ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ"

Transcript

1 ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑ Συμμετρία και Κρυσταλλικά Συστήματα Ηλίας Χατζηθεοδωρίδης, Επίκουρος Καθηγητής

2 ΑΔΕΙΑ ΧΡΗΣΗΣ Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς.

3 3 Συμμετρία και τύποι συμμετρίας

4 ΕΣΩΤΕΡΙΚΗ ΔΟΜΗ ΤΩΝ ΚΡΥΣΤΑΛΛΩΝ 4 Όπως είπε ο Haüy, υπάρχει μια εσωτερική δομή στους κρυστάλλους Σήμερα την δομή αυτή την καταλαβαίνουμε από την περιοδική επανάληψη στον χώρο μονάδων υλικού (π.χ. άτομα) που τις ονομάζουμε κυψελίδες Η επανάληψη των κυψελίδων στον χώρο καταλήγει στο εξωτερικό σχήμα των κρυστάλλων που βλέπουμε Οι επαναλαμβανόμενες μονάδες μπορεί να είναι: Εικόνα 1 Μόρια, όπως π.χ. το μόριο του νερού H2O στον πάγο Ανιόντα, όπως (CO3) 2-, (SiO4) 4-, (PO4) 3- Κατιόντα ή απλά άτομα, όπως Ca 2+, Mg 2+, Fe 2+, Fe 3+ Εικόνα 2

5 ΤΙ ΕΙΝΑΙ ΣΥΜΜΕΤΡΙΑ; 5 Η συστηματική αναπαραγωγή όμοιων χαρακτηριστικών στη μία, στις δύο ή στις τρεις διαστάσεις λέγεται πως έχει συμμετρία. Παράδειγμα Συμμετρία στις δύο διαστάσεις με περιοδική τοποθέτηση όμοιων αντικειμένων (σφαιρών) σε ίσες αποστάσεις μεταξύ τους.

6 ΑΡΙΘΜΗΤΙΚΟ ΑΝΑΛΟΓΟ ΤΩΝ ΠΡΑΞΕΩΝ ΣΥΜΜΕΤΡΙΑΣ 6 Στην άλγεβρα έχουμε 1=1 ισότητα ή ταυτότητα 1+2 = 2+1 αντιμετάθεση όρων Επίσης με τις πράξεις της άλγεβρας μπορούμε να παράγουμε οποιονδήποτε αριθμό Με την πρόσθεση με σύμβολο το + 1+1=2, ή 1+1+1=3, ή 1+2=3 Με τον πολλαπλασιασμό με σύμβολο το 1 0=0, ή 1 1=1, ή ακόμη 2 2=4 κτλ. Υπάρχει επίσης και η πράξη της ισότητας που συμβολίζεται με το ίσον = Κάτι ανάλογο περιμένουμε και στην κρυσταλλογραφία αλλά με άλλες πράξεις που έχουν γεωμετρική έννοια, κυρίως στον χώρο

7 ΣΥΜΜΕΤΡΙΑ ΣΤΗΝ ΤΕΧΝΗ 7 Εικόνα 3 M.C. Escher ( ) Εικόνα 4

8 ΕΚΦΡΑΣΗ ΣΥΜΜΕΤΡΙΑΣ ΣΤΗΝ ΤΕΧΝΗ 8 Εικόνα 5 M.C. Escher

9 ΕΜΒΑΘΥΝΣΗ ΤΗΣ ΣΥΜΜΕΤΡΙΑΣ ΣΤΗΝ ΤΕΧΝΗ 9 Εικόνα 7 M.C. Escher Εικόνα 8 Εικόνα 6

10 ΠΕΡΙΣΣΟΤΕΡΗ ΣΥΜΜΕΤΡΙΑ ΣΤΗΝ ΤΕΧΝΗ Εικόνα 9 M.C. Escher Εικόνα 10 Εικόνα 11 Εικόνα 12 10

11 Η ΣΥΜΜΕΤΡΙΑ ΤΟΥ ΧΑΟΥΣ 11 Εικόνα 13 Εικόνα 14 Εικόνα 15 Εικόνα 16 Εικόνα 17 Εικόνα 18

12 ΠΕΡΙΣΣΟΤΕΡΗ ΣΥΜΜΕΤΡΙΑ ΜΕΣΑ ΣΤΟ ΧΑΟΣ 12 Εικόνα 19 Εικόνα 20 Εικόνα 21 Εικόνα 22

13 ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΚΡΥΣΤΑΛΛΩΝ 13 Από το εξωτερικό τους σχήμα Από την εσωτερική τους συμμετρία Εξωτερικό σχήμα κρυστάλλων 7 Συστήματα Κρυστάλλωσης με βάση το σύστημα συντεταγμένων 32 μοναδιαίοι συνδυασμοί: Σημειο-ομάδες (point groups) ή Κρυσταλλικές τάξεις με βάση τα στοιχεία συμμετρίας (άξονες, σημεία, επίπεδα) και τους συνδυασμούς αυτών (πράξεις) με μοναδιαίο αποτέλεσμα.

