Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εργαστηριακή άσκηση 01. Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές"

Transcript

1 Εργαστηριακή άσκηση 01 Τα επτά συστήματα κρυστάλλωσης και κρυσταλλικές μορφές Ηλίας Χατζηθεοδωρίδης Οκτώβριος / Νοέμβριος 2004

2 Τι περιλαμβάνει η άσκηση Θα μάθετε τα 7 κρυσταλλογραφικά συστήματα και πως τα ορίζουμε με βάση το σύστημα συντεταγμένων (μοναδιαία διανύσματα και σχετικές γωνίες αξόνων) Απλοί κανόνες συμμετρίας, τους οποίους επινοούμε εμείς, ή έχει ήδη επινοήσει η φύση, έχουν σαν αποτέλεσμα διαφορετικές εξωτερικές μορφές κρυστάλλων Ανάλογα με τους κανόνες αυτούς, κάποιοι κρύσταλλοι που προκύπτουν θα ανήκουν στο ίδιο κρυσταλλογραφικό σύστημα

3 Κρυσταλλικές κλάσεις/συστήματα Τρικλινές σύστημα Μονοκλινές σύστημα Ορθορομβικό σύστημα Τετραγωνικό σύστημα Εξαγωνικό σύστημα Τριγωνικό σύστημα (ή ρομβοεδρικό) } Κατά την αμερικάνικη ταξινόμηση τα δύο συστήματα κατατάσσονται σαν υποσυστήματα του εξαγωνικού Ισομετρικό κυβικό σύστημα 7 κρυσταλλικά συστήματα 32 point groups (σημειο-ομάδες)

4 Πώς να ζωγραφίζετε σωστά Θα χρειαστεί να ζωγραφίσετε τρισδιάστατα σχήματα αλλά πάνω στο χαρτί το οποίο όμως είναι δυσδιάστατο. Οπτικά το σχήμα σας θα είναι ευκολότερο στο μάτι εάν εφαρμόσετε τα παρακάτω: +a 3 +c Για το εξαγωνικό ή τριγωνικό σύστημα άξονα ζωγραφίζουμε σύμφωνα με την σειρά που φαίνεται στο σχήμα. Οι μικρές παράλληλες γραμμές υποδηλώνουν ίσα ευθύγραμμα τμήματα. +a 2 Η γραμμή που είναι πίσω από μια άλλη φαίνεται να σπάει. +a c 0 Ο a 0 κοιτάει πάντα αριστερά και κάτω, ο c 0 κάθετα και επάνω, και ο b 0 οριζόντια και δεξιά ή με μικρή κλίση προς τα κάτω c 0 a 0 b 0 a 0 b 0 Οι γραμμές που είναι πίσω από έδρες να είναι με διακεκομμένη γραμμή

5 Πρέπει επίσης να γνωρίζετε Κορυφή Έδρα Ακμή

6 Κυβικό ή ισομετρικό σύστημα a 0 = b 0 = c 0 +c α = β = γ = 90 c 0 β=90 -a α=90 -b b 0 +b 23 = 3A2, 4A3 2/m3- = 3A2, 3m, 4A-3 (=i+4a3) 432 = 3A4, 4A3, 6A2 4-3m = 3A-4, 4A3, 6m 4/m 3-2/m = 3A4, 4A-3 (=i+4a3), 6A2, 9m +a a 0 -c γ=90

7 Οκτάεδρο που προκύπτει από κύβο Κανόνας: Συνδέουμε τα μέσα των εδρών του κύβου σε ένα σχήμα

8 Δεκατετράεδρο που προκύπτει από κύβο Κανόνας: Συνδέουμε τα μέσα όλων των πλευρών του κύβου σε ένα σχήμα

9 Πρίσμα που προκύπτει από κύβο Κανόνας: Συνδέουμε τα μέσα των οριζόντιων πλευρών του κύβου σε ένα σχήμα

10 Πρίσμα, οκτάεδρο και δεκατετράεδρο: κάποια ανήκουν πάλι στο κυβικό c c b c b a Πρίσμα: δεν ανήκει στο κυβικό γιατί οι άξονες καταλήγουν σε διαφορετικά περατωτικά σημεία a b a Οκτάεδρο Ανήκει στο κυβικό Δεκατετράεδρο Ανήκει στο κυβικό

11 Το ορυκτό αλάτι (Αλίτης, NaCl)

12 Το ορυκτό αλάτι (Αλίτης, NaCl)

13 Το ορυκτό αλάτι (Αλίτης, NaCl) περιέχει το εξάεδρο Πως σχηματίζεται ο κύβος (εξάεδρο) σε έναν κρύσταλλο αλατιού.

14 Το ορυκτό αλάτι (Αλίτης, NaCl) περιέχει και το οκτάεδρο Πως σχηματίζεται το (μισό) οκτάεδρο σε έναν κρύσταλλο αλατιού.

15 Ορυκτό αλάτι (αλίτης, Halite) c b a b a c? c? a?

