4.1 Πράξεις με Πολυωνυμικές Εκφράσεις... 66
|
|
- Γάδ Σαμαράς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Περιεχόμενα Ευρετήριο Πινάκων... 7 Ευρετήριο Εικόνων... 8 Εισαγωγή... 9 Κεφάλαιο 1-Περιβάλλον Εργασίας - Στοιχεία Εντολών Το Πρόγραμμα Εισαγωγή Εντολών Εισαγωγή Εντολών με Χρήση του Μαθηματικού Συμβολισμού Εισαγωγή και Επεξεργασία Κειμένου Ενότητες Εντολές και Βασικοί Κανόνες Σύνταξης τους Βοήθεια Συντομεύσεις Πληκτρολόγιου Κεφάλαιο 2-Αριθμητικοί Υπολογισμοί Βασικές Πράξεις και Συναρτήσεις Προσεγγιστικές και Ακριβείς Τιμές Αρίθμηση Αποτελεσμάτων Συντομεύσεις Απλοποίηση Αριθμητικών Εκφράσεων Μιγαδικοί Αριθμοί Κεφάλαιο 3-Μεταβλητές Απόδοση Τιμής Τύποι Μεταβλητών Υποθέσεις σε Μεταβλητές Κεφάλαιο 4-Αλγεβρικοί Υπολογισμοί Πράξεις με Πολυωνυμικές Εκφράσεις... 66
2 4 Εισαγωγή στο Maple 4.2 Παραγοντοποίηση Ανάπτυγμα Απλοποίηση Collect Αντικατάσταση Κεφάλαιο 5-Βασικές Δομές Δεδομένων Ακολουθίες Εκφράσεων Λίστες Σύνολα Πίνακες Κεφάλαιο 6-Διανύσματα-Μήτρες Διανύσματα Μήτρες Πράξεις με Διανύσματα και Μήτρες Πακέτο Εντολών Linearalgebra Λυμένες Ασκήσεις Κεφάλαιο 7-Λύση Εξισώσεων- Ανισώσεων Ακριβής Επίλυση Αλγεβρικών Εξισώσεων-Συστημάτων Προσεγγιστική Επίλυση Αλγεβρικών Εξισώσεων Λύση Ανισώσεων Κεφάλαιο 8-Ακολουθίες Αριθμών-Σειρές Ακολουθίες Σειρές Δυναμοσειρές Κεφάλαιο 9-Λογισμός Συναρτήσεων μιας Μεταβλητής Ορισμός Συνάρτησης Όριο Παραγώγιση
3 Περιεχόμενα Ανάπτυγμα Taylor Ολοκλήρωση Κεφάλαιο 10-Γραφικές Παραστάσεις στο Επίπεδο Γραφική Παράσταση Συνάρτησης Οδηγός Γραφικής Παράστασης Γραφική Παράσταση Πολλών Συναρτήσεων Σχεδιάζοντας Σημεία Σημεία και Γραφικές Παραστάσεις Γραφική Παράσταση Πεπλεγμένης Συνάρτησης Γραφική Παράσταση Παραμετρικών Εξισώσεων Γραφική Παράσταση Συνάρτησης σε Πολικές Συντεταγμένες Γραφικές Παραστάσεις Βασικών Σχημάτων στο Επίπεδο Κίνηση Κεφάλαιο 11-Λυμένες Ασκήσεις στις Συναρτήσεις μιας Μεταβλητής Κεφάλαιο 12-Λογισμός Συναρτήσεων Πολλών Μεταβλητών Ορισμός Συνάρτησης Όριο Μερική Παράγωγος Κατευθυνόμενη Παράγωγος Πολλαπλή Ολοκλήρωση Κεφάλαιο 13-Γραφικές Παραστάσεις στο Χώρο Γραφική Παράσταση Συνάρτησης Δυο Μεταβλητών Γραφική Παράσταση Συνάρτησης Πεπλεγμένης Μορφής Γραφική Παράσταση Παραμετρικών Εξισώσεων Ισοσταθμικές Καμπύλες Εμφανίζοντας Πολλές Γραφικές Παραστάσεις Βασικά Σχήματα στο Χώρο
4 6 Εισαγωγή στο Maple Κεφάλαιο 14-Λυμένες Ασκήσεις στις Συναρτήσεις Πολλών Μεταβλητών Κεφάλαιο 15-Διαφορικές Εξισώσεις Συνήθεις Διαφορικές Εξισώσεις Οικογένεια Ολοκληρωτικών Καμπυλών Αριθμητική Επίλυση Διαφορικών Εξισώσεων Διαφορικές Εξισώσεις με Μερικές Παραγώγους Κεφάλαιο 16-Προσεγγιστικές Μέθοδοι Μέθοδος Ελαχίστων Τετραγώνων Παρεμβολή Αριθμητική Ολοκλήρωση Κεφάλαιο 17-Στοιχεία Προγραμματισμού Εντολές Επανάληψης Εντολές Ελέγχου Ορίζοντας Διαδικασίες Χρόνος υπολογισμών Ανάγνωση-Εγγραφή σε Αρχεία Εισαγωγή στα Maplets Ευρετήριο Εντολών Βιβλιογραφία