14 ΤΑ ΕΠΤΑ (7) ΣΥΣΤΗΜΑΤΑ ΚΡΥΣΤΑΛΛΩΣΗΣ 14 Με βάση το σύστημα συντεταγμένων Τρικλινές σύστημα Μονοκλινές σύστημα Ορθορομβικό σύστημα Τετραγωνικό σύστημα Εξαγωνικό σύστημα Τριγωνικό σύστημα } Ισομερές κυβικό σύστημα Κατά την αμερικάνικη ταξινόμηση τα δύο συστήματα κατατάσσονται σαν υποσυστήματα του εξαγωνικού 7 κρυσταλλικά συστήματα 32 point groups

15 ΤΡΙΚΛΙΝΕΣ ΣΥΣΤΗΜΑ 15 a b c α β γ 90 +c β -a α -b 1 = Καμμία συμμετρία 1-= Α 1 - +a γ +b -c

16 ΜΟΝΟΚΛΙΝΕΣ ΣΥΣΤΗΜΑ 16 a b c +c α = γ = 90 β 90 β c 0 -a α -b b 0 a 0 2 = 1Α 2 m=m 2/m = I, 1A 2, m +a -c γ +b

17 ΟΡΘΟΡΟΜΒΙΚΟ ΣΥΣΤΗΜΑ 17 a b c α = β= γ = 90 +c c 0 β=90 -b -a b 0 α=90 a = 3A 2 mm2 = 1A 2, 2m 2/m 2/m 2/m = I, 3A 2, 3m +a -c γ=90 +b

18 ΤΕΤΡΑΓΩΝΙΚΟ ΣΥΣΤΗΜΑ 18 a b c α = β= γ = 90 +c β=90 -a α=90 4 = 1A4 4- = 1A-4 4/m = I, 1A4, m 422 = 1A4, 4A2 4mm = 1A4, 4m 4-2m = 1A-4, 2A2, 2m 4/m 2/m 2/m = I, 1A4, 4A2, 5m -b +a -c γ=90 +b

19 ΤΡΙΓΩΝΙΚΟ (ΡΟΜΒΟΕΔΡΙΚΟ) ΣΥΣΤΗΜΑ 19 a 1 = a 2 = a 3 = c γ 1 =γ 2 =γ 3 =120 β = α = 90 +c +a 3 β=90 a 3 c 0 +b α=90 3 = 1A3 3- = 1A-3 (i+1a3) 32 = 1A3, 3A2 3m = 1A3, 3m 3-2/m = 1A-3 (=i+1a3), 3A2, 3m +a 1 a 1 γ=120 -c a 2 +a 2

20 ΕΞΑΓΩΝΙΚΟ ΣΥΣΤΗΜΑ 20 a 1 = (a 2 b)=a 3 c 0 γ 1 =γ 2 =γ 3 =120 β = α = 90 6 = 1A6 6- = 1A-6 (=1A3 + m) 6/m = I, 1A6, m 622 = 1A6, 6A2 6mm = 1A6, 6m 6-m2 = 1A-6 (=1A3+m), 3A2, 3m 6/m 2/m 2/m = I, 1A6, 6A2, 7m +a 3 +a 1 β=90 a 3 a 1 +c c 0 +b γ=120 α=90 b a 2 +a 2 -c

21 ΚΥΒΙΚΟ (ΙΣΟΜΕΤΡΙΚΟ) ΣΥΣΤΗΜΑ 21 a = b = c α = β= γ = 90 +c β=90 -a α=90 -b 6/m2/m2/m = i, 1A 6, 6A 2, 7m 23 = _ 3A 2, 4A 3 _ 2/m3 = 3A 2, 3m, 4A 3 _ 432 = 3A 4 _, 4A 3, 6A 2 4 3m = 3A 4, 4A 3, 6m _ 4/m32/m = 3A 4, 4A 3, 6A 2, 9m +a -c γ=90 +b

22 22 Στοιχεία συμμετρίας και πραξεις συμμετρίας

23 ΣΤΟΙΧΕΙΑ ΣΥΜΜΕΤΡΙΑΣ ΚΑΙ ΠΡΑΞΕΙΣ ΣΥΜΜΕΤΡΙΑΣ 23 Βασικοί τύποι στοιχείων συμμετρίας Συμμετρία σε σχέση με ένα σημείο Συμμετρία σε σχέση με ευθεία γραμμή χ 90 χ Συμμετρία σε σχέση με ένα επίπεδο

24 ΣΥΜΜΕΤΡΙΑ ΣΕ ΣΧΕΣΗ ΜΕ ΣΗΜΕΙΟ 24 Ένα σημείο είναι ένα κέντρο συμμετρίας όταν όλα τα σημεία που βρίσκονται σε ίσες αποστάσεις από αυτό, αλλά σε αντίθετες κατευθύνσεις, είναι ισοδύναμα. Το κέντρο συμμετρίας συμβολίζεται με το λατινικό γράμμα i. i

25 ΣΥΜΜΕΤΡΙΑ ΣΕ ΣΧΕΣΗ ΜΕ ΕΠΙΠΕΔΟ 25 Εάν από ένα σημείο φέρουμε κάθετο σε ένα επίπεδο και σε ίση απόσταση από την άλλη μεριά του επιπέδου συναντήσουμε ισότιμο σημείο, τότε λέμε πως το επίπεδο αυτό είναι ένα επίπεδο συμμετρίας. Το επίπεδο συμμετρίας συμβολιζεται με το λατινικό γράμμα m. Επίσης, το επίπεδο συμμετρίας λέγεται και κατοπτρικό επίπεδο.

26 ΣΥΜΜΕΤΡΙΑ ΣΕ ΣΧΕΣΗ ΜΕ ΕΥΘΕΙΑ 26 Η ευθεία λέγεται και άξονας συμμετρίας και συμβολίζεται με τον αντίστοιχο αριθμό ή σύμβολο όπως αυτό φαίνεται στο παρακάτω σχήμα. χ 90 χ Οι τέσσερεις τύποι αξόνων συμμετρίας Διπλός (2) Τριπλός (3) Τετραπλός (4) Εξαπλός (6) Άξονας συμμετρίας 360, δεν υφίσταται, αλλά απλά σημαίνει ανυπαρξία συμμετρίας.

