Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο.
|
|
- Μαρία Μοσχοβάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Καταστάσεις της ύλης Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Υγρά: Τάξη πολύ µικρού βαθµού και κλίµακας-ελκτικές δυνάµεις-ολίσθηση. Τα µόρια βρίσκονται σε µια συνεχή τυχαία κίνηση αλλά η συσσώρευση τους είναι πολύ πυκνότερη από ότι σε ένα αέριο. Στερεά: Μείωση θερµικής κίνησης, προσέγγιση σωµατιδίων, απόκτηση µόνιµης θέσης (στερεό). Τα άτοµα, ιόντα ή µόρια βρίσκονται σε στενή επαφή και δονούνται γύρω από σταθερές θέσεις
2 Κρυσταλλική και άµορφη δοµή Η δοµή των στερεών εξαρτάται από το είδος των δεσµών και από τη γεωµετρική διευθέτηση των ατόµων ή µορίων ή ιόντων στη µάζα τους. Η δοµή των στερεών διακρίνεται σε κρυσταλλική και άµορφη. Κρυσταλλική δοµή είναι η κανονική, γεωµετρική διάταξη στην οποία διευθετούνται οι δοµικές µονάδες ενός στερεού. Αν ένα στερεό δεν παρουσιάζει µια ορισµένη γεωµετρική διάταξη, τότε είναι άµορφο. Η δοµή των στερεών υλικών µελετάται µε µεθόδους όπως ακτίνες Χ, περίθλαση ηλεκτρονίων και περίθλαση νετρονίων.
3 Κρύσταλλος Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, διαµορφώνεται από επίπεδες έδρες, οι σχέσεις των οποίων δείχνουν µια τυπική συµµετρία, δηλ. σχηµατίζουν µεταξύ τους επακριβώς προσδιορισµένες γωνίες. Ο κρύσταλλος µιας χηµικής ουσίας είναι το κανονικό πολυεδρικό σώµα που προκύπτει µε τη µετάβαση της, υπό κατάλληλες συνθήκες, από την υγρή ή την αέρια κατάσταση στη στερεή. Κρυσταλλικά σώµατα είναι π.χ. ο πάγος, ο ασβεστίτης, το αλάτι και τα περισσότερα ορυκτά. Τα πραγµατικά µη κρυσταλλικά ή άµορφα στερεά είναι πολύ λίγα.
4 Κρυσταλλικό πλέγµα Η τρισδιάστατη συµµετρική διευθέτηση των ατόµων αποτελεί το κρυσταλλικό πλέγµα του υλικού. Όταν εξετάζουµε τις κρυσταλλικές δοµές, τα άτοµα ή ιόντα θεωρούνται σαν σκληρές σφαίρες µε καθορισµένες διαµέτρους. Αυτό είναι γνωστό ως ατοµικό µοντέλο σκληρών σφαιρών πλέγµατος. Τα άτοµα (ή ιόντα) αποτελούν τα σηµεία του πλέγµατος. Το κρυσταλλικό πλέγµα διαφέρει από υλικό σε υλικό ως προς τη µορφή και το µέγεθος των ατόµων και το είδος των δεσµών µεταξύ των ατόµων. Η κρυσταλλική δοµή υλικού αναφέρεται στο µέγεθος, το σχήµα και τη διάταξη των ατόµων στο πλέγµα.
5 Κρυσταλλική κυψελίδα Η κρυσταλλική κυψελίδα είναι µια υποδιαίρεση του πλέγµατος, η οποία διατηρεί όλα τα στοιχεία συµµετρίας του. Η κρυσταλλική κυψελίδα είναι η βασική κρυσταλλική δοµική µονάδα της κρυσταλλικής δοµής. Με επανάληψη µεγάλου αριθµού ίδιων κρυσταλλικών κυψελίδων προκύπτει η κρυσταλλική δοµή (κρυσταλλικό πλέγµα του υλικού). Επτά βασικά κρυσταλλικά συστήµατα: το κυβικό, το τετραγωνικό, το ορθοροµβικό, το ροµβοεδρικό, το εξαγωνικό, το µονοκλινές και το τρικλινές. Τέσσερις τρόποι κεντρικής διευθέτησης ατόµων: Πρωτογενής (πλεγµατικά σηµεία µόνο στις γωνίες, Ρ), Ενδοκεντρωµένο (πλεγµατικά σηµεία στις γωνίες και στα κέντρα των εδρών A, B, C.), Ολοεδρικώς κεντρωµένο (πλεγµατικά σηµεία στις γωνίες και στα κέντρα όλων των εδρών, F), Χωροκεντρωµένο (πλεγµατικά σηµεία στις γωνίες και στο κέντρο της µοναδιαίας κυψελίδας I).
6 Κρυσταλλικά συστήµατα
7 Μεταλλικές κρυσταλλικές δοµές Απλή κυβική δοµή Θεωρούµε τα άτοµα του µετάλλου σαν σκληρές οµοιόµορφες σφαίρες. Με επανάληψη της επίπεδης τετραγωνικής διάταξης προκύπτει ένα τρισδιάστατο κρυσταλλικό πλέγµα απλής κυβικής συµµετρίας. Κάθε άτοµο περιβάλλεται από 6 άλλα άτοµα δηλαδή έχουµε αριθµό συναρµογής 6. Σ τ η ν απλή κυβική δοµή δεν κρυσταλλώνονται µέταλλα.
