Γραφικά Υπολογιστών: Spline Αναπαραστάσεις
|
|
- Δημήτριος Γιάνναρης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Spline Αναπαραστάσεις Πασχάλης Ράπτης
2 2 Περιεχόμενα Σήμερα θα δούμε τις εύκαμπτες (spline) καμπύλες του Bézier Εισαγωγή στις εύκαμπτες καμπύλες Καμπύλες (curves) Bézier Τετραγωνικές (κυβικές) καμπύλες Bézier (cubic splines)
3 3 Εύκαμπες Αναπαραστάσεις (Spline Representations) Εύκαμπτη καμπύλη (spline) είναι μια ομαλή-λεία καμπύλη που ορίζεται μαθηματικώς χρησιμοποιώντας ένα σύνολο από περιορισμούς. Εύκαμπτες καμπύλες και εύκαμπτες επιφάνειες (splines) έχουν πολλές χρήσεις: 2D εικόνες (illustration) Γραμματοσειρές (fonts) 3D μοντελοποίηση Animation ACM 1987 Principles traditional animation applied to 3D computer Manifold Splines, X. Gu, Y. He & H. Qin, Solid and Physics Modeling 2005.
4 4 Physical Splines Φυσικές splines χρησιμοποιούνται στην σχεδίαση αυτοκινήτων και πλοίων Pierre Bézier
5 5 Βασική Ιδέα Ο χρήστης ορίζει σημεία ελέγχου (control points). Τα σημεία ορίζουν μια ομαλή-λεία καμπύλη Καμπύλη Σημεία ελέγχου Σημεία ελέγχου
6 6 Παρεμβολή και Προσέγγιση Μια εύκαμπτη (spline) καμπύλη ορίζεται χρησιμοποιώντας ένα σύνολο από σημεία ελέγχου (control points) Υπάρχουν δύο τρόποι να ταιριάξει μια καμπύλη σε αυτά τα σημεία: Παρεμβολή (interpolation) η καμπύλη περνά από όλα τα σημεία ελέγχου Προσέγγιση (approximation) η καμπύλη δεν περνά από όλα τα σημεία ελεγχου
7 7 Convex Hulls Images taen from Hearn & Baer, Computer Graphics with OpenGL (2004) Τα όρια που σχηματίζονται από το σύνολο των σημείων ελέγχου για μια spline είναι γνωστά ως convex hull (κυρτός φλοιός) Σκεφτείτε το ως μια ελαστική κορδέλα (λαστιχάκι) να απλώνεται γύρω από τα σημεία ελέγχου.
8 8 Διάγραμμα Ελέγχου Μια γραμμή (polyline) (που δημιουργείται από ένα ή περισσότερα τμήματα γραμμών) που συνδέει τα σημεία ελέγχου με την σειρά είναι γνωστή ως διάγραμμα ελέγχου (control graph) Συνήθως εμφανίζεται για να βοηθά τους σχεδιαστές να παρακολουθούν τις splines τους
9 9 Spline καμπύλες του Bézier (Bézier Spline Curves) Μια προσεγγιστική μέθοδος, για την σχεδίαση spline καμπυλών, αναπτύχθηκε από τον Γάλλο μηχανικός Bézier Pierre για χρήση στο σχεδιασμό αμαξωμάτων της Renault. Μια καμπύλη Bézier μπορεί να ταιριάζει (fitted) σε οποιοδήποτε αριθμό σημείων ελέγχου - αλλά συνήθως χρησιμοποιούνται 4.
10 10 Spline καμπύλες του Bézier (2) Θεωρούμε την περίπτωση που έχουμε n+1 σημεία ελέγχου και συμβολίζεται ως p (x, y, z ) όπου μεταβάλλεται από 0 έως n Οι θέσεις συντεταγμένων αναμειγνύονται για την παραγωγή του διάνυσματος θέσης P(u), το οποίο περιγράφει την πορεία της πολυωνυμική συνάρτησης Bézier μεταξύ του p 0 και του p n P( u) n 0 p BEZ, n( u), 0 u 1
11 11 Spline καμπύλες του Bézier (3) Οι Bézier συναρτήσεις ανάμειξης BEZ,n (u) είναι πολυώνυμα του Bernstein (polynomials) BEZ, n ( u) n C( n, ) u (1 u) όπου οι παράμετροι C(n,) είναι οι συντελεστές διωνύμων (binomial coefficients) n! C( n, )!( n )!