16 Γαληνίτης (κυβικό) PbS

17 Εξαγωνικό σύστημα a 1 = (a 2 b)=a 3 c 0 γ 1= γ 2= γ 3 =120 +c β = α = 90 c 0 β=90 α=90 +a 3 a 3 +b 6 = 1A6 6- = 1A-6 (=1A3 + m) 6/m = I, 1A6, m 622 = 1A6, 6A2 6mm = 1A6, 6m 6-m2 = 1A-6 (=1A3+m), 3A2, 3m 6/m 2/m 2/m = I, 1A6, 6A2, 7m +a 1 a 1 γ=120 -c b a 2 +a 2

18 Μοσχοβίτης (εξαγωνικό)

19 Τριγωνικό (ρομβοεδρικό) σύστημα a 1 = a 2 = a 3 = c +c γ 1 =γ 2 =γ 3 =120 β = α = 90 +a 3 β=90 a 3 c 0 +b α=90 3 = 1A3 a γ= = 1A-3 (i+1a3) 32 = 1A3, 3A2 +a 1 3m = 1A3, 3m 3-2/m = 1A-3 (=i+1a3), 3A2, 3m -c a 2 +a 2

20 Χαλαζίας (τριγωνικό) SiO 2

21 Ορθορομβικό σύστημα a b c α = β= γ = 90 -b β=90 +c c 0 -a α=90 b 0 a = 3A 2 mm2 = 1A 2, 2m 2/m 2/m 2/m = I, 3A 2, 3m +a -c γ=90 +b

22 Ανδαλουσίτης (ορθορομβικό) Al 2 SiO 5

23 Τετραγωνικό σύστημα a = b c +c a = β = γ = 90 β=90 c 0 -a α=90 -b b 0 4 = 1A4 4- = 1A-4 4/m = I, 1A4, m 422 = 1A4, 4A2 4mm = 1A4, 4m 4-2m = 1A-4, 2A2, 2m 4/m 2/m 2/m = I, 1A4, 4A2, 5m +a a 0 -c γ=90 +b

24 Ζιρκόνιο (τετραγωνικό) Zr SiO 4

25 Μονοκλινές σύστημα a b c +c α = γ = 90 β 90 β c 0 -a α -b a 0 b 0 -c γ +b 2 = 1Α 2 m=m 2/m = I, 1A 2, m +a

26 Τρικλινές σύστημα a b c +c α β γ 90 c 0 β -a α -b b 0 a 0 1 = Καμμία συμμετρία 1-= Α 1 - +a -c γ +b

27 Άσκηση 1η Σχεδιάστε τους άξονες συντεταγμένων που περιγράφουν το Κυβικό Σύστημα Κρυστάλλωσης (a 0 = b 0 = c 0, α = β = γ = 90 ) Σχεδιάστε τώρα το περίγραμμα ενός τρισδιάστατου σχήματος που ανήκει στο Κυβικό Σύστημα Κρυστάλλωσης

28 Άσκηση 2η Εφαρμόστε στο διπλανό σχήμα τον κανόνα: Ενώνω τα μέσα των εδρών διαδοχικά ανά δύο σε ένα τρισδιάστατο σχήμα. Τι σχήμα βγάζω;

29 Βγήκε τελικά αυτό το σχήμα;

30 Ασκηση 3 η : Ποιόν κανόνα εφάρμοσα;

31 Εξάσκηση 1. Σχεδιάστε διάφορα σχήματα κρυστάλλων για το εξαγωνικό σύστημα καθώς και για άλλα συστήματα της επιλογής σας. 2. Ψάξτε στο Internet για φωτογραφίες κρυστάλλων (σχηματικούς ή πραγματικές φωτογραφίες καλά σχηματισμένων κρυστάλλων) από ορυκτά που κρυσταλλώνονται σε κάποιο σύστημα κρυστάλλωσης που θα επιλέξετε και θα ονομάσετε. 3. Γράψτε με λίγα λόγια τα συμπεράσματα αυτής της άσκησης. 4. Ψάξτε στις προθήκες του διαδρόμου για κρυστάλλους με το κυβικό σχήμα. Ψάξτε για το ορυκτό σιδηροπυρίτης. 5. Σχεδιάστε με το χέρι σας πολλές φορές τα διάφορα κρυσταλλογραφικά συστήματα (τους άξονές τους δηλαδή) και προσπαθήστε να καταλάβετε τις διαφορές.

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 3. ΟΙ 32 ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ Ταξινόμηση των κρυστάλλων σαν στερεά σχήματα και οι συμμετρίες Ηλίας Χατζηθεοδωρίδης,

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης

Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση

Διαβάστε περισσότερα

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 2. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑ Συμμετρία και Κρυσταλλικά Συστήματα Ηλίας Χατζηθεοδωρίδης, Επίκουρος Καθηγητής

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων

Διαβάστε περισσότερα

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Κρυσταλλικά Συστήματα Κυβικό Εξαγωνικό Τετραγωνικό Ρομβοεδρικό ή Τριγωνικό Ορθορομβικό Μονοκλινές Τρικλινές Κρυσταλλική δομή των

Διαβάστε περισσότερα

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο.