8 Μεταλλικές κρυσταλλικές δοµές Ολοεδρικά κεντρωµένη κυβική δοµή (Face-Centered Cubic Lattice, FCC) Προκύπτει από την απλή κυψελίδα µε τοποθέτηση ενός ατόµου στο κέντρο κάθε πλευράς. Η δοµή FCC είναι µια από τις δυο πυκνότερες διατάξεις ατόµων στο χώρο. Σε αυτή την περίπτωση, κάθε άτοµο έχει αριθµό συναρµογής 12 Δοµή FCC έχουν τα περισσότερα όλκιµα µέταλλα (Cu, Al, Ag, Au ) Οι συµπαγείς σφαίρες αγγίζουν η µία την άλλη κατά µήκος της διαγωνίου µιας έδρας Το µήκος της ακµής του κύβου είναι a= 2R 2
9 Ολοεδρικά κεντρωµένη κυβική δοµή (Face-Centered Cubic Lattice, FCC) à Αριθµός συντεταγµένων/ συναρµολόγησης (Coordination Νumber), CN = ο αριθµός των πλησιέστερων γειτόνων µε τους οποίους ένα άτοµο συνδέεται = αριθµός των ατόµων που έρχονται σε επαφή CN = 12 à Αριθμός ατόμων ανά μοναδιαία κυψελίδα, n = 4. (Για ένα άτοµο που µοιράζεται µεταξύ m γειτονικών µοναδιαίων κυψελίδων, λαµβάνουµε υπόψη µόνο το κλάσµα 1/m του ατόµου). Στην µοναδιαία κυψελίδα FCC έχουµε: 6 άτοµα στις έδρες που µοιράζονται από δυο (2) µοναδιαίες κυψελίδες: 6 1/2 = 3 8 άτοµα στις γωνίες που µοιράζονται από οκτώ (8) µοναδιαίες κυψελίδες: 8 1/8 = 1 à Παράγοντας Ατοµικής κατάληψης (Atomic packing factor), APF = κλάσµα του όγκου που καταλαµβάνεται από συµπαγείς σφαίρες = (άθροισµα του όγκου των ατόµων)/(όγκος της κυψελίδας) = 0.74 (το µέγιστο δυνατό) > Υπολογισµός
10 Ολοεδρικά κεντρωµένη κυβική δοµή FCC APF = (άθροισµα του όγκου των ατόµων)/(όγκος της κυψελίδας) Όγκος 4 συµπαγών σφαιρών στην µοναδιαία κυψελίδα: Όγκος της µοναδιαίας κυψελίδας (a= 2R 2): Άρα, Δηλαδή, µέγιστη δυνατή τιµή: 0.74
11 Ολοεδρικά κεντρωµένη κυβική δοµή (Face-Centered Cubic Lattice, FCC) Τα γωνιακά άτοµα και τα άτοµα στις έδρες της µοναδιαίας κυψελίδας είναι ισοδύναµα Ο κρύσταλλος FCC έχει APF ίσο µε 0.74, που είναι η µέγιστη τιµή για ένα σύστηµα µε ίσες ως προς το µέγεθος σφαίρες Ο κρύσταλλος FCC µπορεί να παρασταθεί µε επίπεδα, των οποίων η πυκνότητα σε άτοµα είναι πολύ υψηλή
12 Μεταλλικές κρυσταλλικές δοµές Ενδοκεντρωµένη κυβική δοµή (Body Centered Cubic Lattice) Η κυψελίδα της δοµής αυτής διαφέρει από την απλή κυβική κυψελίδα ως προς το άτοµο που έχει στο κέντρο του κύβου. Ο αριθµός συναρµογής της δοµής αυτής είναι το CN=8 Δοµή BCC παρουσιάζουν πολλά µέταλλα όπως: Cr, Mo, Ta, W, Li, Nb, K κ.α.
13 Ενδοκεντρωµένη κυβική δοµή (Body Centered Cubic Lattice) Οι συµπαγείς σφαίρες αγγίζουν η µία την άλλη κατά µήκος της διαγωνίου του κύβου Μήκος της διαγωνίου του κύβου, a= 4R/ 3 à Αριθµός συντεταγµένων (coordination number), CN = 8 à Αριθµός ατόµων ανά µοναδιαία κυψελίδα, n = 2 Το κεντρικό άτοµο που δε µοιράζεται από άλλες µοναδιαίες κυψελίδες: 1 x 1 = 1 8 άτοµα στις γωνίες που µοιράζονται από οκτώ µοναδιαίες κυψελίδες: 8 x 1/8 = 1 à Παράγοντας Ατοµικής κατάληψης (Atomic packing factor), APF = 0.68 à Τα γωνιακά και το κεντρικό άτοµο είναι ισοδύναµα
14 Εξαγωνική δοµή HCP (Hexagonal Closed-Packed) à HCP είναι η πιο συνήθης δοµή των µεταλλικών κρυστάλλων à Έξι άτοµα, που σχηµατίζουν ένα κανονικό εξάγωνο, περιβάλουν ένα άτοµο που βρίσκεται στο κέντρο. Ακόµη, ένα άλλο επίπεδο βρίσκεται στα µισά της µοναδιαίας κυψελίδας (κατά µήκος του άξονα-c), µε τρία (3) επιπλέον άτοµα που βρίσκονται στα διάκενα των εξαγωνικών (close-packed) επιπέδων à Cd, Mg, Zn, Ti έχουν αυτήν την κρυσταλλική δοµή
15 Εξαγωνική δοµή HCP (Hexagonal Closed-Packed) à Η µοναδιαία κυψελίδα έχει 2 πλεγµατικές παραµέτρους, a και c. Ο ιδανικός λόγος των µηκών τους είναι c/a = à Αριθµός συντεταγµένων, CN = 12 (ίδιος, όπως στο FCC) à Αριθµός ατόµων ανά µοναδιαία κυψελίδα, n = 6. 3 άτοµα στη µεσαία έδρα που δε µοιράζονται από : 3 x 1 = 3 12 άτοµα στις γωνίες του εξαγώνου που µοιράζονται 6 µοναδιαίες κυψελίδες: 12 x 1/6 = 2 2 άτοµα στην πάνω και κάτω έδρα του εξαγώνου που µοιράζονται από 2 µοναδιαίες κυψελίδες: 2 x 1/2 = 1 à Παράγοντας Ατοµικής κατάληψης, APF = 0.74 (ίδιος, όπως στο FCC) à Όλα τα άτοµα είναι ισοδύναµα.