27 ΑΞΟΝΕΣ ΣΥΜΜΕΤΡΙΑΣ 27 (συμμετρία με βάση την ευθεία) Η γεωμετρική κίνηση που απαιτείται για να φέρει ένα σημείο ώστε να ταυτιστεί με άλλο σημείο ίδιου είδους, ονομάζεται πράξη συμμετρίας Πράξεις συμμετρίας πρώτου είδους ονομάζονται αυτές που δεν αλλάζουν τον σχετικό προσανατολισμό του αντικειμένου. Αυτοί οι άξονες λέγονται και κανονικοί. Πράξεις συμμετρίας δεύτερου είδους ονομάζονται αυτές που αλλάζουν τον σχετικό προσανατολισμό του αντικειμένου. Αυτοί οι άξονες λέγονται και μη-κανονικοί. i 4 m Αυτοί οι άξονες ταυτίζονται με πράξεις όπως το σημείο ή το επίπεδο

28 ΚΑΝΟΝΙΚΟΙ ΑΞΟΝΕΣ ΣΥΜΜΕΤΡΙΑΣ ας ης ης

29 ΜΗ - ΚΑΝΟΝΙΚΟΙ ΑΞΟΝΕΣ ΣΥΜΜΕΤΡΙΑΣ 29 Είναι όλοι οι κανονικοί (1, 2, 3, 4, 6) αλλά με μία επιπλέον αναστροφή του αντικειμένου κατά σημείο που ανήκει στον άξονα. 1 Συμβολίζονται με 1, 2, 3, 4 και 6. _ 1 _ 2 _ 2 ισότιμο με ισότιμο με i m Σημείο συμμετρίας Επίπεδο συμμετρίας

30 ΔΕΝ ΥΠΑΡΧΕΙ ΑΞΟΝΑΣ 5 ης, ΚΑΙ ΑΠΟ 7 ης ΚΑΙ ΠΑΝΩ ΣΤΗΝ ΦΥΣΗ 30 Υπάρχει όμως 5 ης σε τεχνητούς κρυστάλλους! Κράμα Al-Pd-Re σχηματίζει κρυστάλλους με άξονα 5 ης τάξης Εικόνα 23

31 ΠΛΑΚΙΔΙΑ ΤΟΥ ROGER PENROSE Πλήρης κάλυψη επιφάνειας με ένα μη-περιοδικό τρόπο (1984) 2 5 Εικόνα 24 1

32 ΣΥΝΔΥΑΣΜΟΙ (ΠΡΑΞΕΙΣ) ΣΤΟΙΧΕΙΩΝ ΣΥΜΜΕΤΡΙΑΣ 32 _ Τα βασικά στοιχεία συμμετρίας είναι δέκα: 6, 4, 3, 2, 1, 6, 4, 3, 2 = m, 1 = i Συνδυασμοί των παραπάνω δίνουν τα κρυσταλλικά συστήματα που παρατηρούνται στα κρυσταλλικά υλικά. Όλοι οι κρύσταλλοι έχουν μερικά από τα παραπάνω 10 βασικά στοιχεία συμμετρίας, αλλά απεριόριστο αριθμό του στοιχείου συμμετρίας 1. Η εξωτερική συμμετρία κάθε κρυστάλλου πρέπει να αντιστοιχεί σε: Έναν από τους πέντε κανονικούς άξονες (1, 2, 3, 4 και 6) Έναν από τους πέντε μη-κανονικούς άξονες (1, 2, 3, 4 και 6) Έναν από τους συνδυασμούς των παραπάνω, αυτούς που δεν οδηγούν σε απεριόριστο αριθμό επαναλήψεων αλλά σε 32 μοναδιαίους συνδυασμούς, τις 32 κρυσταλλικές τάξεις.

33 33 ΟΙ 32 ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ (Σημειο-ομάδες)

34 ΟΙ 32 ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ (ΣΗΜΕΙΟ ΟΜΑΔΕΣ) 34 Οι 32 κρυσταλλικοί συνδυασμοί σημείου Οι συνδυασμοί στοιχείων συμμετρίας που περνάνε από ένα σημείο λέγονται «point groups» (σημειο-ομάδες) Point = σημείο, τουλάχιστον ένα σημείο μένει ακίνητο Groups = ομάδα, με την μαθηματική έννοια (Θεωρία Ομάδων) Μόνο 32 τέτοιοι συνδυασμοί είναι δυνατοί

35 ΟΙ 32 ΣΗΜΕΙΟ ΟΜΑΔΕΣ (ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ ) 35

36 ΑΛΛΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΚΑΙ ΟΝΟΜΑΤΟΛΟΓΙΕΣ 36 Κρυσταλλικό Σύστημα Κρυσταλλική Κλάση Πράξεις συμμετρίας Κρυσταλλικό Σύστημα Κρυσταλλική Κλάση Πράξεις συμμετρίας Τρικλινές Εξαγωνικό Μονοκλινές Ορθορομβικό Τετραγωνικό Κυβικό (Ισομετρικό)

37 ΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΣΧΗΜΑΤΙΚΑ (1) 37 Από το Ορθορομβικό: 222 ή 3Α 2 (τρεις άξονες δευτέρας τάξεις) 2 2 2

38 ΟΙ ΣΥΜΒΟΛΙΣΜΟΙ ΣΧΗΜΑΤΙΚΑ (2) 38 Από το Ορθορομβικό: 2/m2/m2/m ή i, 3Α 2, 3m (τρεις άξονες δευτέρας τάξεις, κάθετοι ο καθένας σε ένα επίπεδο) m 2 m 2 m 2

39 ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΡΥΣΤΑΛΛΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (5 ΑΠΟ ΤΑ 32) 39