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Καταστάσεις της ύλης Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Υγρά: Τάξη πολύ µικρού βαθµού και κλίµακας-ελκτικές δυνάµεις-ολίσθηση. Τα µόρια βρίσκονται

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων

Τεχνικό Σχέδιο. Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Τεχνικό Σχέδιο Ενότητα 2: Μηχανολογικό Σχέδιο - Σχεδίαση όψεων Διάλεξη 2η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΣΧΕΔΙΑΣΗ ΤΡΙΣΔΙΑΣΤΑΤΩΝ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

2/19/2012 ΕΛΛΕΙΨΟΕΙΔΕΣ ΕΛΛΕΙΨΟΕΙΔΕΣ ΕΛΛΕΙΨΟΕΙΔΕΣ ΤΩΝ ΔΕΙΚΤΩΝ

2/19/2012 ΕΛΛΕΙΨΟΕΙΔΕΣ ΕΛΛΕΙΨΟΕΙΔΕΣ ΕΛΛΕΙΨΟΕΙΔΕΣ ΤΩΝ ΔΕΙΚΤΩΝ ΕΛΛΕΙΨΟΕΙΔΕΣ ΤΩΝ ΔΕΙΚΤΩΝ ΕΛΛΕΙΨΟΕΙΔΕΣ ΤΩΝ ΔΕΙΚΤΩΝ ΣΤΟΥΣ ΜΟΝΑΞΟΝΕΣ ΚΡΥΣΤΑΛΛΟΥΣ (τριγωνικό, τετραγωνικό, εξαγωνικό) 1 2 Ελλειψοειδές των δεικτών στους μονάξονες κρυστάλλους Ελλειψοειδές των δεικτών στους

Διαβάστε περισσότερα

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 4. ΟΝΟΜΑΤΟΛΟΓΙΑ ΕΔΡΩΝ, ΖΩΝΕΣ, ΔΙΚΤΥΟ WULF

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 4. ΟΝΟΜΑΤΟΛΟΓΙΑ ΕΔΡΩΝ, ΖΩΝΕΣ, ΔΙΚΤΥΟ WULF ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 4. ΟΝΟΜΑΤΟΛΟΓΙΑ ΕΔΡΩΝ, ΖΩΝΕΣ, ΔΙΚΤΥΟ WULF Ηλίας Χατζηθεοδωρίδης, Επίκουρος Καθηγητής, 2006 2012 ΑΔΕΙΑ ΧΡΗΣΗΣ Το

Διαβάστε περισσότερα

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΕΙΣΑΓΩΓΗ Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, όπως απαντάται στη φύση

Διαβάστε περισσότερα

Υλικά Ηλεκτρονικής & Διατάξεις

Υλικά Ηλεκτρονικής & Διατάξεις Τμήμα Ηλεκτρονικών Μηχανικών Υλικά Ηλεκτρονικής & Διατάξεις 4 η σειρά διαφανειών Δημήτριος Λαμπάκης Ορισμός και ιδιότητες των μετάλλων Τα χημικά στοιχεία διακρίνονται σε μέταλλα (περίπου 70 τον αριθμό)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα)

1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 20 1.3 Σχεδίαση µε ελεύθερο χέρι (Σκαρίφηµα) 1.3.1 Ορισµός- Είδη - Χρήση Σκαρίφηµα καλείται η εικόνα ενός αντικειµένου ή εξαρτήµατος που µεταφέρεται σε χαρτί µε ελεύθερο χέρι (χωρίς όργανα σχεδίασης ή

Διαβάστε περισσότερα

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση

Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία

Διαβάστε περισσότερα

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ

ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( Κανονικά πολύγωνα ) Δραστηριότητα 1 : Θεωρούμε ένα κύκλο κέντρου Ο και ακτίνας ρ ( τυχαίο μήκος ) και πάνω σε σ αυτόν παίρνουμε 5 διαδοχικά ίσα τόξα τα: AB, B Γ, ΓΔ, ΔΕ, ΕΑ. Στην συνέχεια

Διαβάστε περισσότερα

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο

Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Κ Ε Φ Α Λ Α Ι Ο Α Υλικά, Γραμμές και Τεχνικές στο Ελεύθερο Σχέδιο Σκοπός Σκοπός του κεφαλαίου αυτού είναι να γνωρίσουν οι μαθητές τα υλικά που χρειάζονται για το ελεύθερο σχέδιο και τον τρόπο που θα τα

Διαβάστε περισσότερα

Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II

Φύλλο 1. Δράσεις με το λογισμικό Cabri-geometry II 1 Φύλλο 1 Δράσεις με το λογισμικό Cabri-geometry II Στις δύο παρακάτω γραμμές από το περιβάλλον του λογισμικού αυτού η πρώτη αφορά γενικές επεξεργασίες και δεύτερη με τα εικονίδια περιλαμβάνει τις στοιχειώδεις

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.

ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y. ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα

Διαβάστε περισσότερα

Γράμματα και αριθμοί

Γράμματα και αριθμοί 5 Γράμματα και αριθμοί 5.1 Γενικά Στα τεχνικά σχέδια χρησιμοποιούμε γράμματα και αριθμούς, όταν θέλουμε να δώσουμε περισσότερες πληροφορίες, όπως να χαρακτηρίσουμε χώρους ή υλικά, να δείξουμε την πορεία

Διαβάστε περισσότερα

Ενότητα 1: Απλές εντολές γραφικών

Ενότητα 1: Απλές εντολές γραφικών Ενότητα 1: Απλές εντολές γραφικών ΣΤΚ: Στυλό Κάτω ΣΒΓ: Σβήσε Γραφικά (Σβήνει όλα τα σχέδια και φέρνει τη χελώνα στην αρχή με το κεφάλι προς τα πάνω) Εντολές Κίνησης: Εντολές Παραδείγματα σύνταξης Εντολή

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

πάχος 0 πλάτος 2a μήκος

πάχος 0 πλάτος 2a μήκος B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ

Διαβάστε περισσότερα

1.2 Στοιχεία Μηχανολογικού Σχεδίου

1.2 Στοιχεία Μηχανολογικού Σχεδίου 1.2 Στοιχεία Μηχανολογικού Σχεδίου Τα µηχανολογικά σχέδια, ανάλογα µε τον τρόπο σχεδίασης διακρίνονται στις παρακάτω κατηγορίες: Σκαριφήµατα Κανονικά µηχανολογικά σχέδια Προοπτικά σχέδια Σχηµατικές παραστάσεις.