16 Υπολογισµοί Πυκνότητας κρυσταλλικού υλικού Αφού ολόκληρος ο κρύσταλλος µπορεί να προκύψει από την επανάληψη της µοναδιαίας κυψελίδας, η θεωρητική πυκνότητα του κρυσταλλικού υλικού θα είναι: ρ = = (άτοµα στην µοναδιαία κυψελίδα, n) (µάζα ενός ατόµου, M) / (όγκος της µοναδιαίας κυψελίδας, Vc) = nμ/vc à Άτοµα στην µοναδιαία κυψελίδα, n = 2 (BCC), 4 (FCC), 6 (HCP) à Μάζα ενός ατόµου, M = Ατοµικό βάρος, A, σε amu (ή g/mol) δίνεται στον περιοδικό πίνακα. Για να µετατρέψουµε τη µάζα από amu σε grams, πρέπει να διαιρέσουµε το ατοµικό βάρος σε amu µε τον αριθµό Avogadro, NA = atoms/ mol
Υλικά Ηλεκτρονικής & Διατάξεις
Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 3 η σειρά διαφανειών Δημήτριος Λαμπάκης Τύποι Στερεών Βασική Ερώτηση: Πως τα άτομα διατάσσονται στο χώρο ώστε να σχηματίσουν στερεά? Τύποι Στερεών
Υλικά Ηλεκτρονικής & Διατάξεις
Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 4 η σειρά διαφανειών Δημήτριος Λαμπάκης Ορισμός και ιδιότητες των μετάλλων Τα χημικά στοιχεία διακρίνονται σε μέταλλα (περίπου 70 τον αριθμό)
ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ
ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων
ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ
Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνσης Συντήρησης Πολιτισμικής Κληρονομιάς ΤΕΧΝΟΛΟΓΙΑ & ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΛΙΚΩΝ 6 η Ενότητα ΣΤΕΡΕΑ ΚΑΤΑΣΤΑΣΗ Δημήτριος Λαμπάκης Τύποι Στερεών Βασική Ερώτηση: Πως τα άτομα
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Κρυσταλλικά Συστήματα Κυβικό Εξαγωνικό Τετραγωνικό Ρομβοεδρικό ή Τριγωνικό Ορθορομβικό Μονοκλινές Τρικλινές Κρυσταλλική δομή των
οµή των στερεών ιάλεξη 4 η
οµή των στερεών ιάλεξη 4 η Ύλη τέταρτου µαθήµατος Οι καταστάσεις της ύλης, Γιατί τις µελετάµε; Περιοδική τοποθέτηση των ατόµων, Κρυσταλλική και άµορφη δοµή, Κρυσταλλικό πλέγµα κρυσταλλική κυψελίδα, Πλέγµατα
Μεταλλικός δεσμός - Κρυσταλλικές δομές Ασκήσεις
Μεταλλικός δεσμός - Κρυσταλλικές δομές Ασκήσεις Ποια από τις ακόλουθες προτάσεις ισχύει για τους μεταλλικούς δεσμούς; α) Οι μεταλλικοί δεσμοί σχηματίζονται αποκλειστικά μεταξύ ατόμων του ίδιου είδους μετάλλου.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Φυσική Συμπυκνωμένης Ύλης. Ενότητα 2. Βασίλειος Γιαννόπαπας
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Φυσική Συμπυκνωμένης Ύλης Ενότητα 2 Βασίλειος Γιαννόπαπας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ
ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι 5 Δομή ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Κρυσταλλικά υλικά Άμορφα υλικά Κρύσταλλος είναι ένα υλικό που παρουσιάζει τρισδιάστατη περιοδική τάξη ατόμων,
Θεωρία Μοριακών Τροχιακών (ΜΟ)
Θεωρία Μοριακών Τροχιακών (ΜΟ) Ετεροπυρηνικά διατομικά μόρια ή ιόντα (πολικοί δεσμοί) Το πιο ηλεκτραρνητικό στοιχείο (με ατομικά τροχιακά χαμηλότερης ενεργειακής στάθμης) συνεισφέρει περισσότερο στο δεσμικό
H τέλεια κρυσταλλική δομή των καθαρών μετάλλων
Κεφάλαιο 3 H τέλεια κρυσταλλική δομή των καθαρών μετάλλων Μετά από κάποια εισαγωγικά στοιχεία συζητιέται ο τρόπος δημιουργίας βασικών κρυσταλλικών δομών (SC, BCC, FCC, HCP), ως τρισδιάστατες στοιβάδες
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Θεµατικό Περιεχόµενο Μαθήµατος
Θεµατικό Περιεχόµενο Μαθήµατος 1. Κρυσταλικές δοµές Ιονική ακτίνα Ενέργεια πλέγµατος Πυκνές διατάξεις 4εδρικές 8εδρικές οπές Μέταλλα ιοντικά στερεά Πώς περιγράφεται η δοµή τους Πως προσδιορίζεται η δοµή
Η Δομή των Μετάλλων. Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής
Η Δομή των Μετάλλων Γ.Ν. Χαϊδεμενόπουλος, Καθηγητής Τρισδιάστατο Πλέγμα Οι κυψελίδες των 14 πλεγμάτων Bravais (1) απλό τρικλινές, (2) απλό μονοκλινές, (3) κεντροβασικό μονοκλινές, (4) απλό ορθορομβικό,
1 η ΕΝΟΤΗΤΑ ΔΟΜΙΚΑ ΥΛΙΚΑ (ΕΙΣΑΓΩΓΗ)
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 1 η ΕΝΟΤΗΤΑ ΔΟΜΙΚΑ ΥΛΙΚΑ (ΕΙΣΑΓΩΓΗ) Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 2017
Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 017 Ερώτηση 1 (5 μονάδες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ
2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ
2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΕΙΣΑΓΩΓΗ Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, όπως απαντάται στη φύση
ΑΣΚΗΣΗ 1. Περίληψη. Θεωρητική εισαγωγή. Πειραματικό μέρος
ΑΣΚΗΣΗ 1 Περίληψη Σκοπός της πρώτης άσκησης ήταν η εξοικείωση μας με τα όργανα παραγωγής και ανίχνευσης των ακτίνων Χ και την εφαρμογή των κανόνων της κρυσταλλοδομής σε μετρήσεις μεγεθών στο οεργαστήριο.