40 ΧΡΗΣΗ ΤΩΝ ΣΤΟΙΧΕΙΩΝ ΣΥΜΜΕΤΡΙΑΣ 40

41 ΠΡΑΚΤΙΚΗ ΕΞΑΣΚΗΣΗ ΜΕ ΞΥΛΙΝΑ ΜΟΝΤΕΛΑ ΚΡΥΣΤΑΛΛΩΝ 41

42 ΕΣΩΤΕΡΙΚΗ ΣΥΜΜΕΤΡΙΑ ΚΡΥΣΤΑΛΛΩΝ 42 Πλέγματα Bravais Βασικά πλέγματα που ο συνδυασμός τους συνθέτει πολυπλοκότερες κατασκευές. Χωρο-ομάδες (space groups) με βάση άλλα στοιχεία συμμετρίας, όπως ολίσθηση σε άξονα ή σε επίπεδο, μεταφορά ή περιστροφή σε άξονα (και συνδυασμούς)

43 ΠΛΕΓΜΑΤΑ BRAVAIS 43 Μοναδιαίες, βασικές κυψελίδες (primitive cells), με τα άτομά τους (μαύρες σφαίρες), αντιγράφονται και μετατοπίζονται στον τρισδιάστατο χώρο (κατά το κίτρινο διάνυσμα). Έτσι σχηματίζεται ο κρύσταλλος.

44 ΠΛΕΓΜΑ BRAVAIS: ΜΙΑ ΑΠΛΗ ΠΕΡΙΠΤΩΣΗ 44 Στην παρακάτω περίπτωση κάθε κυψελίδα από μόνη της έχει οκτώ άτομα (ένα στην κάθε μία από τις 8 κορυφές). Ωστόσο, στο κρύσταλλο κάθε κυψελίδα περιέχει 8 1/8 = 1 άτομο, γιατί τα άλλα άτομα τα παρέχουν οι γειτονικές κυψελίδες. Εδώ, δεν έχουμε δύο άτομα μαζί αλλά μόνο ένα

45 ΠΛΕΓΜΑΤΑ BRAVAIS: ΜΟΝΑΔΙΑΙΕΣ ΚΥΨΕΛΙΔΕΣ ΤΟΥ ΚΥΒΙΚΟΥ 45 Τρία από τα 14 πλέγματα: τα πλέγματα του κυβικού. P: απλό πλέγμα, με άτομα μόνο στις κορυφές F: εδροκεντρωμένο πλέγμα, με άτομα και στο κέντρο κάθε έδρας επιπλέον των κορυφών Ι: χωροκεντρωμένο πλέγμα, με άτομα στο μέσο του κύβου, επιπλέον των κορυφών

46 ΤΑ ΥΠΟΛΟΙΠΑ 11 ΠΛΕΓΜΑΤΑ BRAVAIS 46

47 HRTEM ΚΟΡΔΙΕΡΙΤΗ 47

48 ΧΩΡΟ ΟΜΑΔΕΣ (SPACE GROUPS) 48 Συνδυάζοντας τις 32 σημειο-ομάδες (point groups) με τα 14 πλέγματα Bravais δημιουργούμε 230 μοναδιαίους γεωμετρικούς συνδυασμούς που τους ονομάζουμε χωρο-ομάδες (space groups). Ο παραπάνω συνδυασμός περιλαμβάνει κινήσεις (ολισθήσεις) πάνω σε: ευθείες γραμμές: ολίσθηση ανά συγκεκριμένη απόσταση σε επίπεδα: δημιουργία ειδώλου με καθρέπτη και ολίσθηση αυτού σε άξονες περιστροφής: περιστροφή και ολίσθηση

49 230 ΧΩΡΟ ΟΜΑΔΕΣ 49 Για κάθε μία από τις 32 κρυσταλλικές τάξεις (crystal class) αντιστοιχεί ένα σύνολο διακριτών χωρο-ομάδων (space group), στο σύνολό τους 230.

50 50 ΝΟΜΟΙ ΤΗΣ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ Οι νόμοι της κρυσταλλογραφίας έχουν σαν αποτέλεσμα να μπορούμε να εκφράζουμε τις μακροσκοπικές σχέσεις μεταξύ των εδρών ενός κρυστάλλου.

51 1 ος ΝΟΜΟΣ ΤΗΣ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ (Νόμος του Haüy) c Οι κρυσταλλικές έδρες τέμνουν τους κρυσταλλογραφικούς άξονες σε ακέραιες μονάδες μήκους +1 s +1 p b +2 +a

52 2 ος ΝΟΜΟΣ ΤΗΣ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ (Νόμος του Bravais) 52 A Συχνότερη εμφάνιση (και κατ επέκταση μεγαλύτερο εμβαδόν) έχουν οι κρυσταλλικές έδρες που είναι παράλληλες σε κρυσταλλικά επίπεδα με μεγάλη πυκνότητα σε άτομα Α A C A B C B A Α

53 ΝΟΜΟΣ ΣΤΑΘΕΡΟΤΗΤΑΣ ΤΩΝ ΓΩΝΙΩΝ 53 Οι σχετικές γωνίες μεταξύ όμοιων ζευγαριών εδρών σε ένα κρύσταλλο είναι πάντα σταθερές και ίσες με αυτές ενός τέλειου, ιδεατού κρυστάλλου (Nicolaus Steno, 1669). Εάν από το κέντρο ενός οποιοδήποτε κρυστάλλου φέρουμε κάθετες ευθείες προς τις έδρες του, η γωνίες που σχηματίζουν αυτές οι ευθείες είναι και οι ζητούμενες. Αυτές οι γωνίες πρέπει να είναι σταθερές για ίδιους κρυστάλλους και μεταξύ ομοειδών ζευγαριών εδρών. Τέλος, αυτές οι γωνίες μετρώνται με τα γωνιόμετρα (όργανα που βασίζονται στην ανάκλαση μιας δέσμης φωτός στην επιφάνεια των εδρών).