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και 7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Φύλλο Εργασίας για την y=αx 2

Φύλλο Εργασίας για την y=αx 2 Πρόβλημα Σε ένα τετραγωνικό περιβόλι πλευράς 10m πρόκειται να χτιστεί μια αποθήκη σχήματος ορθογωνίου, όπως φαίνεται στο διπλανό σχήμα. Α) Να βρεθούν οι διαστάσεις της αποθήκης συναρτήσει του x, αν γνωρίζετε

Διαβάστε περισσότερα

Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση.

Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. 5Η ΕΝΟΤΗΤΑ ΑΣΚΗΣΕΩΝ 5.1 Ποια από τις προτάσεις που ακολουθούν δεν είναι σωστή για την εικόνα με τα επίπεδα σχήματα; Κύκλωσε τη σωστή απάντηση. Α. Οι κύκλοι είναι διπλάσιοι σε αριθμό από τα τετράγωνα. Β.

Διαβάστε περισσότερα

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1

Στο προοπτικό ανάγλυφο για τη ευθεία του ορίζοντα χρησιμοποιούμε ένα δεύτερο κατακόρυφο επίπεδο Π 1 ΠΡΟΟΠΤΙΚΟ ΑΝΑΓΛΥΦΟ Το προοπτικό ανάγλυφο, όπως το επίπεδο προοπτικό, η στερεοσκοπική εικόνα κ.λπ. είναι τρόποι παρουσίασης και απεικόνισης των αρχιτεκτονικών συνθέσεων. Το προοπτικό ανάγλυφο είναι ένα

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ

ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΥΛΙΚΑ ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ Ι 5 Δομή ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Κρυσταλλικά υλικά Άμορφα υλικά Κρύσταλλος είναι ένα υλικό που παρουσιάζει τρισδιάστατη περιοδική τάξη ατόμων,

Διαβάστε περισσότερα

Φύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II

Φύλλο 3. Δράσεις με το λογισμικό The geometer s Sketchpad. Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II Φύλλο 3 1 ράσεις με το λογισμικό The geometer s Sketchpad Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο μ εκείνο του Cabri II όμως έχει τη δικιά του φιλοσοφία και το δικό του τρόπο συνεργασίας με το

Διαβάστε περισσότερα

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D

Φύλλο 2. Δράσεις με το λογισμικό Cabri-geometry 3D 1 Φύλλο 2 Δράσεις με το λογισμικό Cabri-geometry 3D Το περιβάλλον του λογισμικού αυτού είναι παρόμοιο με το αντίστοιχο λογισμικό του Cabri II. Περιέχει γενικές εντολές και εικονίδια που συμπεριλαμβάνουν

Διαβάστε περισσότερα

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο.

Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ένα υγρό σε δοχείο και το υδροστατικό παράδοξο. Ας μελετήσουμε τι συμβαίνει, όταν ένα υγρό περιέχεται σε ένα ακίνητο δοχείο. Τι δυνάμεις ασκεί στο δοχείο; Τι σχέση έχουν αυτές με το βάρος του υγρού; Εφαρμογή

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε

Διαβάστε περισσότερα

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58].

εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. εγγράφοντας κανονικά πολύγωνα σε τόρους, δηλαδή στερεούς δακτυλίους µε κυκλική τοµή, και επίσης τα µελετά µε πυραµίδες. [Β-4, σελ 58]. Η συνεισφορά του Kepler στα Αρχιµήδεια ήταν µεγάλη, γιατί αυτός απέδειξε

Διαβάστε περισσότερα

Κεφάλαιο 7 Ισομετρίες, Συμμετρίες και Πλακοστρώσεις Οπως είδαμε στην απόδειξη του πρώτου κριτηρίου ισότητας τριγώνων, ο Ευκλείδης χρησιμοποιεί την έννοια της εφαρμογής ενός τριγώνου σε ένα άλλο, χωρίς

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν.

1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν. Ερωτήσεις πολλαπλής επιλογής 1 * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α ισοσκελές Β ισόπλευρο Γ ορθογώνιο αµβλυγώνιο Ε τυχόν * Κάθε παραλληλεπίπεδο έχει ακµές Α Β 6 Γ 8 10 Ε

Διαβάστε περισσότερα

ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ

ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ Θέμα 1: Επιλέξτε και απαντήστε σε 6 από τις ακόλουθες 10 ερωτήσεις (30 μονάδες) 1. Τι ονομάζουμε ευθύγραμμα ή γραμμικά πολωμένο φως; Ποια είναι

Διαβάστε περισσότερα

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ.

και 2, 2 2 είναι κάθετα να βρείτε την τιμή του κ. γ) Αν στο τρίγωνο ΑΒΓ επιπλέον ισχύει Α(3,1), να βρείτε τις συντεταγμένες των κορυφών του Β και Γ. Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ) 8556 ΘΕΜΑ Δίνονται τα διανύσματα και με, και, 3 α) Να βρείτε το εσωτερικό γινόμενο β) Αν τα διανύσματα γ) Να βρείτε το μέτρο του διανύσματος 8558 ΘΕΜΑ

Διαβάστε περισσότερα

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.