7.14 Προβλήματα για εξάσκηση
7.14 Προβλήματα για εξάσκηση 7.1 Το ορυκτό οξείδιο του αλουμινίου (Corundum, Al 2 O 3 ) έχει κρυσταλλική δομή η οποία μπορεί να περιγραφεί ως HCP πλέγμα ιόντων οξυγόνου με τα ιόντα αλουμινίου να καταλαμβάνουν
Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2015
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (15 Μονάδες) Πόσα γραμμάρια καθαρού κρυσταλλικού
Κρυσταλλογραφία: επιστήμη που ασχολείται με τη περιγραφή της γεωμετρίας των κρυστάλλων και της διάταξης στο εσωτερικό τους.
I. Κρυσταλλική Δομή Κρυσταλλογραφία Κρυσταλλογραφία: επιστήμη που ασχολείται με τη περιγραφή της γεωμετρίας των κρυστάλλων και της διάταξης στο εσωτερικό τους. Η συμμετρία του κρυστάλλου επηρεάζει τις
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 3. ΟΙ 32 ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ Ταξινόμηση των κρυστάλλων σαν στερεά σχήματα και οι συμμετρίες Ηλίας Χατζηθεοδωρίδης,
Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών Ι»-Νοέμβριος 2016
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Θέμα 1: Ερωτήσεις (10 Μονάδες) (Σύντομη αιτιολόγηση.
11. Υγρά και Στερεά ΣΚΟΠΟΣ
11. Υγρά και Στερεά ΣΚΟΠΟΣ Σκοπός αυτού του κεφαλαίου είναι να γνωρίσουμε τις άλλεςδύοκαταστάσειςτηςύλης, την υγρή και τη στερεά, να μελετήσουμε και να ερμηνεύσουμε τις ιδιότητες των υγρών, να δούμε τους
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Ατέλειες, διαταραχές και σχέση τους με τις μηχανικές ιδιότητες των στερεών (μεταλλικά στερεά) μικτή διαταραχή διαταραχή κοχλία
Τµήµα Επιστήµης και Τεχνολογίας Υλικών Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/10/2006
Τµήµα Επιστήµης και Τεχνολογίας Υλικών Εισαγωγή στη Φυσική Στερεάς Κατάστασης Μάθηµα ασκήσεων 11/10/006 Άσκηση 1 Υπολογίστε τον όγκο ανά ιόν (σε Å ), την απόσταση πρώτων γειτόνων d (σε Å), τη συγκέντρωση
Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης
Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση
Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Χτίζοντας τους κρυστάλλους από άτομα Είδη δεσμών Διδάσκων : Επίκουρη Καθηγήτρια
Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές
Εργαστηριακή άσκηση 01 Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Ηλίας Χατζηθεοδωρίδης Οκτώβριος / Νοέμβριος 2004 Τι περιλαμβάνει η άσκηση Θα μάθετε τα 7 κρυσταλλογραφικά συστήματα και πως
Τι γνώριζαν για τους κρυστάλλους: ΚΡΥΣΤΑΛΛΙΚΑ ΣΤΕΡΕΑ - ΚΡΥΣΤΑΛΛΟΙ Πρώτοι παρατηρητές: Κανονικότητα της εξωτερικής μορφής των κρυστάλλων οι κρύσταλλοι σχηματίζονται από την κανονική επανάληψη ταυτόσημων
Κεφάλαιο 2 ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ
Κεφάλαιο ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ Προαπαιτούμενη γνώση Πλέγμα Brvis, θεμελιώδης και μοναδιαία κυψελίδα, πλεγματικά επίπεδα, δείκτες Miller, ανάστροφο πλέγμα, ζώνη Brillouin, σημειακές ομάδες χώρου. Πρόβλημα Το
ΚΕΦΑΛΑΙΟ 3. Η Δομή των Κεραμικών Υλικών
ΚΕΦΑΛΑΙΟ 3 Η Δομή των Κεραμικών Υλικών Εισαγωγή Κρυσταλλικά και άμορφα στερεά: Παρουσιάζουν τάξη μεγάλης κλίμακας (long range order) τάξη μικρής κλίμακας (short range order) ή και συνδυασμό των δύο. Τα
Ασκήσεις ακαδ. έτους
Τμήμα Επιστήμης και Τεχνολογίας Υλικών Πανεπιστήμιο Κρήτης Επιστήμη Επιφανειών - Νανοϋλικών (ETY/METY 346) Μεταπτυχιακό: Νανοτεχνολογία για Ενεργειακές Εφαρμογές ¹ Nanomaterials for Energy (Νανοϋλικά για
ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ
ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Δίνονται τα ιόντα Mg 2+, 2, F, Na + και Al + και οι τιμές ιοντικών ακτίνων 16 pm, 95 pm, 50 pm, 140 pm και 65 pm. Βρείτε ποια ακτίνα ταιριάζει σε καθένα από τα ιόντα
ΑΡΧΕΣ ΚΡΥΣΤΑΛΛΟΧΗΜΕΙΑΣ. Γεωχημεία (Υ4203) Χ. Στουραϊτη
ΑΡΧΕΣ ΚΡΥΣΤΑΛΛΟΧΗΜΕΙΑΣ Γεωχημεία (Υ4203) Χ. Στουραϊτη Κρύσταλλοι Τα ορυκτά σχηματίζουν κρυστάλλους: διατάξεις ατόμων που συνδέονται στο χώρο (3 διαστάσεις) και που έχουν μια συγκεκριμένη διάταξη (order)
ΙΙΙ. Αρχές Κρυσταλλοχημείας. Γεωχημεία (Υ4203) Χ. Στουραϊτη
ΙΙΙ. Αρχές Κρυσταλλοχημείας Γεωχημεία (Υ4203) Χ. Στουραϊτη Κρύσταλλοι Τα ορυκτά σχηματίζουν κρυστάλλους: διατάξεις ατόμων που συνδέονται στο χώρο (3 διαστάσεις) και που έχουν μια συγκεκριμένη διάταξη (order)
Γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Σεπτέμβριος 2016
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) ΘΕΜΑ 1 ο (30 Μονάδες) Στην εικόνα δίνονται οι επίπεδες
, όπου Α, Γ, l είναι σταθερές με l > 2.
