Καρβέλης Φώτης Φώτο 1 Λόγοι για τουσ οποίουσ αναγκαςτικαμε να δθμιουργιςουμε τθ cdna βιβλιοκικθ Σα γονίδια των ευκαρυωτικών είναι αςυνεχι. Οι περιοριςτικζσ ενδονουκλεάςεισ δεν κόβουν ςτθν
Διαβάστε περισσότερα17. Πολυδιάςτατοι πίνακεσ
Προγραμματιςμόσ Μεκόδων Επίλυςθσ Προβλθμάτων 17. Πολυδιάςτατοι πίνακεσ Ιωάννθσ Κατάκθσ Πολυδιάςτατοι πίνακεσ o Μζχρι τϊρα μιλοφςαμε για μονοδιάςτατουσ πίνακεσ ι int age[5]= 31,28,31,30,31; o Για παράλλθλουσ
Διαβάστε περισσότεραΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ. ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι
ΕΝΟΣΗΣΑ 1: ΓΝΩΡIΖΩ ΣΟΝ ΤΠΟΛΟΓΙΣΗ ΚΕΦΑΛΑΙΟ 2: Σο Τλικό του Τπολογιςτι Τλικό υπολογιςτι (Hardware), Προςωπικόσ Τπολογιςτισ (ΡC), υςκευι ειςόδου, υςκευι εξόδου, Οκόνθ (Screen), Εκτυπωτισ (Printer), αρωτισ
Διαβάστε περισσότεραΓ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ. Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ:
Γ' ΛΥΚΕΙΟΥ Η ΤΑΞΗ ΤΗΣ ΤΕΛΙΚΗΣ ΕΠΙΛΟΓΗΣ Στθ ΓϋΛυκείου οι Ομάδεσ Προςανατολιςμοφ είναι τρεισ: 1. Ομάδα Ανκρωπιςτικών Σπουδών 2. Ομάδα Οικονομικών, Πολιτικών, Κοινωνικών & Παιδαγωγικών Σπουδών 3. Ομάδα Θετικών
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη
Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR
Διαβάστε περισσότεραΕγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων»
Εγχειρίδιο Χριςθσ τθσ διαδικτυακισ εφαρμογισ «Υποβολι και παρακολοφκθςθ τθσ ζγκριςθσ Εκπαιδευτικών Πακζτων» Το Πλθροφοριακό Σφςτθμα τθσ δράςθσ «e-κπαιδευτείτε» ζχει ςτόχο να αυτοματοποιιςει τισ ακόλουκεσ
Διαβάστε περισσότεραΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ. του ΙΑΣΡΟΦΑΡΜΑΚΕΤΣΙΚΟΤ ΦΑΚΕΛΟΤ ΑΘΕΝΩΝ Για τον ΟΙΚΟ ΝΑΤΣΟΤ ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ. iknowhow Πληροφορική A.E
ΕΓΧΕΙΡΙΔΙΟ ΧΡΗΗ του ΙΑΣΡΟΦΑΡΜΑΚΕΤΣΙΚΟΤ ΦΑΚΕΛΟΤ ΑΘΕΝΩΝ Για τον ΟΙΚΟ ΝΑΤΣΟΤ ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ iknowhow Πληροφορική A.E ΕΡΓΑΣΗΡΙΑΚΟΙ ΓΙΑΣΡΟΙ... 3 Η ΕΦΑΡΜΟΓΗ... 3 ΧΡΗΣΕ... 3 ΠΡΟΒΑΗ ΣΗΝ ΕΦΑΡΜΟΓΗ... 3 ΑΡΧΙΚΗ
Διαβάστε περισσότεραΠωσ δημιουργώ μάθημα ςτο e-class του ΠΣΔ [επίπεδο 1]
Το e-class του Πανελλινιου Σχολικοφ Δίκτυου [ΠΣΔ/sch.gr] είναι μια πολφ αξιόλογθ και δοκιμαςμζνθ πλατφόρμα για αςφγχρονο e-learning. Ανικει ςτθν κατθγορία του ελεφκερου λογιςμικοφ. Αρχίηουμε από τθ διεφκυνςθ
Διαβάστε περισσότεραΗ θεωρία τησ ςτατιςτικήσ ςε ερωτήςεισ-απαντήςεισ Μέροσ 1 ον (έωσ ομαδοποίηςη δεδομένων)
1)Πώσ ορύζεται η Στατιςτικό επιςτόμη; Στατιςτικι είναι ζνα ςφνολο αρχϊν και μεκοδολογιϊν για: το ςχεδιαςμό τθσ διαδικαςίασ ςυλλογισ δεδομζνων τθ ςυνοπτικι και αποτελεςματικι παρουςίαςι τουσ τθν ανάλυςθ
Διαβάστε περισσότεραTIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ
www.timproject.eu www.tim.project-platform.eu TIM Εικονικό Περιβάλλον Συνεργασίας Οδθγίεσ Χριςθσ This project has been founded with support form the European Commission. This presentation reflects the
Διαβάστε περισσότερα