5 Ευρετήριο Πινάκων ΠΙΝΑΚΑΣ 1. ΣΥΝΤΟΜΕΥΣΕΙΣ ΠΛΗΚΤΡΟΛΟΓΙΟΥ 33 ΠΙΝΑΚΑΣ 2 ΒΑΣΙΚΩΝ ΠΡΑΞΕΩΝ ΚΑΙ ΣΥΝΑΡΤΗΣΕΩΝ 40 ΠΙΝΑΚΑΣ 3. ΒΑΣΙΚΩΝ ΠΡΑΞΕΩΝ ΚΑΙ ΣΥΝΑΡΤΗΣΕΩΝ 40 ΠΙΝΑΚΑΣ 4. ΕΝΤΟΛΕΣ ΓΙΑ ΤΟΥΣ ΑΚΕΡΑΙΟΥΣ 43 ΠΙΝΑΚΑΣ 5. ΒΑΣΙΚΕΣ ΕΝΤΟΛΕΣ ΜΙΓΑΔΙΚΩΝ ΕΝΤΟΛΩΝ. 48 ΠΙΝΑΚΑΣ 6. ΠΡΑΞΕΙΣ ΜΕ ΠΟΛΥΩΝΥΜΑ 66 ΠΙΝΑΚΑΣ 7. ΕΝΤΟΛΕΣ ΓΙΑ ΤΑ ΠΟΛΥΩΝΥΜΑ. 66 ΠΙΝΑΚΑΣ 8. ΠΡΑΞΕΙΣ ΜΕ ΜΗΤΡΕΣ. 114 ΠΙΝΑΚΑΣ 9. ΕΙΔΙΚΕΣ ΜΗΤΡΕΣ ΚΑΙ ΔΙΑΝΥΣΜΑΤΑ. 119 ΠΙΝΑΚΑΣ 10. ΒΑΣΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΟΥ ΠΑΚΕΤΟΥ LINEARALGEBRA. 122 ΠΙΝΑΚΑΣ 11. ΒΑΣΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΟΥ ΠΑΚΕΤΟΥ LINEARALGEBRA. 123 ΠΙΝΑΚΑΣ 12. ΤΕΛΕΣΤΕΣ ΜΗΤΡΩΝ 125 ΠΙΝΑΚΑΣ 13. ΤΕΛΕΣΤΕΣ ΔΙΑΝΥΣΜΑΤΩΝ. 127 ΠΙΝΑΚΑΣ 14. ΕΙΔΙΚΕΣ ΜΟΡΦΕΣ ΜΗΤΡΩΝ ΤΟΥ ΠΑΚΕΤΟΥ LINEARALGEBRA. 129 ΠΙΝΑΚΑΣ 15. ΠΑΡΑΜΕΤΡΟΙ ΤΗΣ ΕΝΤΟΛΗ PLOT ΓΙΑ ΤΗΝ ΕΥΚΡΙΝΕΙΑ. 200 ΠΙΝΑΚΑΣ 16. ΠΑΡΑΜΕΤΡΟΙ ΤΗΣ ΕΝΤΟΛΗΣ PLOT ΓΙΑ ΚΕΙΜΕΝΟ. 205 ΠΙΝΑΚΑΣ 17. ΒΑΣΙΚΑ ΣΧΗΜΑΤΑ ΣΤΟ ΕΠΙΠΕΔΟ. 218 ΠΙΝΑΚΑΣ 18. ΠΑΡΑΜΕΤΡΩΝ ΤΗΣ PLOT3D 256 ΠΙΝΑΚΑΣ 19. ΠΑΡΑΜΕΤΡΩΝ ΤΗΣ PLOT3D 259 ΠΙΝΑΚΑΣ 20. ΠΑΡΑΜΕΤΡΟΙ ΤΗΣ PLOT3D (ΓΡΑΜΜΑΤΟΣΕΙΡΕΣ) 260 ΠΙΝΑΚΑΣ 21. ΒΑΣΙΚΑ ΣΧΗΜΑΤΑ ΣΤΟ ΧΩΡΟ 265 ΠΙΝΑΚΑΣ 22. ΔΥΝΑΤΕΣ ΤΙΜΕΣ ΤΗΣ ΠΑΡΑΜΕΤΡΟΥ METHOD ΓΙΑ ΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΜΙΑΣ Δ.Ε. 298
6 Ευρετήριο Εικόνων ΕΙΚΟΝΑ 1. COMMAND LINE MODE ΕΙΚΟΝΑ 2. STANDARD MAPLE 11, Η ΕΚΔΟΣΗ ΥΛΟΠΟΙΗΜΕΝΗ ΣΕ JAVA ΕΙΚΟΝΑ 3. MAPLE- ΕΙΣΑΓΩΓΗ ΕΝΤΟΛΩΝ ΕΙΚΟΝΑ 4. CLASSIC WORKSHEET MAPLE ΕΙΚΟΝΑ 5. FILE MENU ΕΙΚΟΝΑ 6. EDIT MENU ΕΙΚΟΝΑ 7. VIEW MENU ΕΙΚΟΝΑ 8. INSERT MENU ΕΙΚΟΝΑ 9. FORMAT MENU ΕΙΚΟΝΑ 10. ΕΡΓΑΛΕΙΟΘΗΚΗ ΕΙΚΟΝΑ 11. ΓΡΑΜΜΗ ΚΑΤΑΣΤΑΣΗΣ ΕΙΚΟΝΑ 12. ΣΥΝΤΟΜΕΥΣΕΩΝ ΣΤΟ STANDARD MAPLE ΠΕΡΙΒΑΛΛΟΝ ΕΙΚΟΝΑ 13. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΕΙΚΟΝΑ 14. ΕΙΣΑΓΩΓΗ ΕΝΤΟΛΩΝ - 2D MAPLE INPUT ΕΙΚΟΝΑ 15. ΠΑΡΑΔΕΙΓΜΑ ΕΙΣΑΓΩΓΗΣ ΚΕΙΜΕΝΟΥ ΕΙΚΟΝΑ 16. ΟΡΙΣΜΟΣ ΑΡΧΕΙΟΥ ΕΛΛΗΝΙΚΟΥ ΟΡΘΟΓΡΑΦΟΥ ΕΙΚΟΝΑ 17. ΠΑΡΑΔΕΙΓΜΑ ΕΙΣΑΓΩΓΗΣ ΕΝΟΤΗΤΩΝ ΚΑΙ ΥΠΟΕΝΟΤΗΤΩΝ ΕΙΚΟΝΑ 18. ΠΟΛΛΑ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΕΙΚΟΝΑ 19. Ο ΚΩΔΙΚΑΣ ΥΛΟΠΟΙΗΣΗΣ (ΣΕ ΕΝΤΟΛΕΣ MAPLE) ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΤΟΥ ΛΟΓΑΡΙΘΜΟΥ LN ΕΙΚΟΝΑ 20. ΒΟΗΘΕΙΑ ΕΙΚΟΝΑ 21. TOPIC SEARCH ΕΙΚΟΝΑ 22. ΧΡΗΣΗ ΕΤΙΚΕΤΩΝ (LABEL)... 46
7 Εισαγωγή Τα συστήματα συμβολικής Άλγεβρας, Computer Algebra System (C.A.S.), είναι προηγμένα περιβάλλοντα εργασίας που μας επιτρέπουν να κάνουμε αριθμητικούς υπολογισμούς με ακριβείς ή προσεγγιστικές τιμές. Επίσης, μας επιτρέπουν να κάνουμε συμβολικούς υπολογισμούς (δηλαδή υπολογισμούς με σύμβολα των οποίων το αποτέλεσμα δεν είναι κατ ανάγκη αριθμός). Το 1969 στο εργαστήριο υπολογιστών του MIT δημιουργήθηκε το πρώτο C.A.S. σύστημα, γνωστό ως Macsyma, το οποίο αναπτύχθηκε σε γλώσσα προγραμματισμού Lisp. Σήμερα υπάρχει πληθώρα τέτοιων προγραμμάτων τόσο ανοικτού κώδικα, στα οποία έχει κανείς ελεύθερη πρόσβαση, όπως το Maxima, Octave κ.ά. όσο και «προστατευμένου» κώδικα όπως το Derive, Mathematica, Mathcad και το Maple. To Maple 1 ανήκει στην κατηγορία των συστημάτων συμβολικής άλγεβρας. Χρησιμοποιείται ευρέως από μαθηματικούς, μηχανικούς και άλλους επιστήμονες, στα χέρια των οποίων αποτελεί ένα πολύ καλό επιστημονικό εργαλείο για έρευνα, αλλά και ένα σύγχρονο μέσο διδασκαλίας. Το Maple είναι ένα ισχυρό μαθηματικό πακέτο και μια ιδιαίτερα προηγμένη γλώσσα προγραμματισμού. Αναπτύχθηκε από το πανεπιστήμιο του Καναδά Waterloo και το ερευνητικό κέντρο ETH Zürich, ενώ η ανάπτυξή του έχει γίνει σε γλώσσα προγραμματισμού C. Στην Καναδική του καταγωγή οφείλεται και το λογότυπός του. το οποίο μοιάζει με την καναδική σημαία. Από 1995 συνεχίζεται η ανάπτυξη και η προώθησή του σε συνεργασία με την εταιρία Waterloo Maple Software. Βρίσκεται ήδη στη 11 η έκδοσή του και έχει αναπτυχθεί σε πολλές πλατφόρμες λειτουργικών συστημάτων, όπως Windows, Macintosh, Linux, Sun Solaris, HP-UX, DEC, Irix, AIX. Η ανάπτυξή του είναι συνεχής και ανοικτή σε όλους τους χρήστες του, στους οποίους παρέχεται η δυνατότητα να δημιουργήσουν βιβλιοθήκες προγραμμάτων και εντολών. Περισσότερα στοιχεία καθώς και έτοιμα φύλλα εργασίας μπορεί να βρει κανείς στο διαδίκτυο, στο Maple Application Center Στο βιβλίο αυτό παρουσιάζονται βασικά θέματα στα οποία το Maple παρέχει τη δυνατότητα για επίλυση και επεξεργασία. Έχει καταβληθεί προσπάθεια να παρουσιάζονται οι εντολές με αρκετές λεπτομέρειες, πράγμα όμως που δεν είναι πάντα δυνατόν λόγω των πολλών παραμέτρων που αυτές δέχονται οι εντολές. Το βιβλίο αυτό αποτελείται από 17 κεφάλαια και η δομή τους είναι η εξής: 1 Waterloo Maple Inc.
8 10 Εισαγωγή στο Maple Στο 1 ο κεφάλαιο παρουσιάζεται το γραφικό περιβάλλον εργασίας, καθώς και οι πολλές ευκολίες που αυτό παρέχει μέσα από τα μενού και τις διάφορες συντομεύσεις. Επίσης, παρουσιάζονται κάποιοι βασικοί κανόνες για τη σύνταξη των εντολών. Στο 2 ο κεφάλαιο παρουσιάζεται o τρόπος με τον οποίο μπορούμε να χρησιμοποιήσουμε το Maple ως αριθμομηχανή πολύ μεγάλης ακρίβειας. Στο κεφάλαιο 3 παρουσιάζεται ο τρόπος με τον οποίο μπορούμε να ορίσουμε μεταβλητές και γίνεται ανάλυση των βασικών τύπων τους. Στο κεφάλαιο 4 παρουσιάζονται οι αλγεβρικοί υπολογισμοί, καθώς και ο τρόπος με τον οποίο μπορούμε να ορίσουμε μαθηματικές εκφράσεις και να τις επεξεργαστούμε εφαρμόζοντας τις γνωστές ιδιότητες για την παραγοντοποίηση αλγεβρικών και αριθμητικών παραστάσεων, την απλοποίησή τους κ.ά. Στα κεφάλαια 5 παρουσιάζονται οι βασικές δομές του Array, Table, λίστας και σύνόλου. Στο κεφάλαιο 6 παρουσιάζονται τα διανύσματα και οι μήτρες καθώς και το πακέτο εντολών για την Γραμμική Άλγεβρα που μας παρέχει τη δυνατότητα να κάνουμε λογισμό με Μήτρες και Διανύσματα. Στο κεφάλαιο 7 επιλύονται εξισώσεις και συστήματα γραμμικά και μη γραμμικά, καθώς και ανισώσεις. Επίσης, παρουσιάζεται η αριθμητική επίλυση εξισώσεων και συστημάτων. Στα κεφάλαια 8 παρουσιάζουμε τις εντολές εκείνες με τις οποίες μπορούμε να χειριστούμε ακολουθίες και σειρές. Στα κεφάλαια 9 και 10 ασχολούμαστε με τις εντολές που μας επιτρέπουν να παρουσιάσουμε θέματα λογισμού μιας μεταβλητής. Δίνεται ο τρόπος ορισμού των συναρτήσεων και οι εντολές για τον υπολογισμό ορίων, παραγώγων και ολοκληρωμάτων. Επίσης, παρουσιάζονται αναλυτικά εντολές που μας επιτρέπουν να σχεδιάσουμε γραφικές παραστάσεις και σχήματα στο επίπεδο. Στο κεφάλαιο 11 βλέπουμε κάποιες βασικές ασκήσεις στο λογισμό μιας μεταβλητής. Στα κεφάλαια 12 και 13 παρουσιάζουμε τον τρόπο με τον οποίο μπορούμε να γενικεύσουμε τις εντολές του κεφαλαίου 9, ώστε να μπορούμε να αντιμετωπίσουμε θέματα από το λογισμό πολλών μεταβλητών. Επίσης, παρουσιάζονται αναλυτικά εντολές που μας επιτρέπουν να σχεδιάσουμε γραφικές παραστάσεις και σχήματα στο χώρο, ενώ παρατίθενται και κάποιες ασκήσεις για συναρτήσεις πολλών μεταβλητών. Στο κεφάλαιο 14 βλέπουμε κάποιες βασικές ασκήσεις στο λογισμό συναρτήσεων πολλών μεταβλητών.
9 Εισαγωγή 11 Στο κεφάλαιο 15 επιλύονται συνήθεις και μερικές διαφορικές εξισώσεις και παρουσιάζεται το πακέτο εντολών DEtools. Στο κεφάλαιο 16 γίνεται μια παρουσίαση ορισμών βασικών προσεγγιστικών θεμάτων. Τέλος στο κεφάλαιο 17 δίνονται στοιχεία προγραμματισμού και διασύνδεσης του Maple με άλλα προγράμματα.
Περιεχόμενα. Λίγα λόγια για τους συγγραφείς
Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια
Διαβάστε περισσότεραΠεριεχόμενα. Λίγα λόγια για τους συγγραφείς
Περιεχόμενα Λίγα λόγια για τους συγγραφείς xii Εισαγωγή xiii 1 Συναρτήσεις 1 1.1 Ανασκόπηση των συναρτήσεων 1 1.2 Παράσταση συναρτήσεων 12 1.3 Τριγωνομετρικές συναρτήσεις 26 Ασκήσεις επανάληψης 34 2 Όρια
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο
Διαβάστε περισσότεραΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός
2 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 3 ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ 4 ΤΟΜΟΣ Α : Συμβολικός Προγραμματισμός 5 ΓΕΩΡΓΙΟΣ ΘΕΟΔΩΡΟΥ Καθηγητής Α.Π.Θ. ΧΡΙΣΤΙΝΑ ΘΕΟΔΩΡΟΥ Μαθηματικός ΟΔΗΓΟΣ στη ΧΡΗΣΗ του ΥΠΟΛΟΓΙΣΤΗ
Διαβάστε περισσότεραΧρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB
Χρονικές σειρές 1 ο μάθημα: Εισαγωγή στη MATLAB Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΑπό την Άλγεβρα των Υπολογισμών στα Υπολογιστικά Συστήματα Άλγεβρας
Από την Άλγεβρα των Υπολογισμών στα Υπολογιστικά Συστήματα Άλγεβρας Νικόλαος Καραμπετάκης Επίκουρος Καθηγητής Τμήμα Μαθηματικών, Α.Π.Θ. http://anemos.web.auth.gr/mathematica/index.htm http://anadrasis.web.auth.gr/n.karampetakis.htm
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. 4o Εργαστήριο Σ.Α.Ε
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 4o Εργαστήριο Σ.Α.Ε Ενότητα : Μελέτη και Σχεδίαση Σ.Α.Ε Με χρήση του MATLAB Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΛογισμικό για Μαθηματικά
Λογισμικό για Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 6 Αυγούστου 2012 Λογισμικό 2 Λογισμικό Με τον όρο λογισμικό υπολογιστών, ή λογισμικό (software), ορίζεται η συλλογή από προγράμματα
Διαβάστε περισσότεραΠιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.
i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical
Διαβάστε περισσότεραΠεριβάλλον Εργασίας Στοιχεία Εντολών
Κεφάλαιο 1 Περιβάλλον Εργασίας Στοιχεία Εντολών Το Maple, όπως πλέον και κάθε σύγχρονο υπολογιστικό - προγραμματιστικό περιβάλλον, είναι αρκετά φιλικό στο χρήστη και έχει τη δυνατότητα να εκτελείται εκτός
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΣΥΝΟΛΩΝ ΚΑΙ ΣΥΝΔΥΑΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΚΕΦΑΛΑΙΟ ΠΡΩΤΟ 17 ΣΥΝΟΛΑ ΣΧΕΣΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ 17 1. Η έννοια του συνόλου 17 2. Εγκλεισμός και ισότητα συνόλων 19
Διαβάστε περισσότερα1. Εισαγωγή στο Sage.
1. Εισαγωγή στο Sage. 1.1 Το μαθηματικό λογισμικό Sage Το Sage (System for Algebra and Geometry Experimentation) είναι ένα ελεύθερο (δωρεάν) λογισμικό μαθηματικών ανοιχτού κώδικα που υποστηρίζει αριθμητικούς
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών... 37 3.1 Αριθμητικά σύνολα... 37 3.2 Ιδιότητες... 37 3.3 Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος... 5 Κεφάλαιο Βασικές αριθμητικές πράξεις... 5. Τέσσερις πράξεις... 5. Σύστημα πραγματικών αριθμών... 5. Γραφική αναπαράσταση πραγματικών αριθμών... 6.4 Οι ιδιότητες της πρόσθεσης
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 3 Οι ιδιότητες των αριθμών Αριθμητικά σύνολα Ιδιότητες Περισσότερες ιδιότητες...