Φυσική Στερεάς Κατάστασης: Εισαγωγή Θέμα 1 Η ηλεκτρική χωρητικότητα ισούται με C=Q/V όπου Q το φορτίο και V η τάση. (α) Εκφράστε τις διαστάσεις του C στις βασικές διαστάσεις L,M,T,I. (β) Σφαίρα είναι φορτισμένη
Κρυσταλλικές ατέλειες στερεών
Κρυσταλλικές ατέλειες στερεών Χαράλαμπος Στεργίου Dr.Eng. chstergiou@uowm.gr Ατέλειες Τεχνολογία Υλικών Ι Ατέλειες Ατέλειες στερεών Ο τέλειος κρύσταλλος δεν υπάρχει στην φύση. Η διάταξη των ατόμων σε δομές
Γραπτή «επί πτυχίω» εξέταση στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Ιούνιος 2017
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ (Καθ. Β.Ζασπάλης) Στην παραπάνω Εικόνα δίνονται οι κρυσταλλικές δομές δύο
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Σημειακές ατέλειες Στοιχειακά στερεά Ατέλειες των στερεών Αυτοπαρεμβολή σε ενδοπλεγματική θέση Κενή θέση Αριθμός κενών θέσεων Q
ΔΙΑΤΑΡΑΧΕΣ (DISLOCATIONS )
ΔΙΑΤΑΡΑΧΕΣ (DISLOCATIONS ) 1. ΕΙΣΑΓΩΓΉ Η αντοχή και η σκληρότητα είναι μέτρα της αντίστασης ενός υλικού σε πλαστική παραμόρφωση Σε μικροσκοπική κλίμακα, πλαστική παραμόρφωση : - συνολική κίνηση μεγάλου
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα. Θεωρητικη αναλυση
ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα Θεωρητικη αναλυση ΧΗΜΙΚΟΙ ΔΕΣΜΟΙ στα στερεα Ομοιοπολικός δεσμός Ιοντικός δεσμός Μεταλλικός δεσμός Δεσμός του υδρογόνου Δεσμός van der Waals ΔΟΜΗ ΑΤΟΜΟΥ Στοιβάδες Χώρος κίνησης των
ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ
ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Για καθεμιά από τις ακόλουθες ομάδες, τοποθετήστε τα άτομα και / ή τα ιόντα κατά σειρά ελαττούμενου μεγέθους (από το μεγαλύτερο προς το μικρότερο) (α) Cu, Cu +, Cu
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών - Τμήμα Φυσικής Εργαστήριο Ακτίνων-Χ, Οπτικού Χαρακτηρισμού και Θερμικής Ανάλυσης
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών - Τμήμα Φυσικής Εργαστήριο Ακτίνων-Χ, Οπτικού Χαρακτηρισμού και Θερμικής Ανάλυσης ΑΣΚΗΣΗ Σκοπός της άσκησης είναι ο υπολογισμός των μηκών
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΟΡΥΚΤΑ - ΠΕΤΡΩΜΑΤΑ
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΟΡΥΚΤΑ - ΠΕΤΡΩΜΑΤΑ Μαρία Περράκη, Επίκουρη Καθηγήτρια ΑΔΕΙΑ ΧΡΗΣΗΣ Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Προαπαιτούμενη γνώση Προαπαιτούμενη γνώση είναι η ύλη των πρώτων κεφαλαίων αυτού του βιβλίου.