54 ΧΡΗΣΗ ΓΩΝΙΟΜΕΤΡΟΥ 54 Περιστρέφουμε τον κρύσταλλο κατά τον άξονά του (ή το οπτικό σύστημα του γωνιομέτρου) και μετράμε την γωνία μεταξύ δύο θέσεων με μέγιστη ανάκλαση Φωτός Για μεγάλους κρυστάλλους, καθώς και για τα μοντέλλα του εργαστηρίου, μπορούμε να χρησιμοποιήσουμε ένα απλό γωνιόμετρο όπως αυτό στα αριστερά.

55 55 ΚΡΥΣΤΑΛΛΟΙ ΣΤΗ ΦΥΣΗ. ΑΝΑΠΤΥΞΗ ΚΡΥΣΤΑΛΛΩΝ.

56 ΓΙΑΤΙ ΥΠΑΡΧΟΥΝ ΚΡΥΣΤΑΛΛΟΙ 56 Τα άτομα έχουν την ιδιότητα εάν βρεθούν κοντά να αναζητούν θέσεις στις οποίες η ενέργεια του συστήματος μειώνεται για τις δεδομένες συνθήκες. Σε αυτές τις θέσεις σταθεροποιούνται σχετικά και η κινητικότητά τους μειώνεται. Οι θέσεις αυτές είναι γεωμετρικά κατανεμημένες έτσι ώστε εάν ξεκινώντας από ένα άτομο και προς κάποια διεύθυνση βρούμε μετά από συγκεκριμένη απόσταση ένα άλλο άτομο, τοτε επεκτείνοντας την ευθεία αυτή προς την ίδια διεύθυνση και σταματώντας στην ίδια απόσταση θα δούμε και πάλι άλλο ένα ίδιο άτομο. Στις τρείς διαστάσεις, η περιοδικότητα αυτή των ατόμων σχηματίζει τον κρύσταλλο. Ο κρύσταλλος τελικά είναι ενα φυσικό σώμα, που έχει ύλη/άτομα που είναι περιοδικά ταξινομημένα στο χώρο. Αυτή η περιοδική ταξινόμηση δίνει πολλές ιδιότητες στο υλικό σώμα που τελικά σχηματίζεται (φυσικές, χημικές, μηχανικές κτλ).

57 ΚΡΥΣΤΑΛΛΟΙ ΣΤΗ ΦΥΣΗ 57 Τα κρυσταλλικά υλικά έχουν την ίδια χημική σύσταση σε όλη την μάζα τους. Οστόσο, οι γεωμετρικές μορφές που παρουσιάζονται στην φύση διαφέρουν ανάλογα με τον βαθμό κρυστάλλωσής τους: Ανεδρικοί κρύσταλλοι Υποεδρικοί κρύσταλλοι Ολοεδρικοί κρύσταλλοι Αν-, υπο-, ολο- σημαίνουν αντίστοιχα: χωρίς, μερικώς και πλήρως εμφανιζόμενες έδρες (επίπεδες κρυσταλλικές επιφάνειες)

58 ΑΝΑΠΤΥΞΗ ΤΩΝ ΚΡΥΣΤΑΛΛΩΝ 58 Σε τέλεια ανεπτυγμένους κρυστάλλους, που πλησιάζουν τις ιδεατές γεωμετρικές κατασκευές τους, όμοιες έδρες ή όμοια στοιχεία συμμετρίας πρέπει να βρίσκονται στην ίδια απόσταση από το κέντρο του κρυστάλλου. Αυτό δεν συμβαίνει γιατί συνήθως η ροή χημικού υλικού είναι από μία κατεύθυνση και οι έδρες που βρίσκονται προς αυτή την κατεύθυνση δέχονται περισσότερο υλικό για να αναπτυχθούν. Ο όγκος του κρυστάλλου μεγαλώνει γρηγορότερα από αυτή την πλευρά και οι αντίστοιχες έδρες αναπτύσσονται πιο γρήγορα. Γεωμετρικά αυτό σημαίνει ότι η απόσταση αυτής της έδρας από το κέντρο του κρυστάλλου μεγαλώνει ενώ το εμβαδό της μικραίνει. Παράλληλα, το εμβαδόν των γειτονικών της εδρών μεγαλώνει. Αυτό συμβαίνει γιατί όλοι οι κρύσταλλοι είναι κλειστά γεωμετρικά σχήματα και μία έδρα περιβάλλεται από άλλες έδρες που σχηματίζουν γωνίες μικρότερες των 180 και οι οποίες περιορίζουν γεωμετρικά την ανάπτυξη της περιεχόμενης έδρας ώστε αυτή να μειώνεται σε εμβαδόν.

59 ΠΑΡΑΔΕΙΓΜΑ ΑΝΑΠΤΥΞΗΣ ΚΡΥΣΤΑΛΛΟΥ 59 Ομοιόμορφη τροφοδοσία υλικού Ανομοιόμορφη τροφοδοσία υλικού u u u max Η τροφοδοσία υλικού είναι η ίδια από όλες τις Η τροφοδοσία υλικού είναι μεγαλύτερη από την κατευθύνσεις, έτσι, όλες οι όμοιες έδρες είναι: κατεύθυνση του μεγάλου κόκκινου βέλους, έτσι: ίσες μεταξύ τους, και η αντίστοιχη έδρα απομακρύνεται γρηγορότερα σε ίσες αποστάσεις από το κέντρο από το κέντρο του κρυστάλλου του κρυστάλλου η ίδια έδρα μειώνεται σε εμβαδό οι γειτονικές της έδρες μεγαλώνουν σε εμβαδό Ωστόσο, σε όλες τις περιπτώσεις, οι σχετικές γωνίες των εδρών παραμένουν σταθερές.

60 ΑΝΑΦΟΡΕΣ ΕΙΚΟΝΩΝ 60 Στην παρούσα διάλεξη τα περισσότερα σχήματα έχουν σχεδιαστεί από τον συγγραφέα. Οι φωτογραφίες είναι από το internet και κάποια ασπρόμαυρα σχέδια ή πίνακες από το βιβλίο του C. Klein, Mineral Science, 22 nd Edition, Wiley. Εικόνα 1. Υλικό με μη προσδιορισμένη προέλευση. Σε περίπτωση που είστε ο κάτοχος του κύριου δικαιώματος επικοινωνήστε μαζί μας. Εικόνα 2. Σιδηροπυρίτης (πενταγωνικό δωδεκάεδρο). Εικόνα 3. M.C. Escher. Self-Portrait Lithograph. Εικόνα 4. Stars. Artist: M.C. Escher. Completion Date: Style: Surrealism. Εικόνα 5. Drawing Hands Lithograph. Εικόνα 6. Procession in Crypt Woodcut. Εικόνα 7. Sky and Water I Woodcut. Εικόνα 8. Development II Woodcut in brown, grey-green and black, printed from 3 blocks. Εικόνα 9. Metamorphosis II 1940 woodcut in black, green and brown, printed from 20 blocks on 3 combined sheets.

61 ΑΝΑΦΟΡΕΣ ΕΙΚΟΝΩΝ 61 Εικόνα 10. Fish and Frogs Wood engraving. Εικόνα 11. Encounter Lithograph. Εικόνα 12. Tetrahedral Planetoide Woodcut in green and black, printed from 2 blocks. Εικόνα 13. Fractal Art. Copyright Doug Harrington. All rights reserved. Εικόνα 14. Law of Attraction. Εικόνα 15. Υλικό με μη προσδιορισμένη προέλευση. Σε περίπτωση που είστε ο κάτοχος του κύριου δικαιώματος επικοινωνήστε μαζί μας. Εικόνα 16. Dimmity. Copyright Doug Harrington. All rights reserved. Εικόνα 17. "Ode" aos Fractais. Εικόνα 18. Fractals in human artifacts. Εικόνα 19. Fractal Art. Copyright Doug Harrington. All rights reserved. Εικόνα 20. Fractal Art. Copyright Doug Harrington. All rights reserved.

62 ΑΝΑΦΟΡΕΣ ΕΙΚΟΝΩΝ 62 Εικόνα 21. Υλικό με μη προσδιορισμένη προέλευση. Σε περίπτωση που είστε ο κάτοχος του κύριου δικαιώματος επικοινωνήστε μαζί μας. Εικόνα 22. Υλικό με μη προσδιορισμένη προέλευση. Σε περίπτωση που είστε ο κάτοχος του κύριου δικαιώματος επικοινωνήστε μαζί μας. Εικόνα 23. A Ho-Mg-Zn icosahedral quasicrystal formed as a dodecahedron, the dual of the icosahedron. Εικόνα 24. Diffreaction Pattern.

63 ΧΡΗΜΑΤΟΔΟΤΗΣΗ Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα Ε.Μ.Π.» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 3. ΟΙ 32 ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ Ταξινόμηση των κρυστάλλων σαν στερεά σχήματα και οι συμμετρίες Ηλίας Χατζηθεοδωρίδης,

Διαβάστε περισσότερα

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές

Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Εργαστηριακή άσκηση 01 Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Ηλίας Χατζηθεοδωρίδης Οκτώβριος / Νοέμβριος 2004 Τι περιλαμβάνει η άσκηση Θα μάθετε τα 7 κρυσταλλογραφικά συστήματα και πως

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων

Διαβάστε περισσότερα

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 4. ΟΝΟΜΑΤΟΛΟΓΙΑ ΕΔΡΩΝ, ΖΩΝΕΣ, ΔΙΚΤΥΟ WULF

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 4. ΟΝΟΜΑΤΟΛΟΓΙΑ ΕΔΡΩΝ, ΖΩΝΕΣ, ΔΙΚΤΥΟ WULF ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 4. ΟΝΟΜΑΤΟΛΟΓΙΑ ΕΔΡΩΝ, ΖΩΝΕΣ, ΔΙΚΤΥΟ WULF Ηλίας Χατζηθεοδωρίδης, Επίκουρος Καθηγητής, 2006 2012 ΑΔΕΙΑ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης

Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση

Διαβάστε περισσότερα

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο.

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Καταστάσεις της ύλης Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Υγρά: Τάξη πολύ µικρού βαθµού και κλίµακας-ελκτικές δυνάµεις-ολίσθηση. Τα µόρια βρίσκονται

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΕΦΑΡΜΟΓΩΝ ΡΟΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Γεωργίου Π. Νίνη «Η Θεωρία Ομάδων και

Διαβάστε περισσότερα

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Κρυσταλλικά Συστήματα Κυβικό Εξαγωνικό Τετραγωνικό Ρομβοεδρικό ή Τριγωνικό Ορθορομβικό Μονοκλινές Τρικλινές Κρυσταλλική δομή των

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Φυσική Συμπυκνωμένης Ύλης. Ενότητα 2. Βασίλειος Γιαννόπαπας

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Φυσική Συμπυκνωμένης Ύλης. Ενότητα 2. Βασίλειος Γιαννόπαπας Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Φυσική Συμπυκνωμένης Ύλης Ενότητα 2 Βασίλειος Γιαννόπαπας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 2: Απόδειξη Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Η ΔΙΑΧΥΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΕΜΒΑΔΟΥ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ. Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας.

ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ. Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας. ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας. Παρατηρούμε ότι τα μόρια μπορούν να κατηγοριοποιηθούν σύμφωνα με τη συμμετρία τους. Στοιχεία συμμετρίας

Διαβάστε περισσότερα

Τεχνικό Τοπογραφικό Σχέδιο

Τεχνικό Τοπογραφικό Σχέδιο Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

1 η ΕΝΟΤΗΤΑ ΔΟΜΙΚΑ ΥΛΙΚΑ (ΕΙΣΑΓΩΓΗ)

1 η ΕΝΟΤΗΤΑ ΔΟΜΙΚΑ ΥΛΙΚΑ (ΕΙΣΑΓΩΓΗ) ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΕΧΝΙΚΑ ΥΛΙΚΑ 1 η ΕΝΟΤΗΤΑ ΔΟΜΙΚΑ ΥΛΙΚΑ (ΕΙΣΑΓΩΓΗ) Ε. Βιντζηλαίου (Συντονιστής), Ε. Βουγιούκας, Ε. Μπαδογιάννης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ. Μάθημα 3ο. Συμμετρία

ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ. Μάθημα 3ο. Συμμετρία ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ Μάθημα 3ο Συμμετρία 1 Συμμετρία Μια κατάσταση στην οποία μέρη τα οποία ευρίσκονται σε αντίθετες μεταξύ τους θέσεις ενός επιπέδου, γραμμής ή σημείου φανερώνει διευθετήσεις οι οποίες αλληλοσυνδέονται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.: Η Παράγωγος Συνάρτησης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.: Η Παράγωγος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.2: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Μαγνητικά Υλικά Υπεραγωγοί

Μαγνητικά Υλικά Υπεραγωγοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαγνητικά Υλικά Υπεραγωγοί ΜΑΓΝΗΤΙΚΗ ΑΝΙΣΟΤΡΟΠΙΑ Διδάσκων: Καθηγητής Ιωάννης Παναγιωτόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΕΙΣΑΓΩΓΗ Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, όπως απαντάται στη φύση

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.05.3: Μέγιστα και Ελάχιστα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Ενότητα Β.05.3: Μέγιστα

Διαβάστε περισσότερα

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΟΡΥΚΤΑ - ΠΕΤΡΩΜΑΤΑ

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΟΡΥΚΤΑ - ΠΕΤΡΩΜΑΤΑ ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΟΡΥΚΤΑ - ΠΕΤΡΩΜΑΤΑ Μαρία Περράκη, Επίκουρη Καθηγήτρια ΑΔΕΙΑ ΧΡΗΣΗΣ Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανυσματικοί Χώροι (1) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ. Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

Υλικά Ηλεκτρονικής & Διατάξεις

Υλικά Ηλεκτρονικής & Διατάξεις Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 4 η σειρά διαφανειών Δημήτριος Λαμπάκης Ορισμός και ιδιότητες των μετάλλων Τα χημικά στοιχεία διακρίνονται σε μέταλλα (περίπου 70 τον αριθμό)

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών

Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή σε προχωρημένες μεθόδους υπολογισμού στην Επιστήμη των Υλικών Χτίζοντας τους κρυστάλλους από άτομα Είδη δεσμών Διδάσκων : Επίκουρη Καθηγήτρια

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 9: Γεωμετρία του Χώρου των Μεταβλητών, Υπολογισμός Αντιστρόφου Μήτρας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.05.2: Ρυθμός Μεταβολής Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.05.2: Ρυθμός

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 9: Εσωτερική πράξη και κλάσεις ισοδυναμίας - Δομές Ισομορφισμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.

Διάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 4: Πολυδιάστατες Τυχαίες Μεταβλητές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.4: Υπολογισμός Όγκων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (6): Τροχιακά και υβριδισμός Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή (2 ο Μέρος) Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Υπολογισμός Εμβαδού και Όγκου Από Περιστροφή ( ο Μέρος) Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (5): Δεσμοί και Τροχιακά Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΜΑΓΝΗΤΟΣΤΑΤΙΚΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου 4. Ομάδες Σημείου ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o ορίζετε την έννοια της ομάδας σημείου ενός μορίου o διακρίνετε τις βασικές κατηγορίες ομάδων σημείου

Διαβάστε περισσότερα

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.1: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ

ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΘΕΩΡΙΑ ΜΗΧΑΝΙΚΩΝ ΤΑΛΑΝΤΩΣΕΩΝ ΚΑΙ ΕΛΑΣΤΙΚΑ ΚΥΜΑΤΑ Ενότητα 1: Στοιχεία Διανυσματικού Λογισμού Σκορδύλης Εμμανουήλ Καθηγητής Σεισμολογίας,

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 3: Θεωρία του Ligand Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Φωτοτεχνία ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Φωτοτεχνία Ενότητα 3: Μελέτες Φωτισμού Εσωτερικών Χώρων Mέθοδος Favie-Οικονομόπουλος Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12

Γραφικά με υπολογιστές. Διδάσκων: Φοίβος Μυλωνάς. Διαλέξεις #11-#12 Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διαλέξεις #-# Σύνθεση Δ Μετασχηματισμών Ομογενείς Συντεταγμένες Παραδείγματα Μετασχηματισμών

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Εργαστήριο Χημείας Ενώσεων Συναρμογής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 1: Εισαγωγή Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

οµή των στερεών ιάλεξη 4 η

οµή των στερεών ιάλεξη 4 η οµή των στερεών ιάλεξη 4 η Ύλη τέταρτου µαθήµατος Οι καταστάσεις της ύλης, Γιατί τις µελετάµε; Περιοδική τοποθέτηση των ατόµων, Κρυσταλλική και άµορφη δοµή, Κρυσταλλικό πλέγµα κρυσταλλική κυψελίδα, Πλέγµατα

Διαβάστε περισσότερα

Υλικά Ηλεκτρονικής & Διατάξεις

Υλικά Ηλεκτρονικής & Διατάξεις Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 3 η σειρά διαφανειών Δημήτριος Λαμπάκης Τύποι Στερεών Βασική Ερώτηση: Πως τα άτομα διατάσσονται στο χώρο ώστε να σχηματίσουν στερεά? Τύποι Στερεών

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 3: Χρήσιμες Κατανομές Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το

Διαβάστε περισσότερα

(α ) Αποδείξτε ότι λ / σ = φ αλλά και χ / λ = φ όπου χ = σ + ψ + σ. Η χρυσή τομή φ = 1+ 5

(α ) Αποδείξτε ότι λ / σ = φ αλλά και χ / λ = φ όπου χ = σ + ψ + σ. Η χρυσή τομή φ = 1+ 5 Ασκήσεις Κεφαλαίου 1. Άσκηση 1.1 Χωρίζουμε ένα ευθύγραμμο τμήμα σε τέσσερα ίσα μέρη, μετά εξαιρούμε το δεύτερο και το τέταρτο, ενώ συνεχίζουμε αυτή τη διαδικασία επ' άπειρον στα ευθύγραμμα τμήματα που

Διαβάστε περισσότερα

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Γεωμετρικός τόπος των ριζών Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 3.1: Μεθοδολογία Παράστασης Επιφανειών από το Εξωτερικό Περίβλημα Στερεών Σωμάτων Σταματίνα Γ. Μαλικούτη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε

Διαβάστε περισσότερα

Εργαστήριο Φωτοτεχνίας

Εργαστήριο Φωτοτεχνίας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Φωτοτεχνίας Ενότητα: Διαγράμματα Rousseau Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ Τμήμα Μηχανολόγων Μηχανικών ΤΕ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΚΑΘΗΓΗΤΗΣ κ. ΜΟΣΧΙΔΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΑΠΕΙΚΟΝΙΣΕΙΣ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τεχνικό Τοπογραφικό Σχέδιο

Τεχνικό Τοπογραφικό Σχέδιο Τεχνικό Τοπογραφικό Σχέδιο Γ. Καριώτου ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

Υπόγεια Υδραυλική και Υδρολογία

Υπόγεια Υδραυλική και Υδρολογία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα: 2 Η επαφή pn. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Ενότητα: Η επαφή Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Commos. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Φυσική ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης.

Φυσική ΙΙ (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης. Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική ΙΙ (Ε) Ενότητα 6: Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης Ιωάννης Βαμβακάς Τμήμα Ναυπηγών Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΗΛΕΚΤΡΟΣΤΑΤΙΚΑ ΠΕΔΙΑ ΣΤΗΝ ΥΛΗ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Θεωρία Μοριακών Τροχιακών (ΜΟ)

Θεωρία Μοριακών Τροχιακών (ΜΟ) Θεωρία Μοριακών Τροχιακών (ΜΟ) Ετεροπυρηνικά διατομικά μόρια ή ιόντα (πολικοί δεσμοί) Το πιο ηλεκτραρνητικό στοιχείο (με ατομικά τροχιακά χαμηλότερης ενεργειακής στάθμης) συνεισφέρει περισσότερο στο δεσμικό

Διαβάστε περισσότερα

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός ΙΙ. Χρήστος Θ. Αναστασίου Τμήμα Μηχανικών Πληροφορικής ΤΕ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Λογισμός ΙΙ Χρήστος Θ. Αναστασίου Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις

Τεχνικό Σχέδιο. Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις Τεχνικό Σχέδιο Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις Διάλεξη 4η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΔΙΑΣΤΑΣΕΙΣ Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί

Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μιγαδικός λογισμός και ολοκληρωτικοί Μετασχηματισμοί ΤΟΠΟΛΟΓΙΚΟΙ ΟΡΙΣΜΟΙ ΣΤΟ ΜΙΓΑΔΙΚΟ ΕΠΙΠΕΔΟ Διδάσκων : Επίκ. Καθ. Κολάσης Χαράλαμπος Άδειες Χρήσης Το

Διαβάστε περισσότερα

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής

Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 2: Εισοδηματικοί και άλλοι περιορισμοί στην επιλογή Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών

Διαβάστε περισσότερα

Κλασική Ηλεκτροδυναμική Ι

Κλασική Ηλεκτροδυναμική Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:...

Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Διδακτική των Μαθηματικών με Τ.Π.Ε Σελίδα 1 από 13 Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Όλες οι εφαρμογές που καλείσθε να χρησιμοποιήσετε είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα # 2: Συναρτήσεις Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης

Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 2017

Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 2017 Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 017 Ερώτηση 1 (5 μονάδες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.08.3: Εμβαδά εκ Περιστροφής Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 5: Στοιχεία για την Αξονομετρική Προβολή. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε.

Τεχνικό Σχέδιο. Ενότητα 5: Στοιχεία για την Αξονομετρική Προβολή. Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 5: Στοιχεία για την Αξονομετρική Προβολή Σταματίνα Γ. Μαλικούτη Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss,

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ. Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Άλγεβρα των Πινάκων (2) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons

Διαβάστε περισσότερα

Λογισμός 4 Ενότητα 18

Λογισμός 4 Ενότητα 18 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Το Θεώρημα του Stokes. Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τεχνικό Σχέδιο - CAD

Τεχνικό Σχέδιο - CAD Τεχνικό Σχέδιο - CAD Τρισδιάστατοι Μετασχηματισμοί ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Τρισδιάστατη Αλλαγή κλίμακας [ ] [ ] [ ] j e a j e a û ù

Διαβάστε περισσότερα

Γραφικά με υπολογιστές

Γραφικά με υπολογιστές Γραφικά με Υπολογιστές Ενότητα # 3: Εισαγωγή Φοίβος Μυλωνάς Τμήμα Πληροφορικής Φοίβος Μυλωνάς Γραφικά με υπολογιστές 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα