Ένα παιχνίδι των πολυγώνων
|
|
- Θεοδώρα Παχής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ένα παιχνίδι των πολυγώνων Το παιγνίδι αυτό, αναπτύχθηκε στα πλαίσια του μαθήματος πληροφορικής της Γ τάξης, στην ενότητα που αφορά στο σχεδιασμό πολυγώνων, απ όλα τα παιδιά, της Γ τάξης του σχολείου μας. Το μαγικό τετράγωνο Όλα ξεκίνησαν από το παρακάτω πρόβλημα ιστορία: Κάποιος αρχαιολόγος ανακάλυψε την ζωγραφιά που βλέπετε σε μια σπηλιά. Προφανώς πρόκειται για μια προϊστορική τοιχογραφία σπηλαίων, σαν αυτές που έχουν βρεθεί κατά καιρούς σε διάφορα μέρη του κόσμου. Όμως αυτός ο νεαρός αρχαιολόγος δεν εντυπωσιάστηκε και τόσο από τις άρτια σχεδιασμένες αντιλόπες, όσο από τον κύκλο ο οποίος τις περιβάλλει, και αποφάσισε να τον μελετήσει, για να ερευνήσει, πως οι άνθρωποι στους προϊστορικούς χρόνους, μπορούσαν να σχεδιάσουν τόσο άρτια γεωμετρικά σχήματα. Άρχισε λοιπόν τη μελέτη και με την βοήθεια της τεχνολογίας, κατάφερε να απομόνωσει το κομμάτι της εικόνας που τον ενδιέφερε. Μετά από αρκετή προσπάθεια έκπληκτος διαπίστωσε ότι αυτός ο κύκλος ήταν κατασκευασμένος κατά αποκλειστικότητα από τετράγωνα. Ερώτηση: Μπορείς με την βοήθεια της πληροφορικής και του προγραμματισμού να τον βοηθήσεις να το αποδείξει; 1
2 Ανάλυση του προβλήματος Αναλύοντας το πρόβλημα και με τη βοήθεια της τεχνολογίας, διαπιστώσαμε ότι πραγματικά το σχήμα αυτό, που ονομάσαμε λουλούδι, είναι κατ αποκλειστικότητα σχεδιασμένο μόνο από τετράγωνα. Μάλιστα από 40 τετράγωνα και αφού πρόκειται για μια πλήρη κυκλική περιστροφή, δηλαδή 360 μοίρες, σχετικά εύκολα καταλήξαμε στο συμπέρασμα, ότι το κάθε τετράγωνο μετατοπίζεται σε σχέση με το προηγούμενο του κατά 360 διά 40, δηλαδή 9 μοίρες. Υλοποίηση στο Scratch Στη συνέχεια χρησιμοποιώντας το scratch φτιάξαμε μια διαδικασία που σχεδιάζει ένα τετράγωνο. Επαναλαμβάνοντας αυτή τη διαδικασία 40 φορές, και μετατοπίζοντας κατά 9 μοίρες δεξιότερα κάθε φορά τον προσανατολισμό της σχεδίασης, καταφέραμε να αναπαράγουμε με ακρίβεια το παραπάνω λουλούδι. Περιγραφή του παιγνιδιού Εμπνευσμένοι λοιπόν από το πρόβλημα αυτό σκεφτήκαμε να σχεδιάσουμε το παρακάτω παιγνίδι. Ένας «έξυπνος» δράκος, προκαλεί μια γάτα σε ένα παιγνίδι πολυγώνων, όπου εκείνος σχεδιάζει διάφορα σχήματα αποτελούμενα από συνδυασμούς κανονικών πολυγώνων, ενώ η γάτα, δηλαδή o παίκτης, προσπαθεί να τα αναλύσει, να βρει τα δομικά συστατικά τους, (από πόσα και ποια πολύγωνα αποτελούνται) και τελικά να τα σχεδιάσει. Ενδεικτικά παραθέτουμε μερικά από τα σχήματα που θα μπορούσε να σχεδιάσει αυτός ο έξυπνος δράκος 2
3 (6 τρίγωνα) (8 τετράγωνα) (10 πεντάγωνα) Μπορεί να σχεδιάσει ακόμα και σχήματα που είναι σχεδόν ανθρωπίνως αδύνατον να αποκωδικοποιηθούν π.χ. 90 τετράγωνα μετατοπισμένα κατά 4 μοίρες το καθένα σε σχέση με το προηγούμενο του. 3
4 Όμως επειδή είναι δίκαιος παίκτης δεν θα προβληματίσει την γάτα μας με τόσο περίπλοκα σχήματα ή τουλάχιστον όχι ακόμα Είναι όμως μικροαπατεώνας γιατί σχεδιάζει και κυκλικά πολύγωνα... Κυκλικά πολύγωνα; Τι είναι πάλι αυτό; Ένα τρακοσοεξηντάγωνο ίσως; Αλλά και αυτά που ο ίδιος αποκαλεί δύγωνα ή μεταλλαγμένα πολύγωνα. Μα τι είναι αυτά που λες; Ελπίζω να μην ακούει ο κύριος των μαθηματικών. Στα πλαίσια ενός απατεώνα δράκου όλα είναι πιθανά. Οι πρωταγωνιστές του παιγνιδιού Το παιγνίδι μας λοιπόν, αποτελείται από 3 βασικούς πρωταγωνιστές: Ένα δράκο, ο οποίος σχεδιάζει διάφορα σχήματα αποτελούμενα από συνδυασμούς κανονικών πολυγώνων. 4
5 Μια γάτα, η οποία προσπαθεί να μαντέψει, από πόσα και ποια πολύγωνα αποτελείται το σχήμα που σχεδίασε ο δράκος, και τελικά να το σχεδιάσει, και από ένα διαιτητή ο οποίος αποφασίζει αν το σχήμα που σχεδίασε η γάτα είναι τελικά σωστό ή λάθος. Τι χρειαζόμαστε για να υλοποιήσουμε αυτό το παιγνίδι; 1) Μια διαδικασία η οποία να μπορεί να σχεδιάσει όλα τα πιθανά κανονικά πολύγωνα. 2) Μια ακόμα διαδικασία η οποία μπορεί να συνδυάσει πολλά πολύγωνα μαζί για να φτιάξει αυτά που ονομάζουμε «λουλούδια» πολυγώνων. 3) Μια μεθοδολογία για να μπορεί ο διαιτητής του αγώνα να αποφασίσει κατά πόσο τα λουλούδια, που ζωγραφίζει η γάτα, είναι τελικά αυτά που σχεδίασε ο δράκος, και την προκαλεί να μαντέψει. Διαδικασία πολυγώνου Ξέρουμε από την γεωμετρία ότι ένα πολύγωνο λέγεται κανονικό αν όλες οι πλευρές του είναι μεταξύ τους ίσες και όλες οι γωνίες είναι μεταξύ τους ίσες. Ένα κανονικό πολύγωνο με ν κορυφές ονομάζεται ν γωνο εξαίρεση αποτελεί το κανονικό πολύγωνο με 4 κορυφές το οποίο ονομάζεται τετράγωνο. Ξέρουμε επίσης ότι το άθροισμα των εξωτερικών γωνιών ενός κανονικού πολυγώνου είναι 360 μοίρες. 5
6 Λαμβάνοντας υπόψη αυτόν τον κανόνα μπορούμε να προγραμματίσουμε μια διαδικασία η οποία μπορεί να σχεδιάζει όλα τα κανονικά πολύγωνα. Ξεκινώντας από το ισόπλευρο τρίγωνο και προχωρώντας στο τετράγωνο, το πεντάγωνο, το εξάγωνο ενώ μπορούμε να φτάσουμε μέχρι και το 360γωνο. Η διαδικασία αυτή πρέπει να γνωρίζει δύο δεδομένα: α) από πόσες γωνίες θα αποτελείται το πολύγωνο που θέλουμε να σχεδιάσουμε και β) ποιο θα είναι το μήκος της κάθε πλευράς του πολυγώνου. Στη συνέχεια προχωρώντας μπροστά τόσα βήματα όσο είναι το μήκος της πλευράς, στρίβοντας κάθε φορά κατά τόσες μοίρες όσες είναι η εξωτερική γωνία του πολύγωνου, και επαναλαμβάνοντας την διαδικασία αυτή τόσες φορές όσο το πλήθος των γωνιών, τελικά σχεδιάζεται το πολύγωνο. Σημειώσετε ότι για να βρούμε την εξωτερική γωνία ενός πολυγώνου, αρκεί να διαιρέσουμε το 360 με το πλήθος των γωνιών του. Όμως η παραπάνω διαδικασία εμπεριέχει ένα παράδοξο, αν δώσουμε για παράδειγμα πλήθος γωνιών δύο και μήκος πλευράς 100, σχεδιάζεται ένα ευθύγραμμο τμήμα μήκους 100 εικονοστοιχείων. Αυτό το παράδοξο χρησιμοποιεί ο πονηρός δράκος για να σχεδιάσει τα δύγωνα που αναφέραμε στην αρχή της ομιλίας μας. Ας μας συγχωρέσουν οι μαθηματικοί γι αυτό το ατόπημα. Διαδικασία λουλουδιού Η διαδικασία αυτή σχεδιάζει ένα πολύγωνο πολλές φορές. Ωστόσο το κάθε πολύγωνο είναι μετατοπισμένο σε σχέση με το προηγούμενο του κατά ένα αριθμό μοιρών ο οποίος μας δίνετε αν διαιρέσουμε το 360 (μια πλήρη περιστροφή) με το πλήθος των πολυγώνων που θέλουμε να σχεδιάσουμε. 6
7 Διαδικασία απόφασης διαιτητή Στο παιγνίδι μας υπάρχει και ένας αμερόληπτος διαιτητής, ο οποίος αποφασίζει, αν τελικά η γάτα κατάφερε να σχεδιάσει σωστά το σχήμα ή όχι. Η διαδικασία είναι σχετικά απλή. Εφόσον πρόκειται για κανονικά πολύγωνα, το μόνο που χρειάζεται να ελέγξει, είναι αν ο αριθμός των πολυγώνων και ο αριθμός των γωνιών ανά πολύγωνο, που χρησιμοποιείσαι η γάτα για να σχεδιάσει το σχήμα της, είναι ίσος με τους αντίστοιχους αριθμούς που χρησιμοποίησε ο δράκος. Συμπεράσματα Η όλη διαδικασία του σχεδιασμού και της υλοποίησης του παιγνιδιού αυτού μας οδήγησε στα εξής συμπεράσματα Η διαδικασία της δημιουργίας ενός παιγνιδιού είναι το ίδιο ίσως και περισσότερο απολαυστική από το να παίζεις τελικά ένα παιγνίδι. Τα μαθηματικά είναι κρυμμένα παντού και γίνονται πολύ πιο ενδιαφέροντα και συναρπαστικά όταν εφαρμόζονται στην πράξη. Για να προγραμματίσεις μια διαδικασία πρέπει πρώτα να την εμπεδώσεις απόλυτα, ώστε να μπορέσεις στη συνέχεια, να κωδικοποιήσεις τον αλγόριθμο που κρύβεται πίσω της. Ο προγραμματισμός ενός ηλεκτρονικού υπολογιστή είναι μια πολύ ωραία και ίσως μαγική εμπειρία, αφού τοποθετώντας κατάλληλα τουβλάκια, δηλαδή εντολές, και συνδέοντας τα μεταξύ τους, μπορούμε να δημιουργήσουμε πολύ ενδιαφέρουσες και χρήσιμες εφαρμογές. 7
1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ
1. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ (Ή ΚΑΙ ΑΛΛΟΥ ΔΙΔΑΚΤΙΚΟΥ ΥΛΙΚΟΥ) ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 «Μαθαίνω στη γάτα να σχεδιάζει» Δραστηριότητα 1 Παρατηρήστε τις εντολές στους παρακάτω πίνακες,
αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη
Παιδαγωγική αξιοποίηση Δρ. Ι. Μπέλλου, Σχ αξιοποίηση των ΤΠΕ: Η logo στη διδακτική διδακτική πράξη Μια προσέγγιση για τη Γ Γυμνασίου Σχ. Σύμβουλος ΠΕ19 Δρ. Ιωάννα Μπέλλου Σχ. Σύμβουλος ΠΕ19 Μια διδακτική
Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ
Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται
Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo;
Κεφάλαιο 2 Εισαγωγή Πώς μπορούμε να δημιουργούμε γεωμετρικά σχέδια με τη Logo; Η Logo είναι μία από τις πολλές γλώσσες προγραμματισμού. Κάθε γλώσσα προγραμματισμού έχει σκοπό τη δημιουργία προγραμμάτων
Ενότητα 2: Εντολές Επανάληψης
Ενότητα 2: Εντολές Επανάληψης Όταν κάποια εντολή ή ολόκληρη ομάδα εντολών επαναλαμβάνεται τότε δεν είναι απαραίτητο να τις γράψουμε πολλές φορές αλλά χρησιμοποιούμε την εντολή ΕΠΑΝΑΛΑΒΕ Συντάσσεται ως
Γ ΓΥΜΝΑΣΙΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΕ ΤΗ ΓΛΩΣΣΑ MicroWorlds Pro
Για να μπορέσουμε να εισάγουμε δεδομένα από το πληκτρολόγιο αλλά και για να εξάγουμε εμφανίσουμε αποτελέσματα στην οθόνη του υπολογιστή χρησιμοποιούμε τις εντολές Εισόδου και Εξόδου αντίστοιχα. Σύνταξη
Ενότητα 1: Απλές εντολές γραφικών
Ενότητα 1: Απλές εντολές γραφικών ΣΤΚ: Στυλό Κάτω ΣΒΓ: Σβήσε Γραφικά (Σβήνει όλα τα σχέδια και φέρνει τη χελώνα στην αρχή με το κεφάλι προς τα πάνω) Εντολές Κίνησης: Εντολές Παραδείγματα σύνταξης Εντολή
Ο Προγραμματισμός στην Πράξη
Ο Προγραμματισμός στην Πράξη Το περιβάλλον προγραμματισμού MicroWorlds Pro Μενού επιλογών Γραμμή εργαλείων Επιφάνεια εργασίας Περιοχή Καρτελών Κέντρο εντολών Καρτέλες Οι πρώτες εντολές Εντολές εμφάνισης
ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ. Γεωμετρικά σχήματα - Η περίμετρος. Ενότητα 8. β τεύχος
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 46 Γεωμετρικά σχήματα - Η περίμετρος Ενότητα 8 β τεύχος Γεωμετρικά σχήματα-η περίμετρος 46 1η Άσκηση Να κυκλώσεις όλα τα κανονικά πολύγωνα: 60 ο 108 ο 108 ο 120
Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ
1. Τίτλος Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ «Φτιάχνω γεωµετρικά σχήµατα», (Μαθηµατικά Β ηµοτικού) 2. Εµπλεκόµενες γνωστικές περιοχές Κατά την υλοποίηση του διδακτικού σεναρίου θα αξιοποιηθούν κατά κύριο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ
ήγαινε στο x : y : κατέβασε πένα σήκωσε πένα
Παραδείγματα Ας δούμε τώρα πρακτικά πως μπορούμε να συνδυάσουμε την εντολή κίνησης πήγαινε στο x: y: με τις κατέβασε πένα, σήκωσε πένα για να δημιουργήσουμε ένα τετράγωνο. Έστω ότι θέλουμε να το δημιουργήσουμε
Πληρουορική Γ Γσμμασίοσ
Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:
ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια
ΕΝΟΤΗΤΑ 4 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)
ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 3 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : Μία ώρα για την κατανόηση της μορφής και των απλών ιδιοτήτων των κανονικών
ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί
ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει
ΕΝΟΤΗΤΑ 5 ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.1 Ονομάζουν και κατασκευάζουν σημεία, ευθύγραμμα τμήματα, ημιευθείες, ευθείες και διάφορα είδη γραμμών (καμπύλες, ευθείες, τεθλασμένες)
ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO
1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει
ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΤΑΞΗ: Γ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΑ LOGO ΠΕΡΙΒΑΛΛΟΝ MICROWORLDS PRO
ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΤΑΞΗ: Γ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΑ LOGO ΠΕΡΙΒΑΛΛΟΝ MICROWORLDS PRO 1. Δημιουργήστε τα παρακάτω σχήματα: Όλα τα σχήματα έχουν πλευρά 100, εκτός από το δωδεκάγωνο που έχει πλευρά 80. Τον
Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6
Γ-ΓΥΜΝΑΣΙΟΥ (1) ΣΕΛ 1 / 6 1) ΘΕΜΑ : Ποιο αποτέλεσμα εμφανίζετε στην οθόνη όταν εκτελούμε τις παρακάτω εντολές στην LOGO ; (Στις περιπτώσεις που ανοίγει παράθυρο επικοινωνίας να το ζωγραφίσετε. Στις περιπτώσεις
7 ο Γυμνάσιο Καβάλας Καλλιόπη Παρσέλια Σχολ. έτος: Το περιβάλλον προγραμματισμού MicroWorlds Pro
Το περιβάλλον προγραμματισμού MicroWorlds Pro 1 Εντολές στο Microworlds Pro Η εντολή εξόδου δείξε χρησιμοποιείται: 1. Για να εκτελέσουμε αριθμητικές πράξεις Παραδείγματα Εντολές στο κέντρο εντολών Αποτέλεσμα
Λουλούδια και Αριθμοί. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΤΡΟΒΟΛΟΥ Εργασία της Σοφίας Ευαγγέλου A 3 Καθηγήτρια : Ελένη Μελαχροινού
Λουλούδια και Αριθμοί ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΒΑΣΙΛΕΙΟΥ ΣΤΡΟΒΟΛΟΥ Εργασία της Σοφίας Ευαγγέλου A 3 Καθηγήτρια : Ελένη Μελαχροινού Τελικά, μάλλον τα φυτά ξέρουν καλά μαθηματικά και όπως φαίνεται η Φύση ολόκληρη
Βασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB. Αλγόριθμος Διαδικασία Παράμετροι
21. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 - ΔΗΜΙΟΥΡΓΩΝΤΑΣ ΜΕ ΤΟ BYOB BYOB Αλγόριθμος Διαδικασία Παράμετροι Τι είναι Αλγόριθμος; Οι οδηγίες που δίνουμε με λογική σειρά, ώστε να εκτελέσουμε μια διαδικασία ή να επιλύσουμε ένα
Κεφάλαιο 6: Ζωγραφική
Κεφάλαιο 6: Ζωγραφική... Σε αυτό το κεφάλαιο: 6.1 Ζωγραφική 6.2 Απλά ζωγράφισε 6.3 Χρώμα, σκιά και μέγεθος 6.4 Παράδειγμα... «Ζωγραφίζω πράγματα που σκέφτομαι, όχι πράγματα που βλέπω!» (Πικάσο) 6.1 Ζωγραφική
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
ΣΗΜΕΙΩΣΕΙΣ. στη γλώσσα προγραμματισμού. Γκέτσιος Βασίλειος
ΣΗΜΕΙΩΣΕΙΣ στη γλώσσα προγραμματισμού Microsoft Worlds Pro Γκέτσιος Βασίλειος Σημειώσεις στη γλώσσα προγραμματισμού Microsoft Worlds Pro σελ. 1 Το περιβάλλον προγραμματισμού Microsoft Worlds Pro Μενού
Ο παρακάτω πίνακας τιμών θα βοηθήσει να γίνει πιο κατανοητή η λειτουργία των εντολών της συγκεκριμένης άσκησης. Α/Α Εντολές Μνήμη (Μεταβλητή α) Οθόνη
Ασκήσεις 1) Να γράψετε τι κάνουν οι παρακάτω εντολές: κάνε "α 10 δείξε :α κάνε "α :α + 0 δείξε :α Η πρώτη εντολή δημιουργεί μια μεταβλητή με όνομα α και της δίνει την τιμή 10. Η δεύτερη εντολή εμφανίζει
1 Η εναλλάσσουσα ομάδα
Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις
ΔΙΑΝΥΣΜΑΤΑ. Ακολουθίες. Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα.
Ακολουθίες ΔΙΑΝΥΣΜΑΤΑ Στην ενότητα αυτή θα μάθουμε: Να ορίζουμε το διάνυσμα. Να ορίζουμε τις σχέσεις μεταξύ διανυσμάτων (παράλληλα, ομόρροπα, αντίρροπα, ίσα και αντίθετα διανύσματα). Να προσθέτουμε και
Το περιβάλλον προγραμματισμού MicroWorlds Pro
Μενού επιλογών Το περιβάλλον προγραμματισμού MicroWorlds Pro Γραμμή εργαλείων Επιφάνεια εργασίας Περιοχή Καρτελών Κέντρο εντολών Εικόνα 2.1: Το περιβάλλον της MicroWorlds Pro. Καρτέλες Οι πρώτες εντολές
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11.2 ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.1 ΟΡΙΣΜΟΣ ΚΑΝΟΝΙΚΟΥ ΠΟΛΥΓΩΝΟΥ 11. ΙΔΙΟΤΗΤΕΣ ΚΑΙ ΣΤΟΙΧΕΙΑ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΘΕΩΡΙΑ 1 (Ορισμός κανονικού πολυγώνου) Ένα πολύγωνο λέγεται κανονικό, όταν έχει όλες τις πλευρές
ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ. Γενική μορφή της επανάληψης επανάλαβε φορές [... ενέργειες...]
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΔΟΜΕΣ Γενική μορφή της επανάληψης επανάλαβε φορές [... ενέργειες...] βρείτε στα παρακάτω σχήματα γράψτε με λόγια τι επαναλαμβάνεται (μονάδα επανάληψης) και πόσες φορές (πλήθος επανάληψης).....
ΘΕΜΑ Ενημέρωση για θέματα εξετάσεων της Γ γυμνασίου για το μάθημα της πληροφορικής (σχετικά με τη logo).
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΑΤΤΙΚΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Β Δ/ΝΣΗΣ ΔΕΥΤ/ΘΜΙΑΣ ΕΚΠ. ΑΘΗΝΑΣ Μεσογείων 402-15342 - Αγία Παρασκευή 210-6392243,
Είδη τριγώνων ως προς τις πλευρές
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΙΩΝ 41 Είδη τριγώνων ως προς τις πλευρές Ενότητα 5 β τεύχος Είδη τριγώνων ως προς τις πλευρές 41 1η Άσκηση Να αντιστοιχίσεις: Το σκαληνό τρίγωνο έχει Το ισοσκελές τρίγωνο
Κεφάλαιο 1.Εντολές κίνησης
Προγραμματίζω με το ΒΥΟΒ 1 Κεφάλαιο 1.Εντολές κίνησης Από το μάθημα της Φυσικής γνωρίζουμε ότι κίνηση σημαίνει αλλαγή της θέσης ενός αντικειμένου. Οι εντολές κίνησης που μας παρέχει το ΒΥΟΒ χωρίζονται
Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία
Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα
ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών
ΕΦΑΡΜΟΓΙΔΙΟ: Σχήματα-Γραμμές-Μέτρηση Είναι ένα εργαλείο που μας βοηθά στην κατασκευή και μέτρηση σχημάτων, γωνιών και γραμμών. Μας παρέχει ένα χάρακα, μοιρογνωμόνιο και υπολογιστική μηχανή για να μας βοηθάει
Αριστείδης Παλιούρας Ανακαλύψτε το Scratch 2. Στη δραστηριότητα αυτή θα μάθεις να δημιουργείς τις δικές σου εντολές.
Διαδικασίες Στη δραστηριότητα αυτή θα μάθεις να δημιουργείς τις δικές σου εντολές. Άνοιξε το προγραμματιστικό περιβάλλον του Scratch 2.0. Κάνε κλικ στην κατηγορία «Άλλες Εντολές». Για να δημιουργήσεις
ΚΕΦΑΛΑΙΟ 2. Φύλλο Εργασίας Καλυπτόμενες ενότητες: 2.4 Κάνοντας τις πρώτες δοκιμές με τη χελώνα
Γυμνάσιο Ιτέας Σχολικό Έτος : 2016-2017 Τάξη : Γ Μάθημα : ΠΛΗΡΟΦΟΡΙΚΗ Διδάσκων : Χρήστος Ρέτσας Ηλ/κη τάξη (e-class) : tiny.cc/ggym ΚΕΦΑΛΑΙΟ 2 Φύλλο Εργασίας 2.4.1 Καλυπτόμενες ενότητες: 2.4 Κάνοντας τις
Μάθημα 1: Εισαγωγή. Κάνε κλικ την εντολή "κινήσου" και με το ποντίκι πατημένο μετέφερε τη στη περιοχή σεναρίων.
Μάθημα : Εισαγωγή 2 Κάνε κλικ την εντολή "κινήσου" και με το ποντίκι πατημένο μετέφερε τη στη περιοχή σεναρίων. Κάνοντας διπλό κλικ στην εντολή μπορείς να δεις ότι η γάτα κινείται στη σκηνή. Επίλεξε την
Πληροφορική Γ' Γυμνασίου Ενδεικτικές ασκήσεις με τη γλώσσα προγραμματισμού LOGO (στο περιβάλλον του MicroWorlds Pro)
Πληροφορική Γ' Γυμνασίου Ενδεικτικές ασκήσεις με τη γλώσσα προγραμματισμού LOGO (στο περιβάλλον του MicroWorlds Pro) 1. Ποιες εντολές πρέπει να γράψουμε για να βρούμε το αποτέλεσμα των παρακάτω πράξεων:
Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα
Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το
Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:...
Διδακτική των Μαθηματικών με Τ.Π.Ε Σελίδα 1 από 13 Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Όλες οι εφαρμογές που καλείσθε να χρησιμοποιήσετε είναι
στκ στκ μπροστά 100 μπροστά 100 δεξιά 90 δεξιά 90 μπροστά 100 μπροστά 100 αριστερά 90 αριστερά 90 μπροστά 100 μπροστά 100 δεξιά 90 δεξιά 80
3. Στο μάθημα της Πληροφορικής, οι μαθητές προσπαθούνε να φτιάξουνε μια διαδικασία που να ζωγραφίζει μια σκάλα με δυο σκαλοπάτια (όπως στο σχήμα) στη LOGO. Οι διαδικασίες που φτιάξανε είναι αυτές που βλέπετε
Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις /
Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις / Οι παρακάτω πίνακες καλύπτουν το μεγαλύτερο μέρος της ύλης του αναλυτικού προγράμματος σπουδών της Γεωμετρίας.
6 Γεωμετρικές κατασκευές
6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά
Εντολές της LOGO (MicroWorlds Pro)
Εντολές της LOGO (MicroWorlds Pro) Εντολές εμφάνισης (εξόδου) και αριθμητικές πράξεις δείξε Εμφανίζει στην οθόνη έναν αριθμό, το αποτέλεσμα πράξεων, μια λέξη ή μια λίστα (ομάδα) λέξεων. δείξε 200 200 δείξε
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό
ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Προγραμματισμός με Logo στο MicroWorlds Pro
1 Προγραμματισμός με Logo στο MicroWorlds Pro Η Logo είναι μια γλώσσα προγραμματισμού ειδικά σχεδιασμένη για τους μαθητές. Το πιο βασικό ίσως εργαλείο της Logo είναι η χελώνα. Κάποιες βασικές εντολές της
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..
ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ
1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν
Τα Φύλλα Εργασίας αφορά την εκμάθηση της εκτέλεσης της δομής επιλογής μέσα από το περιβάλλον του SCRATCH.
15. ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΦΥΛΛΩΝ ΕΡΓΑΣΙΑΣ Τα Φύλλα Εργασίας αφορά την εκμάθηση της εκτέλεσης της δομής επιλογής μέσα από το περιβάλλον του SCRATCH. 16. ΑΞΙΟΛΟΓΗΣΗ Οι βασικές διαδικασίες αξιολόγησης προέρχονται
ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ
ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Microworlds Pro Β Α Σ Ι Κ Ε Σ Σ Η ΜΕΙΩΣΕΙ Σ Σ Τ Η Γ Λ Ω Σ Σ Α Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Υ. 1 Ο Γ υ μ ν ά σ ι ο Χ α λ κ ί δ α ς
Β Α Σ Ι Κ Ε Σ Σ Η ΜΕΙΩΣΕΙ Σ Σ Τ Η Γ Λ Ω Σ Σ Α Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Μ Ο Υ Microworlds Pro 1 Ο Γ υ μ ν ά σ ι ο Χ α λ κ ί δ α ς Σ χ ο λ ι κ ό έ τ ο ς 2 0 1 5-2 0 1 6 Ε π ι μ έ λ ε ι α : Δ η μ ή τ ρ η ς
Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς
Κανονικά πολύγωνα Τουρναβίτης Στέργιος
Κανονικά πολύγωνα Τουρναβίτης Στέργιος Κανονικά πολύγωνα στη φύση, τέχνη, ανθρώπινες κατασκευές, Μαθηματικά Κανονικά πολύγωνα στη φύση Η κηρήθρα είναι ένα φυσικό θαύμα αρχιτεκτονικής Οι μέλισσες έχουν
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...
Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα
αντίστοιχο γεγονός. Όταν όντως το κουμπί
Εισαγωγή στην αλληλεπίδραση Τα έργα που έχουμε αναπτύξει έως τώρα τρέχουν ένα σενάριο και σταματούν. Τα αντικείμενά μας αλλάζουν θέση και ενδυμασίες, παίζουν διαφορετικούς ήχους και ζωγραφίζουν διάφορα
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ. Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30
ΟΔΗΓΙΕΣ: ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Γ ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΚΑΤΩ ΤΩΝ 15 1/2 ΕΤΩΝ «Ευκλείδης» Ημερομηνία: 29/04/2017 Ώρα εξέτασης: 10:00-14:30 1. Να λύσετε όλα τα θέματα αιτιολογώντας πλήρως τις απαντήσεις
Σχέδιο μαθήματος στα μαθηματικά
Σχέδιο μαθήματος στα μαθηματικά Τάξη Δ 2 Ενότητα 7: Μάθημα 5: Αναπτύγματα γεωμετρικών στερεών Εκπαιδευτικός: Νεοκλής Χαραλάμπους Διάρκεια: 80 Ημερ/νία: 14/03/18 Α Δημοτικό Σχολείο Γεροσκήπου Δείκτες επιτυχίας:
Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος
Διδακτική των Μαθηματικών με Τ.Π.Ε Σελίδα 1 από 6 Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Κάντε κλικ στο URL https://www.geogebra.org/m/msrbdbc5.
ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ
ΤΟ ΓΕΝΙΚΟ ΝΟΜΙΚΟ ΠΛΑΙΣΙΟ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΓΥΜΝΑΣΙΟ ΓΥΜΝΑΣΙΟ Π.Δ 409 του 1994 Για τις προαγωγικές εξετάσεις Μαΐου Ιουνίου ισχύει το Π.Δ. 508/77 και η Εγκύκλιος ΥΠΕΠΘ Γ2/2764/6-5-96) (ΕΙΔΙΚΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ)
Προγραμματισμός. Το περιβάλλον του scratch
Προγραμματισμός Η τέχνη του να μπορούμε να γράφουμε τα δικά μας προγράμματα ονομάζεται προγραμματισμός. Γενικότερα ως προγραμματιστικό πρόβλημα θεωρούμε κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση
(ΕΙΝΑΙ ΕΝΤΟΛΗ ΕΞΟΔΟΥ)
MICROWORLDS PRO ΧΕΛΩΝΕΣ!!! ΓΙΑ ΝΑ ΑΛΛΑΞΩ ΤΟ ΧΡΩΜΑ ΤΗΣ ΧΕΛΩΝΑΣ ΧΡΗΣΙΜΟΠΟΙΩ ΤΟ ΜΟΛΥΒΙ ΑΠΟ ΤΗΝ ΚΑΡΤΕΛΑ ΓΡΑΦΙΚΑ, ΕΠΙΛΕΓΩ ΧΡΩΜΑ ΚΑΙ ΚΛΙΚ ΣΤΗ ΧΕΛΩΝΑ Όταν θελήσετε να αλλάξετε κουστούμι σε μια χελώνα, επιλέξτε
STEM Education via Educational Robotics
STEM Education via Educational Robotics Sample Exercises Grade 5 and 6 (10-11 years old) Developed by Chrysanthos Sokratous PhD Candidate Cyprus Interaction Lab, Department of Multimedia and Graphic Arts
ραστηριότητες στο Επίπεδο 1.
ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε
1 ο Πρότυπο Πειραματικό Γυμνάσιο Σημειώσεις στη Γεωμετρία Α Γυμνασίου
1. Γωνία Ο Δημήτρης ζωγράφισε ένα δέντρο στο δωμάτιο του. Το δέντρο απλώνει τα κλαδιά του στα δυο επίπεδα των τοίχων του δωματίου και στο επίπεδο της οροφής. Στη γωνία αυτή θα τοποθετήσει όλα τα παιχνίδια
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών).
ΣΤΕΡΕΟΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.6 Ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, πυραμίδα, σφαίρα, κύλινδρο, κώνο),
Προγραμματιζόμενα παιγνίδια τύπου Logo (Bee-Bot ) και μαθηματικές έννοιες (συγκρίσεις και μετρήσεις μήκους )
Fibonacci Project (2011-2012) Προγραμματιζόμενα παιγνίδια τύπου Logo (Bee-Bot ) και μαθηματικές έννοιες (συγκρίσεις και μετρήσεις μήκους ) 1 ο Νηπ/γείο Βραχναιίκων Τμ. Α2 Σύνολο παιδιών :19 Υπεύθ. Νηπ/γός
ΚΥΚΛΟ. κάθετη στη χορδή ΑΒ. τη χορδή. του κέντρου Κ από. (βλέπε σχήμα).
ΑΣΚΗΣΕΙΣ ΣΤΟΝ ΚΥΚΛΟ 1. Να κατασκευάσετε έναν κύκλο και να πάρετε μια χορδή του ΑΒ. Από το κέντρο Κ του κύκλου να φέρετε κάθετη στη χορδή ΑΒ η οποία τέμνει τη χορδή στο σημείο Μ. Να διαπιστώσετε με μέτρηση
ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
Η προέλευση του Sketchpad 1
Η προέλευση του Sketchpad 1 Το The Geometer s Sketchpad αναπτύχθηκε ως μέρος του Προγράμματος Οπτικής Γεωμετρίας, ενός προγράμματος χρηματοδοτούμενου από το Εθνικό Ίδρυμα Ερευνών (ΝSF) υπό τη διεύθυνση
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ 1)Τι ονομάζεται διχοτόμος μιας γωνίας ; Διχοτόμος γωνίας ονομάζεται η ημιευθεία που έχει αρχή την κορυφή της γωνίας και τη χωρίζει σε δύο ίσες γωνίες. 2)Να
Φύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II
Φύλλο 3 1 ράσεις με το λογισμικό The geometer s Sketchpad Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II όμως έχει τη δικιά του φιλοσοφία και το δικό του τρόπο συνεργασίας με το
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 7 8 (A - Β Γυμνασίου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιά η τιμή: 12 + 23 + 34 + 45 + 56 + 67 + 78 + 89 ; A) 389 B) 396 C) 404 D) 405 E) άλλη απάντηση
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες
222 Διδακτική των γνωστικών αντικειμένων
222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ
Περιεχόμενο διδασκαλίας Στόχοι Παρατηρήσεις. υπολογίζουν το λόγο δύο λόγο δύο τμημάτων
Νίκος Γ. Τόμπρος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΩΝ Ενότητα : ΟΜΟΙΟΤΗΤΑ (ΛΟΓΟΣ ΑΝΑΛΟΓΙΑ) Σκοποί: Η ανάπτυξη ενδιαφέροντος για το θέμα, η εξοικείωση με τη χρήση τεχνολογίας, η παρότρυνση για αναζήτηση πληροφοριών (εδώ σε
Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά
Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS
ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 5 6 (E - Στ Δημοτικού) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Γνωρίζοντας ότι + + 6 = + + +, ποιόν αριθμό αντιπροσωπεύει το ; A) 2 B) 3 C) 4 D) 5 E) 6
Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127
Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών
Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.
ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ IMC STAGE II ΑΠΡΙΛΗΣ 08 Χρόνος Εξέτασης: ώρες Ημερομηνία: 5/04/08 Ώρα εξέτασης: 5:45-7:45 Να απαντήσετε τα θέματα και αιτιολογώντας πλήρως τις απαντήσεις
1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών
44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.
Φύλλα εργασίας. MicroWorlds Pro. Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο. Β. Χ. Χρυσοχοΐδης
Φύλλα εργασίας MicroWorlds Pro Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο Β. Χ. Χρυσοχοΐδης Πρόεδρος Συλλόγου Εκπαιδευτικών Πληροφορικής Φλώρινας 2 «Σχεδίαση και ανάπτυξη δραστηριοτήτων
1 Dodecaeder 3 7 5 11 9. 2 12 4 10 6. 8 Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Dodecaeder Copyright 1998-2005 Gijs Korthals
Εισαγωγή στην επανάληψη
Εισαγωγή στην επανάληψη Στο κεφάλαιο αυτό ήρθε η ώρα να μελετήσουμε την επανάληψη στον προγραμματισμό λίγο πιο διεξοδικά! Έχετε ήδη χρησιμοποιήσει, χωρίς πολλές επεξηγήσεις, σε προηγούμενα κεφάλαια τις