10Α ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΚΑΙ ΔΕΣΜΟΣ ΜΕΤΑΛΛΩΝ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ Σύνοψη Στο Α μέρος του κεφαλαίου απαριθμούνται οι χαρακτηριστικές ιδιότητες των μετάλλων και δίνονται τα συνηθέστερα κρυσταλλικά συστήματα στα
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 3: Στερεά διαλύματα και ενδομεταλλικές ενώσεις. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών
Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 3: Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κεφάλαιο 2 Χημικοί Δεσμοί
Κεφάλαιο 2 Χημικοί Δεσμοί Σύνοψη Παρουσιάζονται οι χημικοί δεσμοί, ιοντικός, μοριακός, ατομικός, μεταλλικός. Οι ιδιότητες των υλικών τόσο οι φυσικές όσο και οι χημικές εξαρτώνται από το είδος ή τα είδη
Κίνηση στερεών σωμάτων - περιστροφική
Κίνηση στερεών σωμάτων - περιστροφική ΦΥΣ 211 - Διαλ.29 1 q Ενδιαφέρουσα κίνηση: Ø Αρκετά περίπλοκη Ø Δεν καταλήγει σε κίνηση ενός βαθµού ελευθερίας q Τι είναι το στερεό σώµα: Ø Συλλογή υλικών σηµείων
ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ
ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ 1 ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ Πλέγμα στο χώρο Πλέγμα Bravais Διάταξη σημείων στο χώρο έτσι ώστε κάθε σημείο να έχει ταύτοσημο περιβάλλον Αυτό προσδιορίζει δύο ιδιότητες των πλεγμάτων Στον
ΕΤΥ-349 ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΘΕΡΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΥΛΙΚΩΝ
ΕΤΥ-349 ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΘΕΡΜΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΥΛΙΚΩΝ Χειμερινό εξάμηνο ακαδημαϊκού έτους 2017-2018 Τμήμα Επιστήμης και Τεχνολογία Υλικών, Πανεπιστήμιο Κρήτης Διδάσκων: Βασίλης Παλτόγλου email: vaspal@physics.uoc.gr
Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V
Παραγωγή ακτίνων Χ Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε µήκη κύµατος της τάξης των Å (=10-10 m). Στο ηλεκτροµαγνητικό φάσµα η ακτινοβολία Χ εκτείνεται µεταξύ της περιοχής των ακτίνων γ και
Κεφάλαιο 3 Κρυσταλλογραφία
Κεφάλαιο 3 Κρυσταλλογραφία Σύνοψη Μελετάται ο σχηματισμός των κρυστάλλων με τα αντίστοιχα στάδια ανάπτυξης αυτών, τα κρυσταλλικά συστήματα, τα κρυσταλλικά πλέγματα, η μελέτη των κρυσταλλικών δομών μεγίστης
µοριακά στερεά στερεά van der Waals δεσµοί υδρογόνου
Τα µοριακά στερεά ή στερεά van der Waals συντίθενται από διακεκριµένα µόρια ή άτοµα, τα οποία συγκρατούνται σε πλέγµατα µε ασθενείς δυνάµεις van der Waals. Οι ηλεκτρικές αυτές δυνάµεις είναι καθολικού
1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.
Ερωτήσεις ανάπτυξης 1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο (A = 90 ) και πλευρές = 3 cm, = 5 cm, η παράπλευρη ακµή του είναι 7 cm. Να βρείτε: α) Το εµβαδό Ε Π της παράπλευρης επιφάνειας.
Στοιχειομετρικοί Υπολογισμοί στη Χημεία
Στοιχειομετρικοί Υπολογισμοί στη Χημεία Δομικές μονάδες της ύλης ΑΤΟΜΑ ΜΟΡΙΑ ΣΤΟΙΧΕΙΑ ΕΝΩΣΕΙΣ Αριθμός Avogadro N A = 6,02 10 23 mol -1 Δηλαδή αυτός ο αριθμός παριστάνει την ποσότητα μιας ουσίας που περιέχει
ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ. Χ. Κορδούλης
ΔΟΜΗ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΕΡΑΜΙΚΩΝ Χ. Κορδούλης ΚΕΡΑΜΙΚΑ ΥΛΙΚΑ Τα κεραμικά υλικά είναι ανόργανα µη μεταλλικά υλικά (ενώσεις μεταλλικών και μη μεταλλικών στοιχείων), τα οποία έχουν υποστεί θερμική κατεργασία
Σχήμα 1.1. Είσοδος και έξοδος ενέργειας σε ένα υλικό.
ΚΕΦΑΛΑΙΟ 1: ΑΡΧΕΣ ΤΩΝ ΥΛΙΚΩΝ 1.1 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΥΛΙΚΩΝ Για την εκτίμηση της καταλληλότητας ενός υλικού για μία συγκεκριμένη χρήση, λαμβάνονται υπόψη πολλές ιδιότητες. Με βάση το είδος της ενέργειας που
Μάθημα 23 ο. Μεταλλικός Δεσμός Θεωρία Ζωνών- Ημιαγωγοί Διαμοριακές Δυνάμεις
Μάθημα 23 ο Μεταλλικός Δεσμός Θεωρία Ζωνών- Ημιαγωγοί Διαμοριακές Δυνάμεις Μεταλλικός Δεσμός Μοντέλο θάλασσας ηλεκτρονίων Πυρήνες σε θάλασσα e -. Μεταλλική λάμψη. Ολκιμότητα. Εφαρμογή δύναμης Γενική και
ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ. Μάθημα 3ο. Συμμετρία
ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ Μάθημα 3ο Συμμετρία 1 Συμμετρία Μια κατάσταση στην οποία μέρη τα οποία ευρίσκονται σε αντίθετες μεταξύ τους θέσεις ενός επιπέδου, γραμμής ή σημείου φανερώνει διευθετήσεις οι οποίες αλληλοσυνδέονται
Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής
Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Διαγράμματα Φάσεων Δημιουργία κραμάτων: διάχυση στοιχείων που έρχονται σε άμεση επαφή Πως συμπεριφέρονται τα επιμέρους άτομα των
ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ΠΟΛΥΕ ΡΑ 1. ΟΡΙΣΜΟΙ 2. ΟΡΘΟΓΩΝΙΟ ΠΑΡΑΛΛΗΛΕΠΙΠΕ Ο α = µήκος β = πλάτος γ = ύψος δ = διαγώνιος = α. β. γ = Ε β. υ Ε ολ = 2. (αβ + αγ + βγ) 3. ΚΥΒΟΣ = α 3 Ε ολ = 6α 2
6.1 Θερμόμετρα και μέτρηση θερμοκρασίας
ΚΕΦΑΛΑΙΟ 6 ο ΘΕΡΜΟΤΗΤΑ 6.1 Θερμόμετρα και μέτρηση θερμοκρασίας 1. Τι ονομάζεται θερμοκρασία; Το φυσικό μέγεθος που εκφράζει πόσο ζεστό ή κρύο είναι ένα σώμα ονομάζεται θερμοκρασία. 2. Πως μετράμε τη θερμοκρασία;
2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Η πυκνότητα του νερού σε θερμοκρασία 4 C και ατμοσφαιρική πίεση (1 atm) είναι ίση με 1g/mL.
Πυκνότητα Πυκνότητα ορίζεται το φυσικό μέγεθος που δίνεται από το πηλίκο της μάζας του σώματος προς τον αντίστοιχο όγκο που καταλαμβάνει σε σταθερές συνθήκες πίεσης (όταν πρόκειται για αέριο). Ο Συμβολισμός,
Χηµικοίδεσµοί, Μικροδοµή, Παραµόρφωση καιμηχανικές Ιδιότητες
Χηµικοίδεσµοί, Μικροδοµή, Παραµόρφωση καιμηχανικές Ιδιότητες Βασισµένοστο Norman E. Dowling, Mechanical Behavior of Materials, Third Edition, Pearson Education, 2007 Κλίµακες µεγέθους και επιστήµες που
1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. 19. Βλέπε θεωρία σελ. 9 και 10.
19. Βλέπε θεωρία σελ. 9 και 10. 7 1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 20. Βλέπε θεωρία α) σελ. 8, β) σελ. 8, γ) σελ. 9. 21. α) ζυγού, β) I. προχοΐδας Π. ογκομετρικού κυλίνδρου. 22. Με το ζυγό υπολογίζουμε τη μάζα. O όγκος
Ca. Να μεταφέρετε στην κόλλα σας συμπληρωμένο τον παρακάτω πίνακα που αναφέρεται στο άτομο του ασβεστίου: ΣΤΙΒΑΔΕΣ νετρόνια K L M N Ca 2
Ερωτήσεις Ανάπτυξης 1. Δίνεται ότι: 40 20 Ca. Να μεταφέρετε στην κόλλα σας συμπληρωμένο τον παρακάτω πίνακα που αναφέρεται στο άτομο του ασβεστίου: ΣΤΙΒΑΔΕΣ νετρόνια K L M N Ca 2 2. Tι είδους δεσμός αναπτύσσεται
Τμήμα Τεχνολογίας Τροφίμων. Ανόργανη Χημεία. Ενότητα 8 η : Υγρά, Στερεά & Αλλαγή Φάσεων. Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής.
Τμήμα Τεχνολογίας Τροφίμων Ανόργανη Χημεία Ενότητα 8 η : Υγρά, Στερεά & Αλλαγή Φάσεων Οκτώβριος 2018 Δρ. Δημήτρης Π. Μακρής Αναπληρωτής Καθηγητής Πολικοί Ομοιοπολικοί Δεσμοί & Διπολικές Ροπές 2 Όπως έχει
2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ
2. H ΔΟΜΗ ΤΩΝ ΜΕΤΑΛΛΩΝ ΠΕΡΙΛΗΨΗ Τα μέταλλα είναι κρυσταλλικά στερεά, έχουν δηλαδή κρυσταλλική δομή, διότι η σύνταξη των ατόμων που τα αποτελούν παρουσιάζει περιοδικότητα και στις τρεις διευθύνσεις του
ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ
ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Ο άργυρος εμφανίζεται στη φύση υπό τη μορφή δύο ισοτόπων τα οποία έχουν ατομικές μάζες 106,905 amu και 108,905 amu. (α) Γράψτε το σύμβολο για καθένα ισότοπο του αργύρου
κυματικής συνάρτησης (Ψ) κυματική συνάρτηση
Στην κβαντομηχανική ο χώρος μέσα στον οποίο κινείται το ηλεκτρόνιο γύρω από τον πυρήνα παύει να περιγράφεται από μια απλή τροχιά, χαρακτηριστικό του μοντέλου του Bohr, αλλά περιγράφεται ο χώρος μέσα στον
κρυστάλλου απείρου μεγέθους.
Κρυστάλλωση Πολυμερών Θερμοδυναμική της κρυστάλλωσης πολυμερών Θερμοκρασία ρασία τήξης πολυμερών Μεταβολή ειδικού όγκου ως προς τη θερμοκρασία σε γραμμικό πολυαιθυλένιο:., ακλασματοποίητο πολυμερές, ο,
Βασικά σωματίδια της ύλης
1 Βασικά σωματίδια της ύλης Τα βασικά σωματίδια της ύλης είναι τα άτομα, τα μόρια και τα ιόντα. «Άτομο ονομάζουμε το μικρότερο σωματίδιο της ύλης που μπορεί να πάρει μέρος στο σχηματισμό χημικών ενώσεων».
Μελέτη της δομής νανοσωματιδίων κυβικού κρυσταλλικού πλέγματος
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Μελέτη της δομής νανοσωματιδίων κυβικού κρυσταλλικού πλέγματος Σπυρίδων Καρύδης Διπλωματική
ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.)
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.) Το 1960 καθορίστηκε μετά από διεθνή συμφωνία το Διεθνές Σύστημα Μονάδων S.I. (από τα αρχικά των γαλλικών λέξεων Système International d Unités). Το σύστημα
Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήριο Εφαρμοσμένης Φυσικής Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Περιεχόμενα
Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες)
Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες) Μοναδιαία κυψελίδα Καθορισµός Ο.Σ.Χ. Υπό τον όρο ότι δεν υπάρχει κανένα πρόβληµα στη δοµή, όπως διδυµίες αταξίες κ.λ.π., έχουµε την δυνατότητα να δηµιουργήσουµε
Φυσική Χημεία ΙΙ. Ηλεκτροχημικά στοιχεία. Κεφ.1 Ηλεκτροδιαλυτική τάση. Σημειώσεις για το μάθημα. Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π.
Σημειώσεις για το μάθημα Φυσική Χημεία ΙΙ Ηλεκτροχημικά στοιχεία Κεφ.1 Ηλεκτροδιαλυτική τάση Ευκλείδου Τ. Παναγιώτου Σ. Γιαννακουδάκης Π. Τμήμα Χημείας ΑΠΘ 1. ΚΕΦΑΛΑΙΟ 1 ΗΛΕΚΤΡΟΔΙΑΛΥΤΙΚΗ ΤΑΣΗ 1.1 των µετάλλων
MATHematics.mousoulides.com
ΣΤΕΡΕΟΜΕΤΡΙΑ Ενδεικτικές Επαναληπτικές Δραστηριότητες 1 1. Να χαρακτηρίσετε με ΟΡΘΟ ή ΛΑΘΟΣ τις πιο κάτω προτάσεις, βάζοντας σε κύκλο τον αντίστοιχο χαρακτηρισμό. (α) Ο κύλινδρος είναι πολύεδρο. ΟΡΘΟ /
Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 2017
Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών Ι»-Ιανουάριος 017 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ
ΘΕΜΑ 1 ο 1. Πόσα ηλεκτρόνια στη θεµελιώδη κατάσταση του στοιχείου 18 Ar έχουν. 2. Ο µέγιστος αριθµός των ηλεκτρονίων που είναι δυνατόν να υπάρχουν
ΚΕΦΑΛΑΙΟ 1 ο Απαντήσεις των ερωτήσεων από πανελλήνιες 2001 2014 ΘΕΜΑ 1 ο 1. Πόσα ηλεκτρόνια στη θεµελιώδη κατάσταση του στοιχείου 18 Ar έχουν µαγνητικό κβαντικό αριθµό m l = 1 ; α. 6. β. 8. γ. 4. δ. 2.
M V n. nm V. M v. M v T P P S V P = = + = σταθερή σε παραγώγιση, τον ορισµό του συντελεστή διαστολής α = 1, κυκλική εναλλαγή 3
Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος εκεµβρίου 04- (//04. ίνονται οι ακόλουθες πληροφορίες για τον διθειάνθρακα (CS. Γραµµοµοριακή µάζα 76.4 g/mol, κανονικό σηµείο ζέσεως 46 C, κανονικό
Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΑΠΑΝΤΗΣΕΙΣ
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23/04/2014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΧΗΜΕΙΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Για τις ερωτήσεις Α1 έως Α4 να γράψετε στο τετράδιο σας το γράµµα που αντιστοιχεί
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΕΦΑΡΜΟΓΩΝ ΡΟΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Γεωργίου Π. Νίνη «Η Θεωρία Ομάδων και
Ατομική και ηλεκτρονιακή δομή των στερεών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ατομική και ηλεκτρονιακή δομή των στερεών Εισαγωγή Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Ατομική και ηλεκτρονιακή δομή των στερεών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ατομική και ηλεκτρονιακή δομή των στερεών Μοντέλο Jellum Διδάσκων : Επίκουρη Καθηγήτρια Χριστίνα Λέκκα Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ο πυρήνας του ατόμου
Ο πυρήνας του ατόμου Αρχές 19 ου αιώνα: Η ανακάλυψη της ραδιενέργειας, (αυθόρμητης εκπομπής σωματιδίων και / ή ακτινοβολίας από στοιχεία), βοήθησε τα μέγιστα στην έρευνα της δομής του ατόμου. Ποια είδη
Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.
4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ
ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑ Συμμετρία και Κρυσταλλικά Συστήματα Ηλίας Χατζηθεοδωρίδης, Επίκουρος Καθηγητής
Σ Τ Ο Ι Χ Ε Ι Ο Μ Ε Τ Ρ Ι Α
71 Σ Τ Ο Ι Χ Ε Ι Ο Μ Ε Τ Ρ Ι Α Οι μάζες των ατόμων και των μορίων είναι πολύ μικρές και δεν ενδείκνυται για τον υπολογισμό τους η χρήση των συνηθισμένων μονάδων μάζας ( Kg ή g ) γιατί προκύπτουν αριθμοί
Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ
Γενική και Ανόργανη Χημεία Περιοδικές ιδιότητες των στοιχείων. Σχηματισμός ιόντων. Στ. Μπογιατζής 1 Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Π Δ Χειμερινό εξάμηνο 2018-2019 Π
ΜΕΘΟ ΟΙ ΣΚΛΗΡΥΝΣΗΣ ΜΕΤΑΛΛΙΚΩΝ ΥΛΙΚΩΝ
ΜΕΘΟ ΟΙ ΣΚΛΗΡΥΝΣΗΣ ΜΕΤΑΛΛΙΚΩΝ ΥΛΙΚΩΝ ΓΕΝΙΚΑ ΟΡΙΣΜΟΣ Σκλήρυνση µεταλλικού υλικού είναι η ισχυροποίησή του έναντι πλαστικής παραµόρφωσης και χαρακτηρίζεται από αύξηση της σκληρότητας, του ορίου διαρροής
3. Υπολογισμοί με Χημικούς Τύπους και Εξισώσεις
3. Υπολογισμοί με Χημικούς Τύπους και Εξισώσεις ΠΕΡΙΕΧΟΜΕΝΑ: Μοριακή μάζα και τυπική μάζα μιας ουσίας Η έννοια του mole Εκατοστιαία περιεκτικότητα από το χημικό τύπο Στοιχειακή ανάλυση: Εκατοστιαία περιεκτικότητα
Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής. Ενότητα: Στερεά. Διδάσκων: Καθηγητής Κ. Κώτσης. Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης
Τίτλος Μαθήματος: Βασικές Έννοιες Φυσικής Ενότητα: Στερεά Διδάσκων: Καθηγητής Κ. Κώτσης Τμήμα: Παιδαγωγικό, Δημοτικής Εκπαίδευσης 7. Στερεά Η επιβεβαίωση ότι τα στερεά σώματα αποτελούνται από μια ιδιαίτερη
Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012
Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 1) Ποιο φυσικό φαινόμενο βοηθάει στην αυτοσυναρμολόγηση μοριακών συστημάτων? α) Η τοποθέτηση μοριων με χρήση μικροσκοπίου σάρωσης δείγματος
Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)
Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:
ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση