Θέματα χρονισμού σε φλιπ-φλοπ και κυκλώματα VLSI
|
|
- Παρθενιά Κοντολέων
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στην Σχεδίαση Συστημάτων VLSI Θέματα χρονισμού σε φλιπ-φλοπ και κυκλώματα VLSI (Έκδοση 2013) Η. Κουκούτσης, Φ. Γιαννόπουλος, Σ. Ζάννος
2 Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.
3 Χρονισμός φλιπ-φλοπ και σύγχρονων ακολουθιακών κυκλωμάτων (κυκλωμάτων με ρολόι) Υπενθύμιση #1: Η γενική μορφή (μοντέλο Mealy) ενός σύγχρονου ακολουθιακού κυκλώματος (με ρολόι) είναι η εξής: Ένα ή περισσότερα flip-flops Μονοφασικό ρολόι, ακμοπυροδότητα flip-flops
4 Η δε γενική μορφή ενός συστήματος με διοχέτευση (pipeline) είναι η εξής (στο σχήμα φαίνονται μόνον τρία στάδια για λόγους απλότητας): Υπενθύμιση #2: Και στις δύο περιπτώσεις ισχύουν τα εξής, όπως φαίνεται στο επόμενο σχήμα: Καθένα από τα κυκλώματα αυτά είναι ένα σύγχρονο ακολουθιακό κύκλωμα με ρολόι. Τα ίδια τα φλιπ-φλοπ,όμως, είναι ασύγχρονα ακολουθιακά κυκλώματα. Το ρολόι είναι απλώς μια από τις εισόδους τους.
5 Ασύγχρονα ακολουθιακά κυκλώματα (φλιπ-φλοπ) Ένα ή περισσότερα flip-flops Σύγχρονα ακολουθιακά κυκλώματα (με ρολόι)
6 Συνήθως, η σχεδίαση των ασύγχρονων ακολουθιακών κυκλωμάτων, είναι ιδιαίτερα πολύπλοκη διαδικασία. Καθίσταται δε δυνατή, μόνον αν υποθέσουμε ότι τα κυκλώματα αυτά λειτουργούν κατά τον θεμελιώδη τρόπο, δηλαδή ότι Οι είσοδοι των ασύγχρονων ακολουθιακών κυκλωμάτων δεν συμμεταβάλλονται (δεν μεταβάλλονται την ίδια χρονική στιγμή). Αλλιώς, δεν είναι προβλέψιμες οι μεταβάσεις καταστάσεων, και επομένως, δεν είναι χρησιμοποιήσιμα τα κυκλώματα αυτά. Ακριβώς η ίδια απαίτηση υπάρχει και για τα φλιπ-φλοπ. Ειδικά γι αυτά, η συγκεκριμένη απαίτηση παίρνει την εξής μορφή: Δεν επιτρέπεται να αλλάξουν οι είσοδοι ενός φλιπ-φλοπ για ένα χρονικό διάστημα tsetup πριν από το ενεργό μέτωπο του παλμού του ρολογιού (το μέτωπο που πυροδοτεί το φλιπ-φλοπ), καθώς και για ένα χρονικό διάστημα thold μετά από το ίδιο μέτωπο του παλμού του ρολογιού, αλλιώς ο κατασκευαστής δεν εγγυάται την ορθή και επιθυμητή λειτουργία των φλιπ-φλοπ.
7 Όλες οι μέθοδοι σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων που διδάσκονται στο μάθημα της λογικής σχεδίασης, ισχύουν μόνον με την προϋπόθεση ότι τηρείται αυστηρά ο προαναφερθείς περιορισμός. Εάν πράγματι τηρείται ο προαναφερθείς περιορισμός, λέμε ότι οι είσοδοι των φλιπ-φλοπ και του σύγχρονου ακολουθιακού κυκλώματος είναι συγχρονισμένες με το ρολόι. Ένας τρόπος συγχρονισμού των εισόδων του ακολουθιακού κυκλώματος θα δοθεί στα επόμενα.