Περιεχόμενα Πρόλογος 5 Κεφάλαιο Βασικές αριθμητικές πράξεις 5 Τέσσερις πράξεις 5 Σύστημα πραγματικών αριθμών 5 Γραφική αναπαράσταση πραγματικών αριθμών 6 Οι ιδιότητες της πρόσθεσης και του πολλαπλασιασμού
Διαβάστε περισσότεραΜαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Σύνθετοι αναλυτικοί - αριθμητικοί υπολογισμοί Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ
Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 13 ΜΕΡΟΣ ΠΡΩΤΟ ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 15 ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΠΟΛΛΩΝ ΜΕΤΑΒΛΗΤΩΝ 17 1. Εισαγωγή 17 2. Πραγματικές συναρτήσεις διανυσματικής μεταβλητής
Διαβάστε περισσότεραΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι-αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26
Διαβάστε περισσότεραΚάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη
Κάθε γνήσιο αντίτυπο φέρει τη σφραγίδα του εκδότη ΘΩΜΑΣ Α. ΚΥΒΕΝΤΙΔΗΣ Γεννήθηκε το 1947 στο Νέο Πετρίτσι του Ν. Σερρών. Το 1965 αποφοίτησε από το εξατάξιο Γυμνάσιο Σιδηροκάστρου του Ν. Σερρών και εγγράφηκε
Διαβάστε περισσότεραΓράφημα της συνάρτησης = (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R )
Γράφημα της συνάρτησης f( x), αν p x< 0 F( x) = f( x), αν 0 x p και F( x+ 2 p) = F( x), x R (δηλ. της περιττής περιοδικής επέκτασης της f = f( x), 0 x p στο R ) ΠΡΟΛΟΓΟΣ Το Βιβλίο αυτό απευθύνεται στους
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43
ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...5 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ... ΚΕΦΑΛΑΙΟ ΕΥΘΕΙΕΣ... ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...4 ΚΕΦΑΛΑΙΟ 5 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΙ
Διαβάστε περισσότερα1 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΑΘΑΙΝΟΝΤΑΣ ΤΟ MATLAB, ΜΕΡΟΣ Α Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότερα1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Διαβάστε περισσότεραΚυκλώματα, Σήματα και Συστήματα
Κυκλώματα, Σήματα και Συστήματα Μάθημα 7 Ο Μετασχηματισμός Z Βασικές Ιδιότητες Καθηγητής Χριστόδουλος Χαμζάς Ο Μετασχηματισμός Ζ Γιατί χρειαζόμαστε τον Μετασχηματισμό Ζ; Ανάγει την επίλυση των αναδρομικών
Διαβάστε περισσότεραΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26
Διαβάστε περισσότεραΠεριεχόμενα ΜΕΡΟΣ ΠΡΩΤΟ. Πρόλογος... 13
Περιεχόμενα Πρόλογος... 13 ΜΕΡΟΣ ΠΡΩΤΟ Κεφ. 1 Περί προγραμματισμού και γλωσσών προγραμματισμού Προγράμματα και Λειτουργικά Συστήματα... 17 Γλώσσες προγραμματισμού και εργαλεία ανάπτυξης προγραμμάτων...
Διαβάστε περισσότεραΕισαγωγή στο Mathematica
Εισαγωγή στο Mathematica Συντακτικοί κανόνες, βασικές συναρτήσεις και σύμβολα Το Mathematica είναι ένα λογισμικό το οποίο εγκαθιστά στον υπολογιστή ένα διαδραστικό μαθηματικό περιβάλλον. Το περιβάλλον
Διαβάστε περισσότερα7.5 ΑΡΑΙΕΣ ΜΗΤΡΕΣ Κατασκευή αραιών µητρών Πράξεις και συναρτήσεις αραιών µητρών Συναρτήσεις για γραφήµατα...
Κ. Π Α Π Α Ρ Ρ Ι Ζ Ο Σ M A T L A B 6 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π Ρ Ο Λ Ο Γ Ο Σ............. v Κ Ε Φ Α Λ Α Ι Ο 1 Β Α Σ Ι Κ Ε Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Ε Σ Τ Ο Υ M A T L A B 1 1.1 ΠΡΑΞΕΙΣ ΚΑΙ ΑΡΙΘΜΗΤΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
Διαβάστε περισσότερα40 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ)
Άσκηση η 4 Ασκήσεις στον ΟΛΟΚΛΗΡΩΤΙΚΟ ΛΟΓΙΣΜΟ ( Επεξεργασία του ΜΑΝΩΛΗ ΨΑΡΡΑ) Έστω f, g είναι συνεχείς συναρτήσεις στο διάστημα, να δείξετε: Α. (Ανισότητα των Cauchy-Schwarz) Β.( Ανισότητα του Minkowski)
Διαβάστε περισσότεραΛΧ1004 Μαθηματικά για Οικονομολόγους
ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
Διαβάστε περισσότεραΕισαγωγή στο SAGE. Νίκος Νοδαράκης. 31 Οκτωβρίου 2010
Εισαγωγή στο Νίκος Νοδαράκης 31 Οκτωβρίου 2010 Τι είναι το ; Περιγραφή του Ορισµός Το είναι ένα δωρεάν σύστηµα λογισµικού µαθηµατικών ανοιχτού κώδικα κάτω από την άδεια GPL. Συνδυάζει τις δυνατότητες πολλών
Διαβάστε περισσότεραΑριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών
Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Διαβάστε περισσότεραΕισαγωγή στην υπολογιστική άλγεβρα με το πρόγραμμα Maxima ΜΗ ΕΙΝΑΙ ΒΑΣΙΛΙΚΗΝ ΑΤΡΑΠΟΝ ΕΠΙ ΓΕΩΜΕΤΡΙΑΝ Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 7 Νοεμβρίου 2013 1 / 35 Λίγα λόγια για το Maxima
Διαβάστε περισσότεραΠίνακας Περιεχομένων
Πίνακας Περιεχομένων Πρόλογος... 11 Κεφάλαιο 1o: Εισαγωγικά... 15 1.1 Με τι ασχολείται η Αριθμητική Ανάλυση... 15 1.2 Πηγές Σφαλμάτων... 17 1.2.1 Εισόδου... 17 1.2.2 Αριθμητικής Υπολογιστών... 18 1.2.3
Διαβάστε περισσότεραhttp://users.auth.gr/~ppi/mathematica
http://users.auth.gr/~ppi/mathematica ΜΑΘΗΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΡΙΘΜΗΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Γλώσσες Προγραμματισμού Fortran, C++, Java,. ΑΛΓΕΒΡΙΚΟΙ ή ΣΥΜΒΟΛΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Computer Algebra Systems Mathematica,
Διαβάστε περισσότεραΜαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ
Μαρία Χ.Γουσίδου-Κουτίτα Επίκουρη Καθηγήτρια Τμήματος Μαθηματικών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΘΕΣΣΑΛΟΝΙΚΗ 2004 Κάθε γνήσιο αντίτυπο υπογράφεται από τη συγγραφέα ΑΡΙΘΜΗΤΙΚΗ
Διαβάστε περισσότερα7.5 ΑΡΑΙΕΣ ΜΗΤΡΕΣ 290 7.5.1 Κατασκευή αραιών µητρών... 290 7.5.2 Πράξεις και συναρτήσεις αραιών µητρών... 294 7.5.3 Συναρτήσεις για γραφήµατα...
Κ. Π Α Π Α Ρ Ρ Ι Ζ Ο Σ M A T L A B 6. 5 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Π Ρ Ο Λ Ο Γ Ο Σ............. v Κ Ε Φ Α Λ Α Ι Ο 1 Β Α Σ Ι Κ Ε Σ Λ Ε Ι Τ Ο Υ Ρ Γ Ι Ε Σ Τ Ο Υ M A T L A B 1 1.1 ΠΡΑΞΕΙΣ ΚΑΙ ΑΡΙΘΜΗΤΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
Διαβάστε περισσότεραΠίνακας Περιεχομένων
Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα
Διαβάστε περισσότεραάλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου
άλγεβρα και αλγεβρική σκέψη μαρία καλδρυμίδου άλγεβρα από την επίλυση εξισώσεων στη μελέτη των μεταβολών, των σχέσεων, των κανονικοτήτων και δομών, σε ένα περιβάλλον αναλυτικού συμβολικού συλλογισμού με
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ
ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1
i ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 ΚΕΦΑΛΑΙΟ 1 Αριθµοί και Μεταβλητές... 5 1.1. Το σύνολο των φυσικών αριθµών Φ... 5 1.2. Το σύνολο Φ 0 των ακέραιων της Αριθµητικής... 7 1.3. Το σύνολο των σύµµετρων αριθµών Σ...
Διαβάστε περισσότεραΕξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος Εξεταστέα ύλη Γεωμετρίας Α Λυκείου Σχολικό έτος
Εξεταστέα ύλη Άλγεβρας Α Λυκείου Σχολικό έτος 2015-2016 Κεφάλαιο 1ο Παράγραφοι: 1.1, 1.2 Κεφάλαιο 2ο Παράγραφοι: 2.3, 2.4 Κεφάλαιο 3ο Παράγραφοι: 3.1, 3.3 Κεφάλαιο 4ο Παράγραφοι: 4.1, 4.2 Κεφάλαιο 6ο Παράγραφοι:
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση
Διαβάστε περισσότεραΕισαγωγή στην Αριθμητική Ανάλυση
Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον
Διαβάστε περισσότεραΘερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραO ƒ ΔÀÃπ ø À ø Ì Ï ÚˆÌ
O ƒ ΔÀÃπ ø À ø Ì Ï ÚˆÌ 2018-2020 ƒπ à ª π ø ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΕΠΙΣΤΗΜΩΝ Τμήμα Μαθηματικών και Στατιστικής...5-7 ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής...9 ΦΙΛΟΣΟΦΙΚΗ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση
ΜΑΘΗΜΑΤΙΚΑ Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Μέτης Στέφανος Μπρουχούτας Κων/νος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Καθηγητής
Διαβάστε περισσότεραΟμάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Η Mathematica είναι ένα ολοκληρωμένο μαθηματικό πακέτο με πάρα πολλές δυνατότητες σε σχεδόν όλους τους τομείς των μαθηματικών (Άλγεβρα, Θεωρία συνόλων, Ανάλυση,
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας
Διαβάστε περισσότεραΠαραδόσεις 4. Μαθήματα Γενικής Υποδομής Υποχρεωτικά. Δεν υφίστανται απαιτήσεις. Ελληνική/Αγγλική ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ DP1021 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Πρώτο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Μαθηματικά ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ σε
Διαβάστε περισσότεραδιανύσματα - Πίνακες - Struct Στατικό διάνυσμα Είσοδος Έξοδος δεδομένων Συναρτήσεις Χειρισμός σφαλμάτων ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ
ΤΕΤΑΡΤΗ ΔΙΑΛΕΞΗ Σύνολο στοιχείων ίδιου τύπου (1/2) Ένα σύνολο στοιχείων ίδιου τύπου διακρίνεται σε δύο κατηγορίες με βάση τη διάσταση: Μονοδιάστατο Αν μπορούμε να θεωρούμε ότι τα στοιχεία είναι συνεχόμενα
Διαβάστε περισσότεραΠεριεχόμενα. σελ. Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii
Περιεχόμενα Πρόλογος 1 ης Έκδοσης... ix Πρόλογος 2 ης Έκδοσης... xi Εισαγωγή... xiii 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή... 1 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων... 2 1.2 Συνάρτηση δ του Dirac...
Διαβάστε περισσότεραΣυμβολικές Γλώσσες Προγραμματισμού
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Συμβολικές Γλώσσες Προγραμματισμού Ενότητα 1: Από την Άλγεβρα των Υπολογισμών στα Υπολογιστικά Συστήματα Άλγεβρας Νικόλαος Καραμπετάκης
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής
Διαβάστε περισσότεραΕυχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17
Περιεχόμενα Ευχαριστίες... 16 Δύο λόγια από την συγγραφέα... 17 ΚΕΦΑΛΑΙΟ 1. Το σύνολο των πραγματικών αριθμών... 19 1.1 Σύνολα αριθμών... 19 1.2 Αλγεβρική δομή του R... 20 1.2.1 Ιδιότητες πρόσθεσης...
Διαβάστε περισσότεραΓια την κατανόηση της ύλης αυτής θα συμβουλευθείτε επίσης το: βοηθητικό υλικό που υπάρχει στη
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 4 η Ημερομηνία Αποστολής στον Φοιτητή: Φεβρουαρίου Ημερομηνία παράδοσης της Εργασίας: 6 Μαρτίου Πριν από την λύση κάθε άσκησης καλό είναι να
Διαβάστε περισσότεραΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 3ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ
ΠΡΟΣΟΧΗ : Nέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι - ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότεραΕισαγωγή στη Matlab Βασικές Συναρτήσεις
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας Εισαγωγή στη Matlab Βασικές Συναρτήσεις 2016-2017 Εισαγωγή στη Matlab Matlab
Διαβάστε περισσότεραΓ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες
Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ
Διαβάστε περισσότεραΠΡΟΣΟΧΗ : Νέα Ύλη για τις Κατατακτήριες από 2012 και μετά στην Φυσική Ι. Για το 1ο εξάμηνο. ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ
στην Φυσική Ι ΕΞΕΤΑΣΤΕΑ ΥΛΗ στο μάθημα ΦΥΣΙΚΗ Ι -ΜΗΧΑΝΙΚΗ 1. Κινηματική (ευθύγραμμη και καμπυλόγραμμη κίνηση) 2. Σχετική κίνηση-μετασχηματισμοί Lorentz 3. Δυναμική ενός σωματιδίου (Νόμοι της δυναμικής-ορμή-στροφορμήσυστήματα
Διαβάστε περισσότερα5ο Συνέδριο ΕΛΛΑΚ Εργαστήριο Octave
5ο Συνέδριο ΕΛΛΑΚ Εργαστήριο Octave ΕΜΠ, 15 Μαΐου 2010 Α. Λερός 1 & Α. Ανδρεάτος 2 1Τμήμα Αυτοματισμού, ΤΕΙ Χαλκίδας και Τομέας Πληροφορικής και Υπολογιστών, Σχολή Ικάρων lerosapostolos@gmail.com 2 Τομέας
Διαβάστε περισσότεραΠΩΣ; Το «σωσίβιό» σου στον ωκεανό της Γ Λυκείου! ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ ΑΝΑΝΕΩΜΕΝΗ ΣΥΜΠΕΠΛΗΡΩΜΕΝΗ ΕΚΔΟΣΗ!
ΕΥΘΥΜΙΟΣ ΛΙΑΤΣΟΣ Καθηγητής Μαθηµατικών άμιλλα φροντιστήρια ΠΩΣ; Βασικά στοιχεία από την Άλγεβρα της Α και Β Λυκείου, αλλά και από την Κατεύθυνση της Β Λυκείου, που είναι απαραίτητα στα Μαθηµατικά Κατεύθυνσης
Διαβάστε περισσότεραΕισαγωγή στο Πρόγραμμα Maxima
Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί
Διαβάστε περισσότεραΜαθηματικά και Φυσική με Υπολογιστές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθηματικά και Φυσική με Υπολογιστές Απλοί αναλυτικοί - αριθμητικοί υπολογισμοί Γραφικά Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ
Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα
Διαβάστε περισσότερα7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 7 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΣυμβολικές Γλώσσες Προγραμματισμού με το MATHEMATICA.
Συμβολικές Γλώσσες Προγραμματισμού με το MATHEMATICA http://users.auth.gr/~ppi/mathematica mathematica.math.auth@gmail.com ΜΑΘΗΜΑΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΡΙΘΜΗΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ Γλώσσες Προγραμματισμού Fortran,
Διαβάστε περισσότεραΠεριεχόμενα. 1. Ειδικές συναρτήσεις. 2. Μιγαδικές Συναρτήσεις. 3. Η Έννοια του Τελεστή. Κεφάλαιο - Ενότητα
Περιεχόμενα Κεφάλαιο - Ενότητα σελ 1. Ειδικές συναρτήσεις 1.0 Εισαγωγή 1.1 Εξίσωση του Laplace Συστήματα συντεταγμένων 1.2 Συνάρτηση δ του Dirac 1.3 Συνάρτηση του Heaviside 1.4 Οι συναρτήσεις Β, Γ και
Διαβάστε περισσότεραiii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος
iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης
Διαβάστε περισσότεραΠεριεχόµενα I ΜΙΓΑ ΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1
Περιεχόµενα I ΜΙΓΑ ΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 1 ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ 3 1.1 Στοιχειώδεις παρατηρήσεις.................... 3 1.2 + Ορισµός και άλγεβρα των µιγαδικών αριθµών........ 6 1.3 Γεωµετρική παράσταση των µιγαδικών
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1
i ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 1 ΚΕΦΑΛΑΙΟ 1 Αριθµοί και Μεταβλητές... 5 1.1. Το σύνολο των φυσικών αριθµών Φ... 5 1.2. Το σύνολο Φ 0 των ακέραιων της Αριθµητικής... 7 1.3. Το σύνολο των σύµµετρων αριθµών Σ...
Διαβάστε περισσότεραΣυμβολικές Γλώσσες Προγραμματισμού με το MATHEMATICA.
Συμβολικές Γλώσσες Προγραμματισμού με το MATHEMATICA http://users.auth.gr/~ppi/mathematica mathematica.math.auth@gmail.com Εκκίνηση του Mathematica Start -> Wolfram Mathematica-> Wolfram Mathematica 11
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1
ΠΕΡΙΕΧΟΜΕΝΑ KΕΦΑΛΑΙΟ 1 ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 1 1.1 Εισαγωγή... 1 1.2 Λύση ΔΕ, αντίστροφο πρόβλημα αυτής... 3 Ασκήσεις... 10 1.3 ΔΕ πρώτης τάξης χωριζομένων μεταβλητών... 12 Ασκήσεις... 15 1.4 Ομογενείς
Διαβάστε περισσότεραΚεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Διαβάστε περισσότεραΚεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Διαβάστε περισσότεραInterpolation (1) Τρίτη, 3 Μαρτίου Σελίδα 1
Iterpolatio () Τρίτη, 3 Μαρτίου 05 9:46 πμ 05.03.03 Σελίδα 05.03.03 Σελίδα 05.03.03 Σελίδα 3 05.03.03 Σελίδα 4 05.03.03 Σελίδα 5 05.03.03 Σελίδα 6 05.03.03 Σελίδα 7 05.03.03 Σελίδα 8 05.03.03 Σελίδα 9
Διαβάστε περισσότεραΣύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0
Σύντομος οδηγός αναφοράς Για Windows Έκδοση 4.0 Παράθυρα των εγγράφων Επιφάνεια του σχεδίου. Σχεδιάστε εδώ νέα αντικείμενα με τα εργαλεία σημείων, διαβήτη, σχεδίασης ευθύγραμμων αντικειμένων και κειμένου.
Διαβάστε περισσότεραΠεριεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος
/4/05 Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Αν z z 0 δείξτε ότι: z z ( z ) Παραγωγίζουμε την z z 0 ως προς θεωρώντας ότι η z είναι συνάρτηση των και : z z z z z z 0 () z
Διαβάστε περισσότεραάλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου
άλγεβρα και αλγεβρική σκέψη στην πρώτη σχολική περίοδο (Νηπιαγωγείο Δημοτικό) μαρία καλδρυμίδου κάποια ερωτήματα τι είναι η άλγεβρα; τι περιλαμβάνει η άλγεβρα; ποια η σχέση της με την αριθμητική; γιατί
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής μαθηματικών Βαρβακείου
Διαβάστε περισσότεραΙστορία των Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Μαθηματικά στην Αναγέννηση. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5.:
Διαβάστε περισσότεραΕξεταστέα ύλη μαθηματικών Α Λυκείου 2017
Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017 Α Λυκείου Γεωμετρία Κεφάλαιο 3 3.1 Είδη και στοιχεία τριγώνων 3.2 1 ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.3 2 ο Κριτήριο ισότητας
Διαβάστε περισσότεραΕργαστήριο Μαθηματικής Ανάλυσης Ι. Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις. Πανεπιστήμιο Θεσσαλίας. Σχολή Θετικών Επιστημών
Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με εφαρμογές στη Βιοϊατρική Εργαστήριο Μαθηματικής Ανάλυσης Ι Εισαγωγή στη Matlab Βασικές Συναρτήσεις-Γραφικές παραστάσεις Εισαγωγή στη
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
Διαβάστε περισσότεραΔΕΙΓΜΑ ΠΡΙΝ ΤΙΣ ΔΙΟΡΘΩΣΕΙΣ - ΕΚΔΟΣΕΙΣ ΚΡΙΤΙΚΗ
Συναρτήσεις Προεπισκόπηση Κεφαλαίου Τα μαθηματικά είναι μια γλώσσα με ένα συγκεκριμένο λεξιλόγιο και πολλούς κανόνες. Πριν ξεκινήσετε το ταξίδι σας στον Απειροστικό Λογισμό, θα πρέπει να έχετε εξοικειωθεί
Διαβάστε περισσότεραMATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών.
MATLAB Tι είναι το λογισµικό MATLAB? Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. Σύστηµα αλληλεπίδρασης µε τοχρήστηγια πραγµατοποίηση επιστηµονικών υπολογισµών (πράξεις µε πίνακες επίλυση
Διαβάστε περισσότεραΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ)
ΜΑΘΗΜΑ ΕΥΤΕΡΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΟΡΙΟ ΚΑΙ ΣΥΝΕΧΕΙΑ) A. Εύρεση Πεδίου Τιµών Συναρτήσεων ίνεται η συνάρτηση h, h ( ) = 4+, [ 1,4] Να βρεθεί το πεδίο τιµών της συνάρτησης. Η λογική για
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΟΡΙΑ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Η έννοια του ορίου στο x ο Υπάρχουν συναρτήσεις οι τιμές των οποίων πλησιάζουν ένα πραγματικό αριθμό L, όταν η ανεξάρτητη μεταβλητή
Διαβάστε περισσότεραΚαθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.
Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική
Διαβάστε περισσότεραΑ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη
Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ ΑΝΑΛΥΣΗ ΟΛΟΚΛΗΡΩΜΑΤΑ ΜΙΧΑΛΗΣ ΜΑΓΚΟΣ . ΔΙΑΒΑΖΩ ΤΗ ΘΕΩΡΙΑ ΑΠΟ ΤΟ ΣΧΟΛΙΚΟ ΒΙΒΛΙΟ Σελ.303: Ορισμός (Αρχική συνάρτηση ή παράγουσα) Σελ.304: Απόδειξη του
Διαβάστε περισσότεραΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Α ΤΟΜΟΣ
ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Α ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-516-026-9
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ - ΠΑΠΑΔΟΠΟΥΛΟΣ ΜΑΡΙΝΟΣ ΠΕΡΙΕΧΟΜΕΝΑ. Τίτλος Θεματικές Ενότητες Σελίδες. Δυο λόγια προς τους μαθητές.
ΠΕΡΙΕΧΟΜΕΝΑ Τίτλος Θεματικές Ενότητες Σελίδες Προλογικό Σημείωμα Δυο λόγια προς τους μαθητές. ΚΕΦΑΛΑΙΟ 1 ο Όρια Συνέχεια Συνάρτησης 1-177 Μέρος 1 ο ΣΥΝΑΡΤΗΣΕΙΣ 1-85 Μάθημα 1 Έννοια συνάρτησης Πεδίο ορισμού
Διαβάστε περισσότεραΣ. Ασημέλλης. Μαθημαγικά
Σ. Ασημέλλης Μαθημαγικά Αθήνα 2013 Αφιερωμένο στο δικαίωμα ελεύθερης διάδοσης της γνώσης. Γνωρίζω, οι πρόλογοι των βιβλίων είναι ενδεχομένως το πιο σίγουρο τμήμα τους που κανένας δε διαβάζει. Στην πραγματικότητα
Διαβάστε περισσότεραΔιάλεξη 4 - Σημειώσεις
Διάλεξη 4 - Σημειώσεις Απροσδιόριστες μορφές και ο κανόνας l'hôpital Έστω ότι ζητούμε το όριο () της συνάρτησης () = () () η οποία δίνεται ως το πηλίκο δύο συναρτήσεων (), (). Τότε, () () () = () = ()
Διαβάστε περισσότερα4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή
. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,
Διαβάστε περισσότεραΠρώτη επαφή με το μαθηματικό πακέτο Mathematica
Πρώτη επαφή με το μαθηματικό πακέτο Mathematica Με δύο λόγια, μπορούμε να πούμε ότι η Mathematica είναι ένα πρόγραμμα που το χρησιμοποιούμε για να κάνουμε αναλυτικούς και αριθμητικούς υπολογισμούς αλλά
Διαβάστε περισσότερα