8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6. 1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση

Διαβάστε περισσότερα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Ασκήσεις της Ενότητας 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- α. Η χρήση της πένας Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα Υπάρχουν εντολές που μας επιτρέπουν να επιλέξουμε το χρώμα της πένας, καθώς και το

Διαβάστε περισσότερα

Μεθοδολογία Παραβολής

Μεθοδολογία Παραβολής Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.

Διαβάστε περισσότερα

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά.

Ερωτήσεις: 1. Να αναγνωρίσετε και να ονομάσετε γεωμετρικά σχήματα στα παραπάνω στερεά. 1. ΑΝΑΓΝΩΡΙΣΗ, ΟΝΟΜΑΣΙΑ ΚΑΙ ΤΑΞΙΝΟΜΗΣΗ ΓΕΩΜΕΤΡΙΚΩΝ ΣΧΗΜΑΤΩΝ a. Αναγνώριση και ονομασία Δραστηριότητα 1 1. Ας κατασκευάσουμε όσο το δυνατόν περισσότερες γραμμές μπορούμε να σκεφτούμε. 2. Έχουμε ξανασυναντήσει

Διαβάστε περισσότερα

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα:

Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Μετασχηματισμοί-Τάξη Δ Δημοτικού (3 ώρες) Προαπαιτούμενα: Α τάξη Β τάξη Γ τάξη Παρατηρούν μετατοπίσεις και στροφές (90 ο, 180 ο, 360 ο ) και μπορούν αν προβλέψουν το αποτέλεσμα. Αναγνωρίζουν συμμετρικά

Διαβάστε περισσότερα

ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ. Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας.

ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ. Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας. ΜΟΡΙΑΚΗ ΣΥΜΜΕΤΡΙΑ Σε αυτή την ενότητα, δίνουμε έναν ακριβή ορισμό της έννοιας της μοριακής συμμετρίας. Παρατηρούμε ότι τα μόρια μπορούν να κατηγοριοποιηθούν σύμφωνα με τη συμμετρία τους. Στοιχεία συμμετρίας

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ 6ο ΓΥΜΝΑΣΙΟ ΧΑΛΚΙΔΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΤΑΞΗ: Β ΓΥΜΝΑΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 3 διδακτικές ώρες ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ : Μία ώρα για την κατανόηση της μορφής και των απλών ιδιοτήτων των κανονικών

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις

Τεχνικό Σχέδιο. Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις Τεχνικό Σχέδιο Ενότητα 4: Μηχανολογικό Σχέδιο - Διαστάσεις Διάλεξη 4η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ ΔΙΑΣΤΑΣΕΙΣ Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του. 1 ΑΣΚΗΣΕΙΣ 1. Ένα παραλληλόγραμμο ΑΒΓΔ έχει μια πλευρά ίση με 48 και το αντίστοιχο σε αυτή την πλευρά ύψος είναι 4,5 dm. Να βρείτε το εμβαδό του παραλληλογράμμου 2. Ένα παραλληλόγραμμο έχει εμβαδό 72 2

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς

ΔΙΑΣΤΑΣΕΙΣ ΣΧΕΔΙΟΥ. Αναγκαιότητα τοποθέτησης διαστάσεων. 29/10/2015 Πολύζος Θωμάς Αναγκαιότητα τοποθέτησης διαστάσεων 29/10/2015 Πολύζος Θωμάς 1 Αναγκαιότητα τοποθέτησης διαστάσεων Σφάλμα μέτρησης που οφείλεται: Σε υποκειμενικό λάθος εκείνου που κάνει την μέτρηση. Σε σφάλμα του οργάνου

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από

Διαβάστε περισσότερα

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου

4.1 Εύρεση του Συνόλου των ιεργασιών Συμμετρίας ενός Μορίου 4. Ομάδες Σημείου ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o ορίζετε την έννοια της ομάδας σημείου ενός μορίου o διακρίνετε τις βασικές κατηγορίες ομάδων σημείου

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ

ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ ΣΤΟΙΧΕΙΩ Η ΠΑΡΑ ΕΙΓΜΑΤΑ ΧΡΗΣΗΣ ΤΟΥ ΣΧΕ ΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ ΣΧΕ ΙΑΣΜΟΣ ΠΑΡΙΣΑΛΩΝ ΜΕ ΕΓΚΑΡΣΙΑ ΚΛΙΣΗ Έστω ένα πλοίο το οποίο επιπλέει µε µια εγκάρσια κλίση που παριστάνεται µε το επίπεδο π. Σχήµα 1 Ζητείται

Διαβάστε περισσότερα

8. Σύνθεση και ανάλυση δυνάμεων

8. Σύνθεση και ανάλυση δυνάμεων 8. Σύνθεση και ανάλυση δυνάμεων Βασική θεωρία Σύνθεση δυνάμεων Συνισταμένη Σύνθεση δυνάμεων είναι η διαδικασία με την οποία προσπαθούμε να προσδιορίσουμε τη δύναμη εκείνη που προκαλεί τα ίδια αποτελέσματα

Διαβάστε περισσότερα

ΜΕΡΟΣ Α : Να λύσετε και τις 10 ασκήσεις του Μέρους Α. Κάθε άσκηση βαθμολογείται με 5 μονάδες.

ΜΕΡΟΣ Α : Να λύσετε και τις 10 ασκήσεις του Μέρους Α. Κάθε άσκηση βαθμολογείται με 5 μονάδες. ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2015 2016 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ : Μαθηματικά ΒΑΘΜΟΣ ΤΑΞΗ : Γ ΑΡΙΘΜΗΤΙΚΩΣ: ΔΙΑΡΚΕΙΑ : 2 ώρες ΟΛΟΓΡΑΦΩΣ : ΗΜΕΡΟΜΗΝΙΑ : 08.06.2016 ΥΠ. ΚΑΘΗΓΗΤΗ/ΤΡΙΑΣ:

Διαβάστε περισσότερα

Κατασκευή ρόμβων. Μέθοδος 1: Ιδιότητες: Μέθοδος 2: Ιδιότητες: Μέθοδος 3: Ιδιότητες: Μέθοδος 4: Ιδιότητες: Ονοματεπώνυμο(α):

Κατασκευή ρόμβων. Μέθοδος 1: Ιδιότητες: Μέθοδος 2: Ιδιότητες: Μέθοδος 3: Ιδιότητες: Μέθοδος 4: Ιδιότητες: Ονοματεπώνυμο(α): Κατασκευή ρόμβων Ονοματεπώνυμο(α): Πόσους τρόπους μπορείτε να σκεφτείτε για την κατασκευή ενός ρόμβου; Εξετάστε μεθόδους που χρησιμοποιούν το μενού Κατασκευή, το μενού Μετασχηματισμός ή συνδυασμούς αυτών.

Διαβάστε περισσότερα

στκ στκ μπροστά 100 μπροστά 100 δεξιά 90 δεξιά 90 μπροστά 100 μπροστά 100 αριστερά 90 αριστερά 90 μπροστά 100 μπροστά 100 δεξιά 90 δεξιά 80

στκ στκ μπροστά 100 μπροστά 100 δεξιά 90 δεξιά 90 μπροστά 100 μπροστά 100 αριστερά 90 αριστερά 90 μπροστά 100 μπροστά 100 δεξιά 90 δεξιά 80 3. Στο μάθημα της Πληροφορικής, οι μαθητές προσπαθούνε να φτιάξουνε μια διαδικασία που να ζωγραφίζει μια σκάλα με δυο σκαλοπάτια (όπως στο σχήμα) στη LOGO. Οι διαδικασίες που φτιάξανε είναι αυτές που βλέπετε

Διαβάστε περισσότερα

Ερωτήσεις αντιστοίχισης

Ερωτήσεις αντιστοίχισης Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =

Διαβάστε περισσότερα

Άσκηση 1 η ( x 2) 2. i) Να βρείτε την τιμή της παράστασης Α, αν χ = 0. ii) Να βρείτε την τιμή της παράστασης Β, αν χ = 2 2 [ 3 8 ( 3) ]

Άσκηση 1 η ( x 2) 2. i) Να βρείτε την τιμή της παράστασης Α, αν χ = 0. ii) Να βρείτε την τιμή της παράστασης Β, αν χ = 2 2 [ 3 8 ( 3) ] ά ς w w w.e - m at hs.g r ά έ ί ς ά ά έ ά ς ί ά Άσκηση 1 η i) Να βρείτε την τιμή της παράστασης Α, αν χ = 0 4 2 3 3 6 3 ( x 2) 2 x 1 x x 1 x 2 ii) Να βρείτε την τιμή της παράστασης Β, αν χ = 2 3 27 3 2

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Επαναληπτικές ασκήσεις για το Πάσχα.

Επαναληπτικές ασκήσεις για το Πάσχα. Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

οµή των στερεών ιάλεξη 4 η

οµή των στερεών ιάλεξη 4 η οµή των στερεών ιάλεξη 4 η Ύλη τέταρτου µαθήµατος Οι καταστάσεις της ύλης, Γιατί τις µελετάµε; Περιοδική τοποθέτηση των ατόµων, Κρυσταλλική και άµορφη δοµή, Κρυσταλλικό πλέγµα κρυσταλλική κυψελίδα, Πλέγµατα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Καμπυλόγραμμες Κινήσεις Επιμέλεια: Αγκανάκης Α. Παναγιώτης, Φυσικός http://phyiccore.wordpre.com/ Βασικές Έννοιες Μέχρι στιγμής έχουμε μάθει να μελετάμε απλές κινήσεις,

Διαβάστε περισσότερα

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.

δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α. 3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο

Διαβάστε περισσότερα

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων?

1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? ΣΧΕΔΙΑΣΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ - Εξεταστέα ύλη Β εξαμήνου 2011 1.1. ΓΕΙΝΙΚΑ ΟΡΙΣΜΟΙ Με ποιο τρόπο μπορούμε να σχεδιάσουμε έναν τρισδιάστατο χώρο ή αντικείμενο, πάνω σ ένα χαρτί δύο διαστάσεων? Τρεις μέθοδοι προβολών

Διαβάστε περισσότερα

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π.

ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ. ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ 2 ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 2014) Ε.Μ.Π. ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ ΠΑΡΑΔΕΙΓΜΑΤΑ-ΑΣΚΗΣΕΙΣ ΠΑΡΑΣΤΑΤΙΚΗΣ ΜΕ ΠΡΟΒΟΛΕΣ ΣΕ ΕΠΙΠΕΔΑ (εκδοχή Σεπτεμβρίου 04) Ε.Μ.Π. (παρατηρήσεις για τη βελτίωση των σημειώσεων ευπρόσδεκτες) Παράσταση σημείου. Σχήμα Σχήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Μέρος Β Κεφάλαιο 4ο Γεωμετρικά Στερεά Χρύσα Παπαγεωργίου Μαθηματικός - Πληροφορικός Το ορθό πρίσμα και τα στοιχεία του Κάθε ορθό πρίσμα έχει: Δύο έδρες παράλληλες, που είναι ίσα

Διαβάστε περισσότερα

Η επιτάχυνση και ο ρόλος της.

Η επιτάχυνση και ο ρόλος της. Η επιτάχυνση και ο ρόλος της. Το μέγεθος «επιτάχυνση» το συναντήσαμε κατά τη διδασκαλία στην Α Λυκείου, όπου και ορίσθηκε με βάση την εξίσωση: t Όπου η παραπάνω μαθηματική εξίσωση μας λέει ότι η επιτάχυνση:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Από την εικόνα μπορούμε να δούμε ότι: 1 + 3 + 5 + 7 = 4 4. Ποια είναι η τιμή του: 1 + 3 +

Διαβάστε περισσότερα

Βασικές Γεωμετρικές έννοιες

Βασικές Γεωμετρικές έννοιες Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο

Διαβάστε περισσότερα

ήγαινε στο x : y : κατέβασε πένα σήκωσε πένα

ήγαινε στο x : y : κατέβασε πένα σήκωσε πένα Παραδείγματα Ας δούμε τώρα πρακτικά πως μπορούμε να συνδυάσουμε την εντολή κίνησης πήγαινε στο x: y: με τις κατέβασε πένα, σήκωσε πένα για να δημιουργήσουμε ένα τετράγωνο. Έστω ότι θέλουμε να το δημιουργήσουμε

Διαβάστε περισσότερα

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ

ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ ΣΤΕΡΕΟΣΚΟΠΙΚΕΣ ΕΙΚΟΝΕΣ Η προοπτική εικόνα, είναι, όπως είναι γνωστό, η προβολή ενός χωρικού αντικειμένου, σε ένα επίπεδο, με κέντρο προβολής, το μάτι του παρατηρητή. Η εικόνα αυτή, θεωρούμε ότι αντιστοιχεί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ 4 ΕΙΔΗ ΓΡΑΜΜΩΝ, ΕΙΔΗ ΤΡΙΓΩΝΩΝ, ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΑ, ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Εκτίμηση και μέτρηση Μ3.6 Εκτιμούν, μετρούν, ταξινομούν και κατασκευάζουν γωνίες (με ή χωρίς τη χρήση της

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ. Εξετάζουμε ενδεικτικά ορισμένες περιπτώσεις: 1 ο 2 ο. 3 ο 4 ο

ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ. Εξετάζουμε ενδεικτικά ορισμένες περιπτώσεις: 1 ο 2 ο. 3 ο 4 ο ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ Δίνεται ορθογώνιο παραλληλόγραμμο διάστασης m n όπου m,n φυσικοί αριθμοί, το οποίο είναι διαιρεμένο σε τετράγωνα που το καθένα ισούται με την μονάδα μέτρησης του εμβαδού του. Να βρεθεί

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13,

πλευρές του κείνται στις ευθείες : 4χ-3ψ+7=0, 3χ+2ψ-16=0, χ-5ψ+6=0. (ΑΒ=5, ΒΓ= 13, 1 Η Ευθεία στο Επίπεδο Η Ευθεία στο Επίπεδο 1 Να βρεθεί το είδος των γωνιών του τριγώνου που οι πλευρές του κείνται στις ευθείες : 4χ-3ψ+3=0, 3χ+4ψ+4=0, χ-7ψ+8=0. (90, 45, 45 ) 2 Να βρεθεί το μήκος των

Διαβάστε περισσότερα

6 Γεωμετρικές κατασκευές

6 Γεωμετρικές κατασκευές 6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ )

ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) ΘΕΩΡΙΑ ( ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ) Έχουμε δύο κάθετους άξονες x x και y y με κοινή αρχή 0. Από ένα σημείο Μ του επιπέδου φέρνουμε τις κάθετες στους δύο άξονες x x και y y. Ονομάζουμε τετμημένη του σημείου

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ - ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1. Δίνεται παραλληλόγραμμο ΑΒΓΔ με τρεις κορυφές τα σημεία Α (1,1), Γ (4,3) και Δ (,3). α) Να υπολογίσετε τα μήκη

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών).

ΕΝΟΤΗΤΑ 7. Σημείωση: Για τη διδασκαλία της ενότητας είναι πολύ σημαντική η χρήση των εποπτικών μέσων (στερεών και αναπτυγμάτων των στερεών). ΣΤΕΡΕΟΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ2.6 Ονομάζουν, περιγράφουν και ταξινομούν τρισδιάστατα σχήματα (κύβο, ορθογώνιο παραλληλεπίπεδο, πυραμίδα, σφαίρα, κύλινδρο, κώνο),

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΗΣ Β ΛΥΚΕΙΟΥ Διανύσματα Πολλαπλασιασμός αριθμού με διάνυσμα ο Θέμα _8603 Δίνεται τρίγωνο ΑΒΓ και σημεία Δ και Ε του επιπέδου τέτοια, ώστε 5 και

Διαβάστε περισσότερα

ΚΑΤΑΣΚΕΥΗ ΠΡΟΟΠΤΙΚΟΥ ΣΕ ΠΛΑΓΙΟ ΠΙΝΑΚΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD

ΚΑΤΑΣΚΕΥΗ ΠΡΟΟΠΤΙΚΟΥ ΣΕ ΠΛΑΓΙΟ ΠΙΝΑΚΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD ΣΕ ΠΕΡΙΒΑΛΛΟΝ CAD Σύμφωνα με τους ορισμούς, το προοπτικό είναι η κεντρική προβολή (από τη θέση του ματιού του παρατηρητή) ενός σχήματος πάνω στο επίπεδο του πίνακα. Οι παράλληλες ευθείες του αρχικού σχήματος

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 1

Σημειώσεις Μαθηματικών 1 Σημειώσεις Μαθηματικών 1 Διανύσματα Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Διανύσματα 3.1 Έννοια διανύσματος Ορισμός 1 Ονομάζουμε Διάνυσμα ΑΒ ένα προσανατολισμένο ευθύγραμμο τμήμα ΑΒ με αρχή το Α και πέρας

Διαβάστε περισσότερα

ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ

ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2010 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ Θέμα 1: Επιλέξτε και απαντήστε σε 6 από τις ακόλουθες 10 ερωτήσεις (30 μονάδες) 1. Τι ονομάζουμε δείκτη διάθλασης ενός μέσου; Τι αριθμητικές

Διαβάστε περισσότερα

1 x και y = - λx είναι κάθετες

1 x και y = - λx είναι κάθετες Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος» 1. * Συντελεστής διεύθυνσης μιας ευθείας (ε) είναι η εφαπτομένη της γωνίας που σχηματίζει η ευθεία (ε) με τον άξονα. Σ Λ. * Ο συντελεστής διεύθυνσης

Διαβάστε περισσότερα

ΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων

ΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων ΔΙΑΣΤΑΣΕΙΣ Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων Η Σωστή τοποθετηση Διαστασεων στο Μηχανολογικο Σχεδιο ειναι απαραιτητη για τη Σωστή Κατασκευή Εχετε κατι να παρατηρησετε;

Διαβάστε περισσότερα

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8)

= π 3 και a = 2, β =2 2. a, β. α) Να βρείτε το εσωτερικό γινόμενο a β. (Μονάδες 8) ΘΕΜΑ Δίνονται τα διανύσματα a και β με a, β = π 3 και a =, β =. α) Να βρείτε το εσωτερικό γινόμενο a β. β) Αν τα διανύσματα a + β και κ a + β είναι κάθετα να βρείτε την τιμή του κ. (Μονάδες 10) γ) Να βρείτε

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 0.

ραστηριότητες στο Επίπεδο 0. ραστηριότητες στο Επίπεδο 0. Σε αυτό το επίπεδο περιλαµβάνονται δραστηριότητες ταξινόµησης, αναγνώρισης και περιγραφής διαφόρων σχηµάτων. Είναι σηµαντικό να χρησιµοποιούνται πολλά διαφορετικά και ποικίλα

Διαβάστε περισσότερα

Διπλή διάθλαση είναι το φαινόμενο, κατά το οποίο το φως διερχόμενο μέσα από έναν ανισότροπο κρύσταλλο

Διπλή διάθλαση είναι το φαινόμενο, κατά το οποίο το φως διερχόμενο μέσα από έναν ανισότροπο κρύσταλλο ΠΕΤΡΟΓΕΝΕΤΙΚΑ ΟΡΥΚΤΑ ΙΟΥΝΙΟΣ 2009 ΥΠΟ ΕΙΓΜΑ ΣΩΣΤΩΝ ΑΠΑΝΤΗΣΕΩΝ 1. Συμπληρώστε τα κενά στις παρακάτω ερωτήσεις με τους σωστούς όρους. (30 μονάδες) Οι κρύσταλλοι, στους οποίους το φως διαδίδεται με ίδια ταχύτητα

Διαβάστε περισσότερα

ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ. Μάθημα 3ο. Συμμετρία

ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ. Μάθημα 3ο. Συμμετρία ΑΝΟΡΓΑΝΑ ΥΛΙΚΑ Μάθημα 3ο Συμμετρία 1 Συμμετρία Μια κατάσταση στην οποία μέρη τα οποία ευρίσκονται σε αντίθετες μεταξύ τους θέσεις ενός επιπέδου, γραμμής ή σημείου φανερώνει διευθετήσεις οι οποίες αλληλοσυνδέονται

Διαβάστε περισσότερα

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ.

ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ. ΔΙΑΡΚΕΙΑ: 1 περιόδους. 28/9/2008 12:48 Όνομα: Λεκάκης Κωνσταντίνος καθ. ΘΕΜΑ : ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΜΕ 2 Σ.Φ ΙΣΟΜΕΤΡΙΚΗ ΠΡΟΒΟΛΗ ΔΙΑΡΚΕΙΑ: 1 περιόδους 28/9/2008 12:48 καθ. Τεχνολογίας 28/9/2008 12:57 Προοπτικό σχέδιο με 2 Σημεία Φυγής Σημείο φυγής 1 Σημείο φυγής 2 Γωνία κτιρίου

Διαβάστε περισσότερα