8 Mi M(i+1) Υποθέστε ότι ο παλμός του σχήματος είναι ένας τυπικός παλμός ρολογιού που χρησιμοποιείται για την πυροδότηση των φλιπ-φλοπ ενός συγχρόνου ακολουθιακού κυκλώματος. Υποθέστε ακόμη, ότι τα ενεργά μέτωπά του (αυτά που πυροδοτούν τα φλιπ-φλοπ) είναι τα θετικά. Στο σχήμα έχουμε σημειώσει τα μέτωπα Μi και Μ(i+1).
9 tsetup thold tsetup thold Διάστημα επιβεβλημένης σταθερότητας εισόδων Mi M(i+1) Στο σχήμα αυτό σημειώνονται τα χρονικά διαστήματα που ορίζονται από τον κατασκευαστή και κατά τα οποία απαγορεύεται να αλλάξουν οι είσοδοι των φλιπ-φλοπ. Οι είσοδοι των φλιπφλοπ μπορούν να αλλάξουν σε οποιαδήποτε χρονική στιγμή εκτός του διαστήματος επιβεβλημένης σταθερότητας που φαίνεται στο σχήμα.
10 tsetup thold tsetup thold Διάστημα επιβεβλημένης σταθερότητας εισόδων Mi td,ff Διάστημα (όχι πλήρως προσδιορισμένο) στο οποίο ολοκληρώνεται η μετάβαση κατάστασης των φλιπ-φλοπ M(i+1) Ο κατασκευαστής εγγυάται ότι, όταν πυροδοτηθούν τα φλιπ-φλοπ (π.χ. από το μέτωπο Μi) και με την προϋπόθεση ότι δεν θα αλλάξουν οι είσοδοι των φλιπ-φλοπ κατά το διάστημα επιβεβλημένης σταθερότητας, θα συμβούν τα ακόλουθα: 1. Οι έξοδοι των φλιπ-φλοπ δεν θα αλλάξουν μέσα στο χρονικό διάστημα thold, (όπως εξ άλλου προκύπτει και από τον τρόπο σχεδίασης των φλιπ-φλοπ) και ότι 2. η αλλαγή κατάστασης των φλιπ-φλοπ θα έχει ολοκληρωθεί μέσα σε ένα χρονικό διάστημα td,ff, το οποίο καλείται (μέγιστη) καθυστέρηση διάδοσης των φλιπ-φλοπ. Επομένως, η αλλαγή κατάστασης των φλιπ-φλοπ ολοκληρώνεται κάπου μέσα στο γκρίζο διάστημα που σημειώνεται στο σχήμα.
11 Η εύρεση του χρονικού διαστήματος, μέσα στο οποίο ολοκληρώνεται η αλλαγή κατάστασης των φλιπ-φλοπ, μας δίνει την ευκαιρία να εφαρμόσουμε έναν απλό τρόπο συγχρονισμού των εισόδων ενός ακολουθιακού κυκλώματος με ρολόι: Περνάμε κάθε εξωτερική είσοδο του συνολικού κυκλώματος από ένα D φλιπ-φλοπ, το οποίο πυροδοτείται από το ίδιο ρολόι, όπως φαίνεται στο επόμενο σχήμα. Το σύνολο των επί πλέον αυτών φλιπ-φλοπ ονομάζεται καταχωρητής εισόδου του κυκλώματος. Οι νέες είσοδοι του συνολικού σύγχρονου ακολουθιακού κυκλώματος, δηλαδή οι έξοδοι του καταχωρητή εισόδου, χαρακτηρίζονται ως είσοδοι συγχρονισμένες με το ρολόι του κυκλώματος. Στα επόμενα θα υποθέτουμε πάντα ότι οι είσοδοι ενός ακολουθιακού κυκλώματος με ρολόι είναι συγχρονισμένες με το ρολόι αυτό, εκτός αν άλλως σαφώς αναφέρεται. Στο επόμενο σχήμα οι είσοδοι αυτές σημειώνονται με ένα αστεράκι.
12 Αρχικές Είσοδοι Είσοδοι Συγχρονισμένες Με Το Ρολόι Clk X 1 X * 1 X n X * n ΣΥΝΟΛΙΚΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΜΕ ΡΟΛΟΪ Clk Ρολόι Clk ΚΑΤΑΧΩΡΗΤΗΣ ΕΙΣΟΔΟΥ n-bit
13 tsetup thold Χρονικό σημείο tτέλους της ολοκλήρωσης της εργασίας των συνδυαστικών τμημάτων tsetup thold Διάστημα επιβεβλημένης σταθερότητας εισόδων Mi td,ff td,σκ M(i+1) Μετά από την αλλαγή κατάστασης των φλιπ-φλοπ του σύγχρονου ακολουθιακού κυκλώματος, τα τμήματα συνδυαστικής λογικής (συνδυαστικά κυκλώματα) επεξεργάζονται τα νέα δεδομένα με μέγιστη ταχύτητα και μεταβάλλουν τις εξόδους τους ανάλογα. Υποθέστε ότι η μέγιστη καθυστέρηση διάδοσης των τμημάτων αυτών είναι td,σκ. Μετά από αυτό το χρονικό διάστημα και μέχρι τον επόμενο παλμό του ρολογιού, δεν γίνεται καμιά αλλαγή στο κύκλωμα.
14 tsetup thold Διάστημα επιβεβλημένης σταθερότητας εισόδων Χρονικό σημείο tτέλους της ολοκλήρωσης της εργασίας των συνδυαστικών τμημάτων Παράθυρο Παρατήρησης (ΟΛΟ το κύκλωμα σε ηρεμία) tsetup thold Mi td,ff td,σκ tμ(i+1) - tsetup M(i+1) Προκειμένου να δουλέψουν σωστά τα εσωτερικά φλιπ-φλοπ του κυκλώματος (όχι του καταχωρητή εισόδου), πρέπει το tτέλους να είναι οπωσδήποτε μικρότερο από το tμ(i+1) tsetup (ώστε τα φλιπ-φλοπ να πυροδοτηθούν σωστά με το επόμενο μέτωπο Μ(ι+1)). Όμως, το συνδυαστικό κύκλωμα πρέπει να έχει αρκετό χρόνο ώστε να επηρεάσει το (κυκλωματικό) περιβάλλον του κατά τον επιθυμητό τρόπο, επομένως το παράθυρο ηρεμίας του κυκλώματος (ή παράθυρο παρατήρησης) πρέπει να έχει κατάλληλο ελάχιστο μέγεθος.
15 tsetup Διάστημα επιβεβλημένης σταθερότητας εισόδων thold Παράθυρο Παρατήρησης (ΟΛΟ το κύκλωμα σε ηρεμία) tsetup thold Mi td,ff td,σκ M(i+1) Συνήθως, στα σημερινά γρήγορα κυκλώματα (σε μία περίοδο του ρολογιού 3GHz ενός σημερινού PC, το φώς ταξιδεύει στο κενό 10cm μόνον!!), οι χρόνοι ανόδου και καθόδου της κυματομορφής του ρολογιού γίνονται εμφανείς, όπως στο σχήμα. Στην περίπτωση αυτή, θεωρούμε ως χρονικό σημείο πυροδότησης το σημείο, στο οποίο το επικλινές μέτωπο του παλμού περνάει από την μέση τιμή ανάμεσα στο ψηλό και το χαμηλό επίπεδο σήματος του παλμού.
16 Όπως έχει ήδη αναφερθεί στο μάθημα, όμως, σε ένα σύνθετο ακολουθιακό κύκλωμα είναι δυνατόν να παρουσιαστούν επί πλέον καθυστερήσεις, όπως αυτές που φαίνονται στο σχήμα, κατάσταση που δημιουργεί πρόβλημα συγχρονισμού των διαφόρων υποκυκλωμάτων. > D Q Λογική > D Q t d Καθυστερήσεις (πχ. επί πλέον λογικής ή γραμμής μεταφοράς μεσαίου μήκους ή μακράς) > D Q Λογική t d2 > D Q t d1
17 tskew tmi tm (i+1) Στην περίπτωση αυτή, είναι πιθανόν να έχουμε μια χρονική απόκλιση (skew) στην έλευση του ενεργού μετώπου του ρολογιού. Ας ονομάσουμε την χρονική αυτή απόκλιση tskew. Στο παρόν σχήμα, οι πολλαπλές κυματομορφές απλά δηλώνουν ότι το μέτωπο του παλμού θα παρουσιαστεί κάπου μέσα στο σημειωμένο tskew, όπως φαίνεται και στο επόμενο σχήμα.
18 tskew tskew tmi-tskew/2 tmi tmi+tskew/2 tm(i+1)-tskew/2 tm(i+1) tm(i+1)+tskew/2 Διαστήματα πιθανής έλευσης μετώπου παλμού ρολογιού λόγω skew
19 tskew tskew tmi-tskew/2 tmi tmi+tskew/2 tm(i+1)-tskew/2 tm(i+1) tm(i+1)+tskew/2 Εδώ φαίνεται ένας από τους πιθανούς παλμούς του ρολογιού. Σημειώστε ότι δεν αλλάζει η περίοδος του ρολογιού. Υπάρχει μόνον αβεβαιότητα για την χρονική στιγμή έλευσης του μετώπου του παλμού. Εάν όμως μπορούμε να έχουμε μια εκτίμηση για το μέγιστο tskew, μπορούμε να την χρησιμοποιήσουμε ώστε να εξασφαλίσουμε ότι θα έχουμε σωστή λειτουργία του σύγχρονου ακολουθιακού κυκλώματος, όπως φαίνεται στο επόμενο σχήμα.
20 tsetup tskew thold tsetup tskew tmi td,ff td,σκ tm(i+1)-tskew/2 tm(i+1) tmi+tskew/2 tmi-tskew/2 Παράθυρο Παρατήρησης (ΟΛΟ το κύκλωμα σε ηρεμία): [tmi + tskew/2 + td,ff + td,σκ, tm(i+1) - tskew/2 tsetup] Διάστημα επιβεβλημένης σταθερότητας εισόδων: [tmi - tskew/2 - tsetup, tmi + tskew/2 + thold]
21 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
Σχεδίαση Ψηφιακών Συστημάτων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 6: Σύγχρονα Ακολουθιακά Κυκλώματα Κυριάκης Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops
K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Ακολουθιακή Λογική. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Ακολουθιακή Λογική Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωμα Έξοδοι Στοιχεία Μνήμης Κατάσταση
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η λειτουργία RESET R IN OUT Εάν το σήμα R είναι λογικό «1» στην έξοδο
Μοντελοποίηση Λογικών Κυκλωμάτων
Μοντελοποίηση Λογικών Κυκλωμάτων Ενότητα 7: Η γλώσσα VHDL, Μοντελοποίηση, διαχείριση χρόνου Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ, Θεωρητικής Κατεύθυνσης Ημερομηνία
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 3: Ψηφιακή Λογική ΙI Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης
ΑΣΚΗΣΗ 9. Tα Flip-Flop
ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Εισαγωγή στην Πληροφορική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 3: Ψηφιακή Λογική ΙI Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 12: Σύνοψη Θεμάτων Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http://arch.icte.uowm.gr/mdasyg
Υδραυλικά & Πνευματικά ΣΑΕ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Ενότητα # 6: Υδραυλικά Κυκλώματα Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.
6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφιακή Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφιακή Σχεδίαση Ενότητα 9: Ελαχιστοποίηση και Κωδικοποίηση Καταστάσεων, Σχεδίαση με D flip-flop, Σχεδίαση με JK flip-flop, Σχεδίαση με T flip-flop Δρ. Μηνάς
Xρονισμός ψηφιακών κυκλωμάτων
Xρονισμός ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Φθινόπωρο 2008 ΗΥ220 1 Περιεχόμενα μαθήματος Καθυστέρηση λογικών πυλών και των συνδυαστικών κυκλωμάτων
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 4 η Εργαστηριακή Άσκηση Περιγραφή Κυκλωμάτων με Ακολουθιακές Εντολές Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
7.1 Θεωρητική εισαγωγή
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)
Σχεδίαση σε επίπεδο RTL βασισμένη στα διαγράμματα ASMD
Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στην Σχεδίαση Συστημάτων VLSI Σχεδίαση σε επίπεδο
Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 3: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Καταχωρητές και Μετρητές 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Καταχωρητές και Μετρητές Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Εισαγωγή Καταχωρητής: είναι μία ομάδα από δυαδικά κύτταρα αποθήκευσης
Τεχνολογία Πολυμέσων. Ενότητα # 15: Συγχρονισμός πολυμέσων Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 15: Συγχρονισμός πολυμέσων Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
Ψηφιακή Λογική Σχεδίαση
Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Αρχιτεκτονική Υπολογιστών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αρχιτεκτονική Υπολογιστών Οργάνωση επεξεργαστή Διδάσκων: Επίκουρος Καθηγητής Αριστείδης Ευθυμίου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Αρχιτεκτονικές Υπολογιστών
ΑΡΧΙΤΕΚΤΟΝΙΚΕΣ ΥΠΟΛΟΓΙΣΤΩΝ Μάθηµα: Αρχιτεκτονικές Υπολογιστών FLIP-FLOPS ΣΥΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΙΑ ΙΚΑΣΙΑ ΑΝΑΛΥΣΗΣ ΚΑΙ ΣΧΕ ΙΑΣΗ ΣΑΚ ιδάσκων: Αναπλ. Καθ. Κ. Λαµπρινουδάκης clam@uipi.gr Αρχιτεκτονικές
Κεφάλαιο 6. Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα
Κεφάλαιο 6 Σύγχρονα και ασύγχρονα ακολουθιακά κυκλώματα 6.1 Εισαγωγή Η εκτέλεση διαδοχικών λειτουργιών απαιτεί τη δημιουργία κυκλωμάτων που μπορούν να αποθηκεύουν πληροφορίες, στα ενδιάμεσα στάδια των
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές
Ελίνα Μακρή
Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,
Κεφάλαιο 10 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Ακολουθιακή Λογική 2
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Ακολουθιακή Λογική Κεφάλαιο 10 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταευστάθεια 2. Μανδαλωτές 3. Flip
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά
Αρχιτεκτονική υπολογιστών
1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αρχιτεκτονική υπολογιστών Ενότητα 13 : Η Λειτουργία της Μονάδας Ελέγχου Φώτης Βαρζιώτης 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Τμήμα Μηχανικών Πληροφορικής
Ακολουθιακό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται από τις τιμές εισόδου ΚΑΙ από την προηγούμενη κατάσταση του κυκλώματος
1 Συνδυαστικό κύκλωμα Η έξοδος του κυκλώματος εξαρτάται ΜΟΝΟ από τις εισόδους του Εάν γνωρίζουμε τις τιμές των εισόδων του κυκλώματος, τότε μπορούμε να προβλέψουμε ακριβώς τις εξόδους του Ακολουθιακό κύκλωμα
ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ ΔΙΔΑΣΚΩΝ: ΑΡΙΣΤΕΙΔΗΣ Νικ. ΠΑΥΛΙΔΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΒΙΟΜΗΧΑΝΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα
6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από
26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης
ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ
ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες
Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2
ΚΥΚΛΩΜΑΤΑ VLSI Ακολουθιακή Λογική Κεφάλαιο 7 ο Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταστάθεια 2. Μανδαλωτές 3. Flip Flops Flops 4. Δομές διοχέτευσης 5. Διανομή ρολογιού 6. Συγχρονισμός
Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα
Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές
ΜΑΘΗΜΑ: Ηλεκτρονικά Ισχύος
ΜΑΘΗΜΑ: Ηλεκτρονικά Ισχύος ΔΙΔΑΣΚΩΝ: Γιώργος Χριστοφορίδης ΤΜΗΜΑ: Ηλεκτρολόγων Μηχανικών Τ.Ε. 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 2: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εφαρμογές της Λογικής στην Πληροφορική
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Εφαρμογές της Λογικής στην Πληροφορική Ενότητα 2 Πέτρος Στεφανέας, Γεώργιος Κολέτσος Άδεια Χρήσης Το παρόν εκπαιδευτικό
Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών
ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πληροφορική. Εργαστηριακή Ενότητα 8 η : Γραφήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 8 η : Γραφήματα Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο Διάλεξη 8 η : Μηχανές Πεπερασμένων Κaταστάσεων σε FPGAs
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 8 η :
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 7: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ασύγχρονοι Απαριθμητές. Διάλεξη 7
Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι
K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα
K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπ
Θεωρία Υπολογισμού Ενότητα 11: Κλειστότητα, ΠΑ & καν. εκφράσεις Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Cretive Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Εσωτερικές Ηλεκτρικές Εγκαταστάσεις Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εσωτερικές Ηλεκτρικές Εγκαταστάσεις Ι Ενότητα 8: Σχεδίαση - Μελέτη - Κατασκευή Ε.Η.Ε. Σταύρος Καμινάρης Τμήμα Ηλεκτρολόγων Μηχανικών
Σχεδιασμός Ψηφιακών Συστημάτων
ΗΜΥ 2: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 27 Νοε-7 ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 27 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα:
Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 8: Ανάλυση δικτύων στα ΣΓΠ Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Πληροφοριακά Συστήματα & Περιβάλλον Ασκήσεις
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πληροφοριακά Συστήματα & Περιβάλλον Ασκήσεις Παναγιώτης Λεφάκης και Ζαχαρούλα Ανδρεοπούλου Τμήμα Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 2013 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers)
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 15: Καταχωρητές (Registers) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Καταχωρητές Παράλληλης
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Ενότητα: Ασκήσεις Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σελίδα 2 1. Άσκηση 1... 5 2. Άσκηση 2... 5 3. Άσκηση 3... 7 4. Άσκηση 4...
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL
Κεφάλαιο 3 ο Ακολουθιακά Κυκλώματα με ολοκληρωμένα ΤΤL 3.1 Εισαγωγή στα FLIP FLOP 3.1.1 Θεωρητικό Υπόβαθρο Τα σύγχρονα ακολουθιακά κυκλώματα με τα οποία θα ασχοληθούμε στο εργαστήριο των Ψηφιακών συστημάτων
Η επικράτηση των ψηφιακών κυκλωμάτων 1o μέρος
Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στη Σχεδίαση VLSI Η επικράτηση των ψηφιακών κυκλωμάτων
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΘΕΩΡΗΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Ψηφιακά Ηλεκτρονικά
Οργάνωση Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Οργάνωση Υπολογιστών Εργαστήριο 9: Εισαγωγή στην Ομοχειρία (Pipelining - Διοχέτευση) Μανόλης Γ.Η. Κατεβαίνης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ακολουθιακά Κυκλώµατα. ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ακολουθιακά Κυκλώµατα (συν.) Ακολουθιακή Λογική: Έννοια
ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 6-i: Ακολουθιακά Κυκλώµατα Μανδαλωτές (Latches) και Flip-Flops Ακολουθιακά Κυκλώµατα Συνδυαστική Λογική:
ΑΣΚΗΣΗ 7 FLIP - FLOP
ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα : Τεχνολογία Αναλογικών και Ψηφιακών Ηλεκτρονικών Τεχνολογία ΙΙ, Πρακτικής
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ. Να μελετηθεί η λειτουργία του ακόλουθου κυκλώματος. Ποιος ο ρόλος των εισόδων του (R και S) και πού βρίσκει εφαρμογή; R Q
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΛΑΜΑΤΑΣ = ΠΑΡΑΡΤΗΜΑ ΣΠΑΡΤΗΣ = ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Συμπληρώνεται από τον διδάσκοντα (2.0) 2 (2.5) 3 (3.0) 4 (2.5) Σ ΕΞΕΤΑΣΗ ΤΟΥ ΜΑΘΗΜΑΤΟΣ
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 9: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΑΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι απαριθμητές ή μετρητές (counters) είναι κυκλώματα που
Πληροφορική. Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 3 η : Επεξεργασία Κελιών Γραμμών & Στηλών Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ
ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.
Σχεδίαση με Ηλεκτρονικούς Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Εργαστήριο 2 - Η διανυσματική μορφή (vector) Καθηγητής Ιωάννης Γ. Παρασχάκης Δρ. Μηχ.
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 4: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ηλεκτρισμός & Μαγνητισμός
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρισμός & Μαγνητισμός Αυτεπαγωγή Διδάσκων : Επίκ. Καθ. Ν. Νικολής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
7 η διάλεξη Ακολουθιακά Κυκλώματα
7 η διάλεξη Ακολουθιακά Κυκλώματα 1 2 3 4 5 6 7 Παραπάνω βλέπουμε ακολουθιακό κύκλωμα σχεδιασμένο με μανταλωτές διαφορετικής φάσης. Παρατηρούμε ότι συνδυαστική λογική μπορεί να προστεθεί μεταξύ και των
Εισαγωγή στα ακολουθιακά στοιχεία CMOS
Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στη Σχεδίαση VLSI Εισαγωγή στα ακολουθιακά στοιχεία
Ηλεκτρονική. Ενότητα 5: DC λειτουργία Πόλωση του διπολικού τρανζίστορ. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Ενότητα 5: D λειτουργία Πόλωση του διπολικού τρανζίστορ Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Λογικές πράξεις, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλικρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα που αφορούν
Το Επενδυτικό σχέδιο 3. Βασικές έννοιες και ορισµοί
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΤΕΧΝΟΛΟΓΙΚΗ ΟΙΚΟΝΟΜΙΚΗ I Διδάσκων: Δρ. Κ. Αραβώσης Το Επενδυτικό σχέδιο 3. Βασικές έννοιες
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 3 η Εργαστηριακή Άσκηση Σχεδίαση και Υλοποίηση μίας ALU δύο εισόδων VHDL Εργαστήριο_2 2012-2013 1 Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 1: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΡΑΔΙΟΧΗΜΕΙΑ 1. ΑΠΑΡΙΘΜΗΤΕΣ ΙΟΝΤΙΣΜΟΥ ΑΕΡΙΩΝ ΚΕΦΑΛΑΙΟ 6.ΜΕΤΡΗΤΕΣ ΡΑΔΙΕΝΕΡΓΕΙΑΣ
ΡΑΔΙΟΧΗΜΕΙΑ ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΑΠΟΒΛΗΤΩΝ ΤΟΞΙΚΟΤΗΤΑ ΡΑΔΙΕΝΕΡΓΩΝ ΙΣΟΤΟΠΩΝ Τμήμα Χημικών Μηχανικών ΚΕΦΑΛΑΙΟ 6.ΜΕΤΡΗΤΕΣ ΡΑΔΙΕΝΕΡΓΕΙΑΣ 1. ΑΠΑΡΙΘΜΗΤΕΣ ΙΟΝΤΙΣΜΟΥ ΑΕΡΙΩΝ Ιωάννα Δ. Αναστασοπούλου Βασιλική
ΜΑΘΗΜΑ: Δίκτυα Υψηλών Ταχυτήτων
ΜΑΘΗΜΑ: Δίκτυα Υψηλών Ταχυτήτων ΔΙΔΑΣΚΩΝ: Άγγελος Μιχάλας ΤΜΗΜΑ: Τμήμα Μηχανικών Πληροφορικής ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreativeCommons. Για εκπαιδευτικό
Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 3: Καταχωρητές - Απαριθμητές Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογιστικές Εφαρμογές Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Λογιστικές Εφαρμογές Εργαστήριο Ενότητα #7: Αναλυτικό Ημερολόγιο Διαφόρων Πράξεων Μαρία Ροδοσθένους Τμήμα Λογιστικής και Χρηματοοικονομικής
Ψηφιακή Σχεδίαση. Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:05. Δρ. Μηνάς Δασυγένης. Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Ψηφιακή Σχεδίαση Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No:05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και Αρχιτεκτονικής Υπολογιστών http:
Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες / Εργαστήριο Εργαστηριακή Άσκηση 4: Πειραματική μελέτη συστημάτων διαμόρφωσης συχνότητας (FΜ) Δρ.
Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές Συστημάτων Γεωγραφικών Πληροφοριών Ενότητα # 6: Χωρική ανάλυση στα ΣΓΠ Μέρος 1ο Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ
ΣΧΟΛΗ ΑΣΠΑΙΤΕ ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΤΙΤΛΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΣΥΓΧΡΟΝΟΙ ΜΕΤΡΗΤΕΣ 1) Οι σύγχρονοι μετρητές υλοποιούνται με Flip-Flop τύπου T
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης Θέμα 1ο (3 μονάδες)
Ηλεκτρολόγοι Μηχανικοί ΕΜΠ Λογική Σχεδίαση Ψηφιακών Συστημάτων Διαγώνισμα κανονικής εξέτασης 2016 Θέμα 1ο (3 μονάδες) Υλοποιήστε το ακoλουθιακό κύκλωμα που περιγράφεται από το ανωτέρω διάγραμμα καταστάσεων,
Αρχές Τηλεπικοινωνιών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #11: Ψηφιακή Διαμόρφωση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ
ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOP ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ FF ΤΥΠΟΥ D FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOP ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOP ΚΥΚΛΩΜΑΤΑ