12 12 Spline καμπύλες του Bézier (4) Έτσι, οι συντεταγμένες για μια συγκεκριμένη καμπύλη μπορούν να δοθούν ως n n u BEZ x u x 0, ) ( ) ( n n u BEZ z u z 0, ) ( ) ( n n u BEZ y u y 0, ) ( ) (
13 Images taen from Hearn & Baer, Computer Graphics with OpenGL (2004) 13 Spline καμπύλες του Bézier (5)
14 14 Σημαντικές Ιδιότητες των καμπυλών Bézier Το πρώτο και το τελευταίο σημείο ελέγχου είναι το πρώτο και το τελευταίο σημείο στην καμπύλη P(0) p 0 P(1) p n Η καμπύλη βρίσκεται εντός του κυρτού φλοιού (convex hull) καθώς οι συναρτήσεις ανάμειξης Bézier είναι όλες θετικές και με άθροισμα 1 n 0 BEZ, n( u) 1
15 15 Τετραγωνικές Καμπύλες Bézier (Cubic Bézier Curve) Πολλά πακέτα γραφικών περιορίζουν τις καμπύλες Bézier να έχει μόνο 4 σημεία ελέγχου (δηλαδή n 3) Οι συναρτήσεις ανάμειξης όταν το n 3 απλοποιούνται ως εξής : 3 BEZ (1 u) BEZ BEZ BEZ 0,3 1,3 2,3 3,3 3u(1 3u u 3 2 (1 u) 2 u)
16 16 Τετραγωνικές Bézier Συναρτήσεις Ανάμειξης (Cubic Bézier Blending Functions)
17 17 Σύνοψη Σήμερα είδαμε στις spline καμπύλες και ιδίως καμπύλες Bézier Το όλο θέμα είναι ότι οι spline συναρτήσεις μας δίνουν μία προσέγγιση για μια ομαλή καμπύλη.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 2 η Σειρά Ασκήσεων 1. Αντί των κλασικών κυβικών πολυωνυμικών παραμετρικών καμπυλών
Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections)
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Προοπτικές Προβολές (Perspective Projections) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Contents Μια ματιά για
Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D (Object Representations) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Μοντελοποίηση
Γραφικά Υπολογιστών: Βασικά Μαθηματικά
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Βασικά Μαθηματικά Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Εισαγωγή Ένα μεγάλο κομμάτι των γραφικών αφορά βασίζονται-
Καμπύλες και επιφάνειες
Καμπύλες και επιφάνειες Μοντελοποίηση αντικειμένων με πολυγωνικό πλέγμα Εναλλακτικά: μοντελοποίηση με καμπύλες και επιφάνειες. Αναλυτική μορφή καμπυλών και επιφανειών (explicit representation) 2 διαστάσεις:
Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Αναπαράσταση Αντικείμενων 3D (Octrees & Fractals) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Contents Τεχνικές
ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής
ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής Το πρόβληµα Το πρόβληµα που καλείται ο υποψήφιος διδάκτορας να επιλύσει είναι η εξαγωγή χαρακτηριστικών (feature extraction) από ένα 3 αντικείµενο,
ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής
ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής Το πρόβληµα Το πρόβληµα που καλείται ο υποψήφιος διδάκτορας να επιλύσει είναι η εξαγωγή χαρακτηριστικών (feature extraction) από ένα 3 αντικείµενο,
Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods)
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Μέθοδοι Ανίχνευσης Επιφανειών (Surface Detection Methods) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα
Γραφικά Υπολογιστών: Θέαση στις 3D
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Θέαση στις 3D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τα παρακάτω θέματα: Μετασχηματισμοί
Απεικόνιση καμπυλών και επιφανειών
Απεικόνιση καμπυλών και επιφανειών Αφού μοντελοποιήσουμε τα αντικείμενα αλληλεπιδραστικά με καμπύλες και επιφάνειες πρέπει να τα απεικονίσουμε Αν χρησιμοποιούμε ray tracing πρέπει να υπολογίσουμε τομές
α) f(x(t), y(t)) = 0,
Ρητές καμπύλες Μια επίπεδη αλγεβρική καμπύλη V (f) είναι το σύνολο όλων των σημείων του επιπέδου K 2 που μηδενίζουν κάποιο συγκεκριμένο ανάγωγο πολυώνυμο f K[x, y], δηλαδή V (f) = {(x 0, y 0 ) K 2 f(x
ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΜΕΛΕΤΗ ΣΧΕ ΙΑΣΗ ΜΕ ΧΡΗΣΗ Η/Υ 1 ΣΥΣΤΗΜΑΤΑ ΣΧΕ ΙΟΜΕΛΕΤΗΣ ΜΕ ΧΡΗΣΗ Η/Υ - COMPUTER AIDED DESIGN (CAD) 1.1 ΟΡΙΣΜΟΣ ΣΧΕ ΙΟΜΕΛΕΤΗΣ ΜΕ ΧΡΗΣΗ Η/Υ - CAD 1.1 1.2 ΤΕΧΝΟΛΟΓΙΑ ΣΧΕ ΙΟΜΕΛΕΤΗΣ - ΠΑΡΑΓΩΓΗΣ ΜΕ Η/ΥΣΤΗΝ ΑΝΑΠΤΥΞΗ
ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής
ΕΚΘΕΣΗ ΠΡΟΟ ΟΥ Υποψήφιος ιδάκτορας: Ιωάννης Κυριαζής Το πρόβληµα Το πρόβληµα που καλείται ο υποψήφιος διδάκτορας να επιλύσει είναι η εξαγωγή χαρακτηριστικών (feature extraction) από ένα 3 αντικείµενο,
Εφαρμογές Η/Υ στη Ναυπηγική Ι Καμπύλες B-Spline (Κόμβοι Ιδιότητες)
Εφαρμογές Η/Υ στη Ναυπηγική Ι Καμπύλες B-Spline (Κόμβοι Ιδιότητες) 17-12-2015 Διδάσκων: Δρ. Θεόδωρος Π. Γεροστάθης, Επικ. Καθηγητής email: tgero@teiath.gr Καμπύλες B-Spline: κόμβοι Έστω n+1 ο αριθμός των
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 63 Αριθμητικές Μέθοδοι
4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ 4.5.6.1 Η ΑΠΕΙΚΟΝΙΣΗ ΣΗΜΕΙΟΥ ΜΕ ΒΑΡΟΣ 4.5.6.2 ΤΟ ΚΥΚΛΙΚΟ ΤΜΗΜΑ
4.5.6 ΡΗΤΑ ΠΟΛΥΩΝΥΜΙΚΑ ΤΜΗΜΑΤΑ Ευθείες γραµµές και παραβολικά τµήµατα µπορούν να µοντελοποιηθούν µε τη χρήση κυβικών πολυωνυµικών τµηµάτων. Τα κυκλικά ελλειπτικά ή υπερβολικά τµήµατα όµως προσεγγίζονται
ΠΑΡΕΜΒΟΛΗ ΜΕΣΩ SPLINES
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ (3 ο Εξάμηνο Σχομής Μηχ.Μηχ. ΕΜΠ) ΠΑΡΕΜΒΟΛΗ ΜΕΣΩ
ΜΟΝΤΕΛΑ ΕΠΙΦΑΝΕΙΩΝ CAD/CAM/CNC 1. ΤΕΙ Κρήτης
ΜΟΝΤΕΛΑ ΕΠΙΦΑΝΕΙΩΝ ΑΝΑΠΑΡΑΣΤΑΣΗ ΕΠΙΦΑΝΕΙΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ ΕΠΙΦΑΝΕΙΩΝ ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΠΛΩΝ ΕΠΙΦΑΝΕΙΩΝ ΕΠΙΦΑΝΕΙΕΣ ΕΛΕΥΘΕΡΗΣ ΜΟΡΦΗΣ (HERMITE, BEZIER, B-SPLINES, NURBS, COONS) CAD/CAM/CNC
Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing)
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Ανίχνευση Ακτίνας (φωτός) (ray tracing) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Θα εξετάσουμε την
ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΧΕΔΙΑΣΗ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕ Η/Υ (Computer Aided Design) Ενότητα # 2: Στερεοί Μοντελοποιητές (Solid Modelers) Δρ Κ. Στεργίου
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7)
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον (Εργαστήριο 7) Δρ Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ Δημήτρης Βαρσάμης Αριθμητικές Μέθοδοι (E 7) Δεκέμβριος 2014 1
Μελέτη των καμπυλών Bezier και B-splines και υλοποίηση προγράμματος σε C++ για την πειραματική σχεδίασή τους με υπολογιστή
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ με θέμα Μελέτη των καμπυλών Bezier και B-splines και υλοποίηση προγράμματος σε C++
Σύλληψη προϊόντος. Μοντέλα επιφανειών και αντίστροφη μηχανική
2 ΚΕΦΑΛΑΙΟ Σύλληψη προϊόντος Βιομηχανικός σχεδιασμός Βιομηχανικός σχεδιασμός Μοντέλα επιφανειών και αντίστροφη μηχανική 2.1 Βιομηχανικός σχεδιασμός σελ. 50 Περιεχόμενα κεφαλαίου 2.2 Μοντέλα επιφανειών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΟΝΤΕΛΟΠΟΙΗΣΗ-ΨΗΦΙΑΚΗ ΣΥΝΘΕΣΗ ΕΙΚΟΝΩΝ Διδάσκων: Ν. ΝΙΚΟΛΑΙΔΗΣ 3 η Σειρά Ασκήσεων 1. Ένα σωματίδιο με μάζα m=4 βρίσκεται αρχικά (t=0) στη θέση x=(2,2)
Γραφικά Υπολογιστών: Αποκοπή στις 3D Διαστάσεις
ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Αποκοπή στις 3D Διαστάσεις Πασχάλης Ράπτης ttp://aetos.it.teite.gr/~praptis praptis@it.teite.gr 2 Περιεχόμενα Θα δούμε μερικά demos προοπτικών προβολών
4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66
Περιεχόμενα Ευρετήριο Πινάκων... 7 Ευρετήριο Εικόνων... 8 Εισαγωγή... 9 Κεφάλαιο 1-Περιβάλλον Εργασίας - Στοιχεία Εντολών... 13 1.1 Το Πρόγραμμα... 14 1.2.1 Εισαγωγή Εντολών... 22 1.2.2 Εισαγωγή Εντολών
Γραφικά Υπολογιστών: Εμφάνιση σε 2D
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Εμφάνιση σε 2D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Έννοιες παραθύρων (windowing) Αποκοπή (clipping)
Αναλυτική µορφή καµπυλών (explicit representation)
Αναλυτική µορφή καµπυλών (explicit representation) 2 διαστάσεις: έκφραση της εξαρτηµένης µεταβλητής ως προς την ανεξάρτητη y=f(x), Μια τέτοια έκφραση µπορεί να µην υπάρχει για συγκεκριµένη καµπύλη Ευθεία
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο
Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )
Ονοματεπώνυμο Τμήμα ο Ερώτημα Να υπολογιστούν τα αόριστα ολοκληρώματα α) ( + + ) e d β) + ( + 4)( 5) 5 89 ΘΕΜΑ d Απάντηση α) θέτω u = + +και υ = e, επομένως dυ = e και du = ( + ) d. ( + + ) e d= u dυ =
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Γεωμετρικός Πυρήνας Αφφινικοί Μετασχηματισμοί Αναπαράσταση Γεωμετρικών Μορφών Γεωμετρικός Πυρήνας Εξομάλυνση Σημεία Καμπύλες Επιφάνειες
lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =
Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο
Γενικά Μαθηματικά. , :: x, :: x. , :: x, :: x. , :: x, :: x
Γενικά Μαθηματικά Κεφάλαιο Εισαγωγή Αριθμοί Φυσικοί 0,,,3, Ακέραιοι 0,,, 3, Ρητοί,, 0 Πραγματικοί Αν, με, :: x, :: x, :: x, :: x, :: x, :: x, :: x, :: x Συνάρτηση Κάθε διαδικασία αντιστοίχησης η οποία
Θέματα Εξετάσεων Σεπτεμβρίου 2012:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),
Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας
Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1
Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc164.materials.uoi.gr/dpapageo Για συνάρτηση μιας
Γραφικά Υπολογιστών: Αλγόριθμοι Σχεδίασης Γραμμών
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Αλγόριθμοι Σχεδίασης Γραμμών Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Τι είναι το pixel; Δειγματοληψία
Γραφικά Υπολογιστών: Φωτισμός
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Φωτισμός (llumination) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Μοντέλα φωτισμού στα γραφικά υπολογιστών
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη
Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο
Πολσώνσμα Bernstein και ευαρμογές τοσς στο CAGD. Διπλωματική Εργασία. Τμήμα Μητανικών Η/Υ, Τηλεπικοινωνιών & Δικτύων. Βόλος, Οκτώβριος 2011
Διπλωματική Εργασία Πολσώνσμα Bernstein και ευαρμογές τοσς στο CAGD Τμήμα Μητανικών Η/Υ, Τηλεπικοινωνιών & Δικτύων Βόλος, Οκτώβριος 2011 Όνομα : Αναγνωστοπούλου Ελένη Επιβλέποντες : Ακρίτας Αλκιβιάδης
Καµπύλες Bézier και Geogebra
Καµπύλες Bézier και Geogebra Κόλλιας Σταύρος Ένα από τα προβλήµατα στη σχεδίαση δυσδιάστατων εικόνων στα προγράµµατα γραφικών των υπολογιστών είναι η δηµιουργία οµαλών καµπυλών. Η λύση στο πρόβληµα αυτό
Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση
ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΝΑΥΠΗΓΙΚΗΣ Εφαρμοσμένα Μαθηματικά 3η εργαστηριακή άσκηση ΣΠΟΥΔΑΣΤΗΣ: ΧΑΤΖΗΓΕΩΡΓΙΟΥ ΑΝΤΩΝΗΣ Α.Μ. 09036 Εξάμηνο ΠΤΧ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΜΠΡΑΤΣΟΣ ΑΘΑΝΑΣΙΟΣ Περιεχόμενα 3.1 Πολυωνυμική παρεμβολή...
Quaternion Polynomials and Rational Rotation Minimizing Frame Curves
AGRICULTURAL UNIVERSITY OF ATHENS Department of Natural Resources Management and Agricultural Engineering Mathematics Laboratory Quaternion Polynomials and Rational Rotation Minimizing Frame Curves Petroula
Project 1: Principle Component Analysis
Project 1: Principle Component Analysis Μια από τις πιο σημαντικές παραγοντοποιήσεις πινάκων είναι η Singular Value Decomposition ή συντετμημένα SVD. Η SVD έχει πολλές χρήσιμες ιδιότητες, επιθυμητές σε
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς.
569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή ttp://ecourses.cemeng.ntu.gr/courses/computtionl_metods_or_engineers/ Παρεµβολή Παρεµβολή interpoltion είναι η διαδικασία µε την οποία βρίσκεται µία
Πίνακας Περιεχομένων
Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα
Ανάλυση με πεπερασμένα στοιχεία της κατεργασίας κοπής οδοντώσεων με φραιζάρισμα με κύλιση
Ανάλυση με πεπερασμένα στοιχεία της κατεργασίας κοπής οδοντώσεων με φραιζάρισμα με κύλιση Χριστοδουλόπουλος Αντώνιος 1 Εισαγωγή Κατηγορίες οδοντωτών τροχών Χαρακτηριστικά μεγέθη Κατασκευαστικές τεχνολογίες
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σημεία καμπής ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»
Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών
Τεχνικός Εφαρμογών Πληροφορικής Εργαλεία Δημιουργίας Τρισδιάστατων Γραφικών Εισαγωγή Εξάμηνο: 2014Β Διδάσκουσα: Ηλεκτρονική Τάξη: http://moodleforall.ictlab.edu.gr/ Περιεχόμενα Τι είναι τα γραφικά Είδη
Γραφικά Υπολογιστών: Εισαγωγή
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Εισαγωγή Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή Γραφικά Υπολογιστών Τι είναι? Περιοχές εφαρμογής
Γραφικά Υπολογιστών: 2D Μετασχηματισμοί (transformations)
ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: 2D Μετασχηματισμοί (transformations) Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Τι είναι ; Μετασχηματισμός είναι
Φυσική Β Λυκείου Γενικής
Η ΕΝΝΟΙΑ ΠΕΔΙΟ - ΕΝΤΑΣΗ. 1.ΕΡΩΤΗΣΕΙΣ ΣΥΝΤΟΜΗΣ ΑΠΑΝΤΗΣΗΣ 1. Ποιες είναι οι διαφορές μεταξύ της θεωρίας της δράσης από απόσταση και της θεωρίας του πεδίου. Ποια η επικρατέστερη θεωρία σήμερα; 2. Ποιος είναι
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
Επαναληπτικές Ασκήσεις
Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x
5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. ρ ρμ
569: Υπολογιστικές Μέθοδοι για Μηχανικούς Παρεμβολή Προσαρμογή ρ ρμ http://ecouseschemegtug/couses/computtol_methods_fo_egees/ Παρεµβολή Προσαρμογή Παρεµβολή tepolto είναι η διαδικασία µε την οποία βρίσκεται
ΕΓΧΕΙΡΙΔΙΟ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΤΗΝ ΧΡΗΣΗ MATLAB ΚΑΙ PYTHON ΗΛΙΑΣ ΧΟΥΣΤΗΣ
ΕΓΧΕΙΡΙΔΙΟ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟΔΩΝ ΓΙΑ ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΤΗΝ ΧΡΗΣΗ MATLAB ΚΑΙ PYTHON ΗΛΙΑΣ ΧΟΥΣΤΗΣ Μάιος 0 Αντί προλόγου Αντί Προλόγου Η μοντέρνα επιστήμη εξαρτάται από τις δυνατότητες μας να εκτελούμε
Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:
Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΧΑΡΑΞΕΩΝ 3
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΧΑΡΑΞΕΩΝ 3 Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστημίου Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr Αποτυπώσεις
4 ΜΟΝΤΕΛΑ ΑΚΜΩΝ - ΑΝΑΠΑΡΑΣΤΑΣΗ ΚΑΜΠΥΛΩΝ... 4-1
4 ΜΟΝΤΕΛΑ ΑΚΜΩΝ - ΑΝΑΠΑΡΑΣΤΑΣΗ ΚΑΜΠΥΛΩΝ... 4-4. ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ... 4-4. ΠΑΡΑΜΕΤΡΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΚΩΝΙΚΩΝ ΤΟΜΩΝ... 4-4.. ΟΡΙΣΜΟΣ... 4-4.. ΓΡΑΜΜΗ... 4-4 4.. ΚΥΚΛΟΣ ΚAI ΤΟΞΑ... 4-5 4..4 ΕΛΛΕΙΨΗ...
8. Η ζήτηση ενός αγαθού µεταβάλλεται προς την αντίθετη κατεύθυνση µε τη µεταβολή της τιµής του υποκατάστατου αγαθού.
ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σηµειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Η επιδίωξη της µέγιστης χρησιµότητας αποτελεί βασικό χαρακτηριστικό της συµπεριφοράς του καταναλωτή στη ζήτηση αγαθών.
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ
ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται
Διάλεξη 1 - Σημειώσεις 1
Διάλεξη 1 - Σημειώσεις 1 Σύνολα Πως διαβάζουμε κάποιους συμβολισμούς: ανήκει και η άρνηση, δηλαδή δεν ανήκει υπάρχει για κάθε : τέτοιο ώστε. Επίσης το σύμβολο έχει την ερμηνεία «τέτοιο ώστε» και ή υπονοεί
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό
Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x
A3. ΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ. εύτερη παράγωγος.παραβολική προσέγγιση ή επέκταση 3.Κυρτή 4.Κοίλη 5.Ιδιότητες κυρτών/κοίλων συναρτήσεων 6.Σηµεία καµπής ΠΑΡΑΡΤΗΜΑ 7. εύτερη πλεγµένη παραγώγιση 8.Χαρακτηρισµός
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F
Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM)"
ΑΤΕΙ ΧΑΛΚΙ ΑΣ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για το μάθημα "Σχεδίαση με υπολογιστές και δίκτυα παραγωγής (CAD/CAM" Εαρινό εξάμηνο 5 Χ. Οικονομάκος . Γενικά Χρήση γεωμετρικών μετασχηματισμών στα προγράμματα
ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑ Α ΟΜΑΔΑ ΠΡΩΤΗ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη
Θέματα Εξετάσεων Φεβρουαρίου 2013:
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΦΕΒΡΟΥΑΡΙΟΣ Θέματα Εξετάσεων Φεβρουαρίου : ΘΕΜΑ (μονάδες.) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (K,) και (,). Η συντεταγμένη Κ του ενδιάμεσου
Μοντελοποίηση Επιφανειών Με Μοντέλα Στερεών Με χρήση του σχεδιαστικού προγράμματος Creo και του Freestyle
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗ Μοντελοποίηση Επιφανειών Με Μοντέλα Με χρήση του σχεδιαστικού προγράμματος Creo και του Freestyle Ευτυχία Λουφαρδάκη Επιβλέπων καθηγητής: Νικόλαος
Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων
1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή
Θέματα Εξετάσεων Σεπτεμβρίου 2011:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ μονάδες.5 Η ωριαία μεταβολή της ηλιακής ακτινοβολίας q που προσπίπτει στην επιφάνεια ηλιακού συλλέκτη
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου
Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών
Ειδικά Θέματα Πολυμέσων
Ειδικά Θέματα Πολυμέσων Διδάσκων: Μάρκος Ζάμπογλου, Επιστημονικός Συνεργάτης Ίδρυμα / Τμήμα: Τ.Ε.Ι. Κρήτης / Τμήμα Μηχανικών Πληροφορικής 1 X3D o Extensible 3D Graphics: Standard for 3D on the Web o XML-based
ΣΧΕΔΙΑΣΗ ΤΕΜΑΧΙΩΝ ΣΕ ΣΥΣΤΗΜΑ CAD ΚΑΙ ΕΝΤΑΞΗ ΤΟΥΣ ΣΕ ΕΚΠΑΙΔΕΥΤΙΚΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ
ΣΧΕΔΙΑΣΗ ΤΕΜΑΧΙΩΝ ΣΕ ΣΥΣΤΗΜΑ CAD ΚΑΙ ΕΝΤΑΞΗ ΤΟΥΣ ΣΕ ΕΚΠΑΙΔΕΥΤΙΚΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Αριστομένης Αντωνιάδης Δρ. Νικόλαος Μπιλάλης Δρ. Παύλος Κουλουριδάκης ΚΑΝΙΑΔΑΚΗ ΑΙΜΙΛΙΑ Τρισδιάστατη μοντελοποίηση Είδη
ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
ΠΕΡΙΛΗΨΗ ΘΕΩΡΙΑΣ ΣΤΗΝ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Αλγεβρική τιμή διανύσματος Όταν ένα διάνυσμα είναι παράλληλο σε έναν άξονα (δηλαδή μια ευθεία στην οποία έχουμε ορίσει θετική φορά), τότε αλγεβρική τιμή του διανύσματος
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4
ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 4 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη και Τεχνολογία Μια Εισαγωγή ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση ονομάζεται ένα τμήμα κώδικα (ή υποπρόγραμμα) το
Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28
Αριθµητική Ανάλυση Κεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 Αριθµητική ΑνάλυσηΚεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 1 / 28 Τα πολυώνυµα Chebyshev Αν η f (n+1) (x) είναι συνεχής, τότε υπάρχει ένας αριθµός
10. Η επιδίωξη της μέγιστης χρησιμότητας αποτελεί βασικό χαρακτηριστικό της συμπεριφοράς του καταναλωτή στη ζήτηση αγαθών.
ΚΕΦΑΛΑΙΟ 2 : Η ΖΗΤΗΣΗ Να σημειώσετε το σωστό ή το λάθος στο τέλος των προτάσεων: 1. Όταν η ζήτηση ενός αγαθού είναι ελαστική, η συνολική δαπάνη των καταναλωτών για το αγαθό αυτό μειώνεται καθώς αυξάνεται
Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους
Επίλυση γεωµετρικών περιορισµών σε µικρά µόρια µε αλγεβρικές µεθόδους Επαµεινώνδας. Φριτζίλας Μ Ε Βιοπληροφορικής Τµήµα Βιολογίας ΕΚΠΑ 17 Φεβρουαρίου 2005 Τί σηµαίνει ο τίτλος ; γεωµετρικός περιορισµός:
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 6) 1 / 20 Ρυθμοί αύξησης Γραμμικός ρυθμός αύξησης: n, 2n, Πολυωνυμικός
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Παρεµβολή και Προσέγγιση Συναρτήσεων
Κεφάλαιο 4 Παρεµβολή και Προσέγγιση Συναρτήσεων 41 Παρεµβολή µε πολυώνυµο Lagrage Εστω ότι γνωρίζουµε τις τιµές µιας συνάρτησης f (x), f 0, f 1,, f ν σε σηµεία x 0, x 1,, x ν, και Ϲητάµε να υπολογίσουµε
ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ
ΕΦΑΡΜΟΓΕΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΣΤΗ ΝΑΥΠΗΓΙΚΗ ΚΑΙ ΣΤΗ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ Εισαγωγή στη μέθοδο των πεπερασμένων στοιχείων Α. Θεοδουλίδης Η Μεθοδος των Πεπερασμένων στοιχείων Η Μέθοδος των ΠΣ είναι μια
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014
minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 10: Γραφικά υπολογιστή Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΚΡΟΥΣΗ. α. η ολική κινητική ενέργεια του συστήματος. β. η ορμή του συστήματος. 1. Σε κάθε κρούση ισχύει
ΚΡΟΥΣΗ 1 ο ΘΕΜΑ Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σε κάθε κρούση ισχύει
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,
Κεφάλαιο Παρεμβολή Συναρτήσεις μιας μεταβλητής
Κεφάλαιο 6 Σύνοψη Αντικείμενο του κεφαλαίου είναι η παρουσίαση της διαδικασίας της παρεμβολής για τις ανάγκες αναπαράστασης καμπύλων γραμμών. Με δεδομένο ότι, η συνηθέστερη τεχνική αντιμετώπισης του προβλήματος
Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής y = αx 2 + βx + γ με α 0.
ΜΕΡΟΣ Α. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ,α 0 337. Η ΣΥΝΑΡΤΗΣΗ =α +β+γ ME α 0 Ορισμός Τετραγωνική ονομάζεται κάθε συνάρτηση της μορφής = α + β + γ με α 0. Η συνάρτηση = α +β+γ με α > 0 Η γραφική παράσταση της συνάρτησης
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής
Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής Μαθηματικός Λογισμός Ενότητα: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ- ΠΟΛΛΑΠΛΗ ΟΛΟΚΛΗΡΩΣΗ- ΠΑΡΑΔΕΙΓΜΑΤΑ Παναγιώτης Βλάμος Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Το πρόγραµµα ALGOR και εφαρµογές σε ναυπηγικές κατασκευές
Παράρτηµα Γ Το πρόγραµµα ALGOR και εφαρµογές σε ναυπηγικές κατασκευές 1. Εισαγωγή Το σύνολο των προγραµµάτων ALGOR είναι ένα εργαλείο µελέτης (σχεδιασµού και ανάλυσης) κατασκευών και βασίζεται στη µέθοδο
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ι. Δημόπουλος Τμήμα Διοίκησης Μονάδων Υγείας και Πρόνοιας -ΤΕΙ Καλαμάτας ΚΑΠΟΙΟΙ ΒΑΣΙΚΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΕΝΝΟΙΕΣ Ν = {1,2,3,...} το σύνολο των φυσικών αριθμών Ζ = {0, ±1, ±2, ±3,..
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν