Κεφάλαιο Αρχές των απεικονίσεων - προβολών Αναπτυκτές επιφάνειες και ο προσανατολισμός τους
|
|
- Σωτήρης Κόρακας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κεφάλαιο 2 Σύνοψη Οι απεικονίσεις στη χαρτογραφία αναφέρονται στην προβολή ή απεικόνιση της επιφάνειας αναφοράς, δηλαδή, του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) στο επίπεδο στο επίπεδο του χάρτη. Πολλές φορές αντί να χρησιμοποιηθεί άμεσα ένα επίπεδο η απεικόνιση γίνεται σε μια αναπτυκτή στο επίπεδο επιφάνεια. Τέτοιες επιφάνειες είναι η παράπλευρη επιφάνεια ενός κυλίνδρου ή ενός κώνου. Για την αποτελεσματικότερη απεικόνιση τμημάτων της γήινης επιφάνειας ο προσανατολισμός του επιπέδου, της κυλινδρικής ή κωνικής επιφάνειας προσαρμόζεται ανάλογα με την περίπτωση. Στο κεφάλαιο αυτό περιγράφεται συστηματικά η διαδικασία αξιοποίησης των αναπτυκτών επιφανειών, ο προσανατολισμός τους καθώς και ο τρόπος με τον οποίο επηρεάζονται οι εικόνες των μεσημβρινών και παραλλήλων στο επίπεδο του χάρτη. Προαπαιτούμενη γνώση Κεφάλαιο 1 (Βασικές έννοιες χαρτογραφικών προβολών) και Συναρτήσεις Πολλών Μεταβλητών 2. Αρχές των απεικονίσεων - προβολών Οι απεικονίσεις στη χαρτογραφία αναφέρονται στην προβολή ή απεικόνιση της επιφάνειας αναφοράς, δηλαδή του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) στο επίπεδο στο επίπεδο του χάρτη. Η απεικόνιση αυτή πάντα συνοδεύεται από παραμορφώσεις. Για τον λόγο αυτό έχουν επινοηθεί τρόποι απεικόνισης που να διατηρούν ορισμένες γεωμετρικές ιδιότητες των χωρικών οντοτήτων αναλλοίωτες (για παράδειγμα, είτε τα εμβαδά ή τις γωνίες ή τα μήκη σε ορισμένες όμως διευθύνσεις). Σε κάθε απεικόνιση όμως, πρέπει να γίνει σαφές, ότι είναι αδύνατον να διατηρούνται τα μήκη, τα εμβαδά και οι αποστάσεις ταυτόχρονα Αναπτυκτές επιφάνειες και ο προσανατολισμός τους Η απεικόνιση αντί να γίνει απ' ευθείας στην επιφάνεια ενός επιπέδου (Εικόνα 2.1), μπορεί να γίνει πρώτα πάνω σε μια αναπτυκτή επιφάνεια και στη συνέχεια αυτή να αναπτυχθεί στο επίπεδο. Τέτοιες κατάλληλες αναπτυκτές επιφάνειες είναι η παράπλευρη επιφάνεια ενός κυλίνδρου (Εικόνα 2.2) ή ενός κώνου (Εικόνα 2.3) (Tobler, 1962 Cuenin, 1972 Richardus & Adler, 1972 Maling, 1973 Βέης, 1977 Νάκος & Φιλιππακοπούλου, 1993). Έτσι λοιπόν, οι απεικονίσεις ανάλογα με την αναπτυκτή επιφάνεια που χρησιμοποιούμε, ονομάζονται επίπεδες ή αζιμουθιακές, κυλινδρικές και κωνικές, αντίστοιχα (Βέης 1977, Νάκος & Φιλιππακοπούλου, 1993). Εικόνα 2.1 Επίπεδη απεικόνιση. 34
2 Ανάλογα με τον προσανατολισμό του επιπέδου, κυλίνδρου ή του κώνου σε σχέση με την επιφάνεια αναφοράς (έλλειψοειδές εκ περιστροφής ή σφαίρα) οι απεικονίσεις διακρίνονται σε: ορθές (Εικόνα 2.4), εγκάρσιες (Εικόνα 2.5) και πλάγιες (Εικόνα 2.6) (Βέης, 1977 Νάκος & Φιλιππακοπούλου, 1993). Ορθές ονομάζονται οι απεικονίσεις που ο άξονας συμμετρίας της αναπτυκτής επιφάνειας ταυτίζεται με τον άξονα περιστροφής της Γης. Εγκάρσιες ονομάζονται οι απεικονίσεις που ο άξονας συμμετρίας της αναπτυκτής επιφάνειας είναι κάθετος στον άξονα περιστροφής της Γης. Πλάγιες, τέλος, ονομάζονται οι απεικονίσεις που ο άξονας συμμετρίας της αναπτυκτής επιφάνειας σχηματίζει τυχαία γωνία με τον άξονα περιστροφής της Γης. Εικόνα 2.2 Κυλινδρική απεικόνιση. Εικόνα 2.3 Κωνική απεικόνιση. Εικόνα 2.4 Ορθές κυλινδρικές, κωνικές και επίπεδες απεικονίσεις. 35
3 Οι απεικονίσεις μπορούν να πραγματοποιηθούν με καθαρά γεωμετρικούς τρόπους. Αρκεί να προβληθούν τα σημεία του ελλειψοειδούς ή της σφαίρας σε ένα επίπεδο ή σε μια αναπτυκτή επιφάνεια. Για τον λόγο αυτό, άλλωστε, πολλές φορές χρησιμοποιείται και ο όρος προβολή. Η προβολή αυτή μπορεί να είναι κεντρική ή παράλληλη. Στις περισσότερες περιπτώσεις μια κεντρική προβολή απεικονίζει μονοσήμαντα μόνο ένα μέρος του ελλειψοειδούς ή της σφαίρας, για παράδειγμα μόνο το ένα ημισφαίριο. Η απεικόνιση όμως μπορεί να πραγματοποιηθεί και με καθαρά αναλυτικό τρόπο, χωρίς να προέρχεται από γεωμετρική προβολή, ή και να προκύψει από συνδυασμό αναλυτικής και γεωμετρικής μεθόδου. Εικόνα 2.5 Εγκάρσιες κυλινδρικές, κωνικές και επίπεδες απεικονίσεις. Εικόνα 2.6 Πλάγιες κυλινδρικές, κωνικές και επίπεδες απεικονίσεις Γεωμετρική μορφή εικόνων μεσημβρινών και παραλλήλων Στο ελλειψοειδές ή τη σφαίρα προσδιορίζεται μια θέση χρησιμοποιώντας τις γεωγραφικές συντεταγμένες (φ, λ), ενώ στο επίπεδο τις ορθογώνιες (x, y) ή τις πολικές συντεταγμένες (ρ, θ). 36
4 Κάθε απεικόνιση ορίζεται με τη βοήθεια δύο συναρτήσεων f και g, οι οποίες και καθορίζουν τις παραμορφώσεις των γεωμετρικών μεγεθών από το ελλειψοειδές ή τη σφαίρα στο επίπεδο. Επομένως, ο νόμος κάθε απεικόνισης ή προβολής εκφράζεται από τις σχέσεις: x = f(φ, λ) και y = g(φ, λ). Στην Εικόνα 2.7 παρουσιάζονται οι εικόνες των μεσημβρινών και παραλλήλων που αποτελούν χαρακτηριστικές περιπτώσεις συναρτήσεων f και g ως προς ένα ορθογώνιο σύστημα συντεταγμένων (x, y) για το χάρτη. Εικόνα 2.7 Εικόνες μεσημβρινών και παραλλήλων γενικών περιπτώσεων απεικονίσεων που ορίζονται με ορθογώνιες συντεταγμένες. Οι σχέσεις που ορίζουν τη γενική μορφή μιας απεικόνισης είναι x = f(φ, λ) και y = g(φ, λ) και οι εικόνες των μεσημβρινών και παραλλήλων είναι εν γένει καμπύλες γραμμές (Εικόνα επάνω αριστερά). Στην Εικόνα 2.7 (επάνω δεξιά) παρουσιάζονται οι εικόνες των μεσημβρινών και παραλλήλων όταν ισχύει x = f(λ) και y = g(φ, λ). Επειδή, η συντεταγμένη x είναι συνάρτηση μόνον του γεωγραφικού μήκους, οι εικόνες των μεσημβρινών αποτελούν μια παράλληλη δέσμη ευθειών. Στην Εικόνα 2.7 (κάτω αριστερά) παρουσιάζονται οι εικόνες των μεσημβρινών και παραλλήλων όταν ισχύει x = f(φ, λ) και y = g(φ). Επειδή, η συντεταγμένη y είναι συνάρτηση μόνον του γεωγραφικού πλάτους, οι εικόνες των παραλλήλων αποτελούν μια παράλληλη δέσμη ευθειών. Τέλος, όταν ισχύει x = f(λ) και y = g(φ), τότε τόσο οι μεσημβρινοί όσο και οι παράλληλοι απεικονίζονται ως παράλληλες δέσμες ευθειών κάθετα τεμνόμενες μεταξύ τους (Εικόνα κάτω δεξιά). Η τελευταία αυτή περίπτωση αναφέρεται στις ορθές κυλινδρικές απεικονίσεις. Στην Εικόνα 2.8 απεικονίζονται οι εικόνες των μεσημβρινών και παραλλήλων χαρακτηριστικών περιπτώσεων συναρτήσεων f και g ως προς ένα πολικό σύστημα συντεταγμένων (ρ, θ) για τον χάρτη. Οι σχέσεις που ορίζουν τη γενική μορφή μιας απεικόνισης με πολικές συντεταγμένες είναι ρ = f(φ, λ) και θ = g(φ, λ). Στην περίπτωση αυτή, οι εικόνες των παραλλήλων είναι κλειστές καμπύλες γραμμές και των μεσημβρινών κεντρική δέσμη καμπύλων γραμμών (Εικόνα επάνω αριστερά). Στην Εικόνα 2.8 (επάνω δεξιά) παρουσιάζονται οι εικόνες των μεσημβρινών και παραλλήλων όταν ισχύει ρ = f(φ, λ) και θ = g(λ). Επειδή, η πολική γωνία θ είναι συνάρτηση μόνον του γεωγραφικού μήκους, οι εικόνες των μεσημβρινών αποτελούν μια κεντρική δέσμη ευθειών. Στην Εικόνα 2.8 (κάτω αριστερά) παρουσιάζονται οι εικόνες των μεσημβρινών και παραλλήλων όταν ισχύει: ρ = f(φ) και θ = g(φ, λ). Επειδή, η πολική ακτίνα ρ είναι συνάρτηση μόνον του γεωγραφικού πλάτους, οι εικόνες των παραλλήλων αποτελούν ομόκεντρους κύκλους. 37
5 Τέλος, όταν ισχύει ρ = f(φ) και θ = g(λ), τότε οι μεσημβρινοί απεικονίζονται ως κεντρική δέσμη ευθειών και οι παράλληλοι απεικονίζονται ως ομόκεντροι κύκλοι (Εικόνα κάτω δεξιά). Οι απεικονίσεις ανάλογα με τις παραμορφώσεις επιφέρουν σε γεωμετρικά μεγέθη, διακρίνονται σε σύμμορφες, ισοδύναμες και ισαπέχουσες (Βέης, 1977 Νάκος & Φιλιππακοπούλου, 1993). Σύμμορφες ονομάζονται οι απεικονίσεις που διατηρούν αναλλοίωτη τη μορφή στοιχειωδών σχημάτων, δηλαδή διατηρούν τις γωνίες και επομένως το σχήμα τους. Ισοδύναμες ονομάζονται οι απεικονίσεις που διατηρούν αναλλοίωτα τα εμβαδά. Τέλος, ισαπέχουσες ονομάζονται εκείνες οι απεικονίσεις που διατηρούν αναλλοίωτα τα μήκη σε ορισμένες μόνο διευθύνσεις. Εικόνα 2.8 Εικόνες μεσημβρινών και παραλλήλων γενικών περιπτώσεων απεικονίσεων που ορίζονται με πολικές συντεταγμένες. Βασικό κριτήριο για την επιλογή μιας απεικόνισης αποτελεί η απλότητα των σχέσεων που την ορίζουν. Συχνά όμως το είδος του χάρτη που πρόκειται να δημιουργηθεί είναι δυνατό να καθορίζει το είδος της απεικόνισης που θα χρησιμοποιηθεί. Έτσι, για τους θεματικούς χάρτες χρησιμοποιούνται συνήθως ισοδύναμες απεικονίσεις, ενώ για τους τοπογραφικούς χάρτες σύμμορφες. Πολλές φορές, χρησιμοποιούνται πλάγιες απεικονίσεις για να ελαχιστοποιηθούν οι παραμορφώσεις σε μια περιοχή περιορισμένης έκτασης. Βιβλιογραφία Βέης Γ., (1977), Μαθηματική Χαρτογραφία. Αθήνα: Εργαστήριο Ανώτερης Γεωδαισίας & Χαρτογραφίας, Εθνικό Μετσόβιο Πολυτεχνείο. Cuenin R., (1972), Cartographie Generale, Tome 1. Paris: Editions Eyrolles. Maling D.H., (1973), Coordinate systems and map projections. London: G. Philip & Son Ltd. 38
6 Νάκος Β. & Β. Φιλιππακοπούλου, (1993), Γενική Χαρτογραφία. Αθήνα: Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών, Εθνικό Μετσόβιο Πολυτεχνείο. Richardus P. & R.K. Adler, (1972), Map projections. Amsterdam: North-Holland Pub. Co. Tobler W.R., (1962), "A classification of map projections". Annals of the Association of American Geographers, 52:
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΓΕΩΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 1: ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ ΔΙΔΑΣΚΩΝ : Ι. ΖΑΧΑΡΙΑΣ ΑΓΡΙΝΙΟ, 2015 ΕΡΓΑΣΤΗΡΙΟ
Κεφάλαιο Βασικές έννοιες χαρτογραφικών προβολών Το σχήμα της Γης
Κεφάλαιο 1 Σύνοψη Στο κεφάλαιο αυτό εισάγονται οι βασικές έννοιες που διέπουν τις χαρτογραφικές προβολές. Αρχικά ορίζονται οι επιφάνειες που προσομοιώνουν την επιφάνεια της Γης για τις ανάγκες της Χαρτογραφίας.
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΓΕΩΛΟΓΙΑ Ενότητα 10: Προβολικά Συστήματα (Μέρος 2 ο ) Νικολακόπουλος Κωνσταντίνος, Επίκουρος Καθηγητής Σχολή Θετικών Επιστημών Τμήμα
ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ
ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΜΑΘΗΜΑ: ΘΕΩΡΗΤΙΚΗ ΝΑΥΤΙΛΙΑ Καθηγητής Δρ. Α. Παλληκάρης ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ Νοέμβριος 2016 ΕΝΔΕΙΚΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ ΑΠΕΙΚΟΝΙΣΗΣ ΤΗΣ ΕΠΙΦΑΝΕΙΑΣ ΤΗΣ ΓΗΣ ΣΕ ΕΠΙΠΕΔΟ (ΚΑΤΑΣΚΕΥΗ ΧΑΡΤΩΝ)
ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ. Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν.
ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΠΡΟΒΟΛΕΣ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΝΑΥΤΙΛΙΑ ΚΑΙ ΤΙΣ ΝΑΥΤΙΚΕΣ ΕΠΙΧΕΙΡΗΣΕΙΣ Δρ. ΑΘΑΝΑΣΙΟΣ Η. ΠΑΛΛΗΚΑΡΗΣ Αν. καθηγητής ΣΝΔ ΠΕΙΡΑΙΑΣ 2011 Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 9: Συστήματα Συντεταγμένων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Άδειες
Προβολές Συστήματα Συντεταγμένων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Προβολές Συστήματα Συντεταγμένων Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος http://www.prd.uth.gr/el/staff/i_faraslis
ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 6 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ i vii ΜΕΡΟΣ Α ΧΑΡΤΟΓΡΑΦΙΚΕΣ
ΧΑΡΤΟΓΡΑΦΙΑ. Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων
ΧΑΡΤΟΓΡΑΦΙΑ Στοιχεία χαρτογραφίας Σύστηµα γεωγραφικών συντεταγµένων ρ. Ε. Λυκούδη Αθήνα 2005 Χώρος Η ανάπτυξη της ικανότητας της αντίληψης του χώρου, ως προς τις διαστάσεις του και το περιεχόµενό του είναι
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΜΑΘΗΜΑ 6 Ο ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΧΑΡΤΟΓΡΑΦΙΑ: Είναι η επιστήμη που ασχολείται με την απεικόνιση μιας γεωγραφικής ενότητας σε ένα χαρτί
Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 8: Ψηφιακή Επεξεργασία Εικόνας Γεωμετρικές Διορθώσεις. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής
ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ
ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ Χαρτογραφία Ι 1 Το σχήμα και το μέγεθος της Γης [Ι] Σφαιρική Γη Πυθαγόρεια & Αριστοτέλεια αντίληψη παρατηρήσεις φυσικών φαινομένων Ομαλότητα γεωμετρικού σχήματος (Διάμετρος
ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ
του Υποπυραγού Αλέξανδρου Μαλούνη* Μέρος 2 ο - Χαρτογραφικοί μετασχηματισμοί Εισαγωγή Είδαμε λοιπόν ως τώρα, ότι η γη θα μπορούσε να χαρακτηρισθεί και σφαιρική και αυτό μπορεί να γίνει εμφανές όταν την
Κεφάλαιο Τοπολογικές απεικονίσεις Αζιμουθιακή ισόχρονη απεικόνιση
Κεφάλαιο 9 Σύνοψη Στο κεφάλαιο αυτό, περιγράφονται αναλυτικές χαρτογραφικές μέθοδοι μετασχηματισμού του χώρου, μετατρέποντας τη γεωμετρία του χάρτη με τρόπο που να απεικονίζεται το ίδιο το χωρικό φαινόμενο
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης)
ΓΕΩΓΡΑΦΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΩΝ-2 (ο χάρτης) Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική
ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0. Ι.Μ. Δόκας Επικ. Καθηγητής
ΓΕΩΔΑΙΣΙΑ Ι Μάθημα 1 0 Ι.Μ. Δόκας Επικ. Καθηγητής Γεωδαισία Μοιράζω τη γη (Γη + δαίομαι) Ακριβής Έννοια: Διαίρεση, διανομή /μέτρηση της Γής. Αντικείμενο της γεωδαισίας: Ο προσδιορισμός της μορφής, του
Κεφάλαιο 6. 6 Χαρτογραφικές προβολές-προβολικά συστήματα συντεταγμένων
Κεφάλαιο 6 6 Χαρτογραφικές προβολές-προβολικά συστήματα συντεταγμένων Για να παράξουμε ένα χάρτη πρέπει να χρησιμοποιήσουμε μία χαρτογραφική προβολή. Ως χαρτογραφική προβολή ονομάζουμε οποιοδήποτε μετασχηματισμό
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΟ 1 Ο ΤΟΠΟΓΡΑΦΙΚΟΙ ΧΑΡΤΕΣ Δρ. ΜΑΡΙΑ ΦΕΡΕΝΤΙΝΟΥ 2008-2009 Τοπογραφικοί Χάρτες Περίγραμμα - Ορισμοί - Χαρακτηριστικά Στοιχεία - Ισοϋψείς Καμπύλες - Κατασκευή τοπογραφικής τομής
ΒΥΡΩΝΑΣ ΝΑΚΟΣ Καθηγητής Ε.Μ.Π. Αναλυτική Χαρτογραφία
ΒΥΡΩΝΑΣ ΝΑΚΟΣ Καθηγητής Ε.Μ.Π. Αναλυτική Χαρτογραφία Αναλυτική Χαρτογραφία Συγγραφή Βύρωνας Νάκος Κριτικός αναγνώστης Λύσανδρος Τσούλος Συντελεστές έκδοσης Γλωσσική Επιμέλεια: Βύρωνας Νάκος Γραφιστική
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ
Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια)
Τµήµα Αρχιτεκτόνων Μηχανικών ΜΕ801 Χαρτογραφία 1 Μάθηµα επιλογής χειµερινού εξαµήνου Πάτρα, 2016 Συνέχεια της ζήτησης για την έννοια του χάρτη Βασικά συστατικά των χαρτών (συνέχεια) Βασίλης Παππάς, Καθηγητής
ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ
ΧΑΡΤΟΓΡΑΦΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ Χαρτογραφία Ι 1 ΤΡΟΠΟΙ ΧΑΡΤΟΓΡΑΦΗΣΗΣ: ΥΔΡΟΓΕΙΟΣ Πλεονεκτήματα: Διατήρηση σχετικών αποστάσεων, γωνιών, εμβαδών, αζιμουθίων, μέγιστων κύκλων, λοξοδρομιών Μειονεκτήματα: Είναι δαπανηρές
ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΑΝΑΛΥΤΙΚΗ ΧΑΡΤΟΓΡΑΦΙΑ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 004 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ
Κεφάλαιο Χαρτογραφικές απεικονίσεις - προβολές Ορθές κυλινδρικές απεικονίσεις Ορθή κυλινδρική ισαπέχουσα προβολή
Κεφάλαιο 3 Σύνοψη Στο κεφάλαιο αυτό, γίνεται παρουσίαση των σημαντικότερων απεικονίσεων - προβολών που χρησιμοποιούνται για την απεικόνιση της επιφάνειας ενός ελλειψοειδούς εκ περιστροφής (ή μιας σφαίρας)
14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες.
14 η εβδομάδα (27/01/2017) Έγιναν οι ασκήσεις 39, 41 και 42. Έγινε επανάληψη και λύθηκαν ερωτήματα και απορίες. 13 η εβδομάδα (20/01/2017) Έγιναν οι ασκήσεις 31, 32, 33, 34, 36 και 37 11 η 12 η εβδομάδα
Συστήματα Συντεταγμένων
Σφαιρικό Σύστημα Συντεταγμένων DD = Degrees + ( Minutes / 60 ) + ( Seconds / 3600 ) Greenwich meridian =0 Z N Meridian of longitude Parallel of latitude P X W O Equator =0 R E - Geographic longitude -
ΠΡΟΒΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΑΝΑΛΥΣΗ ΤΡΙΜΕΤΑΒΛΗΤΩΝ ΠΑΡΑΜΕΤΡΩΝ
ΠΡΟΒΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΑΝΑΛΥΣΗ ΤΡΙΜΕΤΑΒΛΗΤΩΝ ΠΑΡΑΜΕΤΡΩΝ Σημειώσεις στα πλαίσια του μαθήματος ΜΑΘΗΜΑΤΙΚΗ ΓΕΩΓΡΑΦΙΑ του μεταπτυχιακού κύκλου σπουδών «Γεωγραφία & Περιβάλλον» Καθ. Βαϊόπουλος Δημήτριος Δρ.
Πανεπιστήμιο Θεσσαλίας. Πολυτεχνική Σχολή ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης ΘΕΜΑΤΙΚΗ : ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Ιωάννης Φαρασλής Τηλ : 24210-74466, Πεδίον Άρεως, Βόλος
Μεθοδολογία Παραβολής
Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.
ΣΤΟΙΧΕΙΑΧΑΡΤΟΓΡΑΦΙΑΣ ΟΡΟΙ-ΕΝΝΟΙΕΣ. ΚΕΦΑΛΑΙΟ 1 / Η ΧΑΡΤΟΓΡΑΦΙΑ ΣΗΜΕΡΑ Αναλογική χαρτογραφία Λειτουργίες του χάρτη Ψηφιακή χαρτογραφία
ΚΕΦΑΛΑΙΟ 1 / Η ΧΑΡΤΟΓΡΑΦΙΑ ΣΗΜΕΡΑ Αναλογική χαρτογραφία Λειτουργίες του χάρτη Ψηφιακή χαρτογραφία ΚΕΦΑΛΑΙΟ 2 / Η ΦΥΣΗ ΤΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ Αποτελεσµατικότητα χαρτών Ταξινόµηση χαρτών Χάρτης, βασικά χαρακτηριστικά,
4. Να βρεθεί η προβολή του σημείου Ρ=(6,1,5) πάνω στην ευθεία ε: x ={3,1,2}+λ{1,2,1},, και η απόστασή του από αυτήν.
ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙI Α Σ Κ Η Σ Ε Ι Σ ΑΚΑΔ. ΕΤΟΣ 009-00 Κ Ε Φ Α Λ Α Ι Ο V Ι. Δίνονται οι ευθείες δ: x ={,0,0}+λ{,,}, ε: x -x + x -=0, x -x =. Να εξετάσετε αν οι ευθείες δ, ε είναι ασύμβατες. Αν ναι, βρείτε
10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ
77 10. ΓΕΩΔΑΙΤΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Ολοκληρώνοντας την συνοπτική παρουσίαση των εννοιών και μεθόδων της Γεωδαιτικής Αστρονομίας θα κάνουμε μια σύντομη αναφορά στην αξιοποίηση των μεγεθών που προσδιορίστηκαν,
Πρόβλημα 4.9.
Πρόβλημα 4.9. Να βρεθεί το δυναμικό V() παντού στο χώρο ενός θετικά φορτισμένου φύλλου απείρων διαστάσεων με επιφανειακή πυκνότητα φορτίου σ. Πάρτε τον άξονα κάθετα στο φύλλο και θεωρήστε ότι το φύλλο
Κεφάλαιο 5. 5 Συστήματα συντεταγμένων
Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού
Μεθοδολογία Έλλειψης
Μεθοδολογία Έλλειψης Έλλειψη ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων το άθροισμα των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερό και μεγαλύτερο από την απόσταση (ΕΕ ). Στη Φύση
1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης
1o ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑΤΟΣ «ΜΗΧΑΝΙΚΗ ΤΩΝ ΩΚΕΑΝΩΝ» Χάρτες: Προσδιορισμός θέσης Απαραίτητο όλων των ωκεανογραφικών ερευνών και μελετών Προσδιορισμός θέσης & πλοήγηση σκάφους Σε αυτό το εργαστήριο.. Τι περιλαμβάνει
ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1 Γενικά Επειδή οι επιφάνειε δευτέρου βαθμού συναντώνται συχνά στη μελέτη των συναρτήσεων πολλών μεταβλητών θεωρούμε σκόπιμο να τι περιγράψουμε στην αρχή του βιβλίου
ΣΤΟΙΧΕΙΑ ΧΑΡΤΟΓΡΑΦΙΑΣ
ΚΕΦΑΛΑΙΟ 1 / Η ΧΑΡΤΟΓΡΑΦΙΑ ΣΗΜΕΡΑ 1. Σε τί διαφέρουν η ψηφιακή χαρτογραφία και η αναλογική χαρτογραφία; 2. Ποιές λειτουργίες επιτελεί ο χάρτης; 3. Ποιά προϊόντα παρέχει η ψηφιακή χαρτογραφία και ποιές
Μεθοδολογία Υπερβολής
Μεθοδολογία Υπερβολής Υπερβολή ονομάζεται ο γεωμετρικός τόπος των σημείων, των οποίων η απόλυτη τιμή της διαφοράς των αποστάσεων από δύο σταθερά σημεία Ε και Ε είναι σταθερή και μικρότερη από την απόσταση
ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
1 ΣΤΟΙΧΕΙΑ ΙΑΝΥΣΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ 3 1.1 Γενικά.......................... 3 1.2 Ορισµοί......................... 4 1.3 Στοιχειώδεις Πράξεις Μεταξύ ιανυσµάτων....... 8 1.3.1 Γινόµενο Αριθµού επί ιάνυσµα.........
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/ Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: 0 2 xx, που ισχύει.
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: Ν : = + + + Ν : = + + + Ν : = ma 3 για κάθε = ( ) Να αποδείξετε ότι για κάθε = ( ) ισχύει: Ν ( ) Ν ( ) Ν ( ) Ν (
Υπολογισµοί συντεταγµένων σηµείων
ΒΙΒΛΙΟΓΡΑΦΙΑ: Π. Σαββαΐδης, Ι. Υφαντής, Κ. Λακάκης, ΣΗΜΕΙΩΣΕΙΣ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΘΕΜΑΤΙΚΗΣ ΧΑΡΤΟΓΡΑΦΙΑΣ ΓΙΑ ΤΟ ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ Α. Π. Θ., Θεσσαλονίκη 2007 1. Ορισµοί Υπολογισµοί συντεταγµένων σηµείων Η
GenCartoPro: Μια νεά εργαλειοθη κη παραγωγη ς χαρτογραφικω ν προβολω ν για την υποστη ριξη της χαρτογραφικη ς εκπαι δευσης
GenCartoPro: Μια νεά εργαλειοθη κη παραγωγη ς χαρτογραφικω ν προβολω ν για την υποστη ριξη της χαρτογραφικη ς εκπαι δευσης Βασι λειος ΚΡΑΣΑΝΑΚΗΣ, Βασι λειος ΜΗΤΡΟΠΟΥΛΟΣ, Βυ ρωνας ΝΑΚΟΣ Σχολη Αγρονο µων
Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ
Κεφάλαιο 4 ΜΕΤΑΒΟΛΗ ΚΕΝΤΡΟΥ ΑΝΤΩΣΗΣ ΚΑΙ ΜΕΤΑΚΕΝΤΡΟΥ ΛΟΓΩ ΕΓΚΑΡΣΙΑΣ ΚΛΙΣΗΣ Σύνοψη Αυτό το κεφάλαιο έχει επίσης επαναληπτικό χαρακτήρα. Σε πρώτο στάδιο διερευνάται η μορφή της καμπύλης την οποία γράφει το
ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.
ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου
3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΧΑΡΑΞΕΩΝ 3
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΓΕΝΙΚΕΣ ΑΡΧΕΣ ΧΑΡΑΞΕΩΝ 3 Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστημίου Δυτικής Αττικής 3ο εξάμηνο http://eclass.uniwa.gr Αποτυπώσεις
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 1/2012
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Στον Ευκλείδειο χώρο ορίζουμε τις νόρμες: : : : ma 3 για κάθε Να αποδείξετε ότι για κάθε ισχύει: 3 3 Τι συμπεραίνετε για τις παραπάνω νόρμες του Αν θεωρήσουμε
t : (x, y) x 2 +y 2 y x
Σύνοψη Κεφαλαίου 5: Αντιστροφική Γεωμετρία Αντιστροφή 1. Η ανάκλαση σε μία ευθεία l στο επίπεδο απεικονίζει ένα σημείο A σε ένα σημείο A που απέχει ίση απόσταση από την l αλλά βρίσκεται στην άλλη πλευρά
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται
ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ
ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΠΡΟΒΛΗΜΑΤΟΣ ΤΗΣ ΑΠΟΡΡΟΗΣ ΤΩΝ ΟΜΒΡΙΩΝ ΣΕ ΚΡΙΣΙΜΕΣ ΓΙΑ ΤΗΝ ΑΣΦΑΛΕΙΑ ΠΕΡΙΟΧΕΣ ΤΩΝ ΟΔΙΚΩΝ ΧΑΡΑΞΕΩΝ Ν. Ε. Ηλιού Αναπληρωτής Καθηγητής Τμήματος Πολιτικών Μηχανικών Πανεπιστημίου Θεσσαλίας Γ. Δ.
ΑΞΟΝΟΜΕΤΡΙΑ. Εισαγωγή
ΑΞΟΝΟΜΕΤΡΙΑ Εισαγωγή Η προβολή τρισδιάστατου αντικειμένου πάνω σε δισδιάστατη επιφάνεια αποτέλεσε μια από τις βασικές αναζητήσεις μεθόδων απεικόνισης και απασχόλησε από πολύ παλιά τους ανθρώπους. Με την
Περιεχόµενα. Περιεχόµενα... 7. Ευρετήριο Γραφηµάτων... 11. Ευρετήριο Εικόνων... 18. Κεφάλαιο 1
Περιεχόµενα Περιεχόµενα... 7 Ευρετήριο Γραφηµάτων... 11 Ευρετήριο Εικόνων... 18 Κεφάλαιο 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ... 19 Θεωρία... 19 1.1 Έννοιες και ορισµοί... 20 1.2 Μονάδες µέτρησης γωνιών και µηκών...
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ
ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Α. Υπολογισμός της θέσης του κέντρου μάζας συστημάτων που αποτελούνται από απλά διακριτά μέρη. Τα απλά διακριτά
{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1)
ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1. Γενικά Επειδή οι επιφάνειες δευτέρου βαθµού συναντώνται συχνά στη µελέτη των συναρτήσεων πολλών µεταβλητών θεωρούµε σκόπιµο να τις περιγράψουµε στην αρχή του βιβλίου
15/4/2013. Αυτό το περιβάλλον είναι. Ο χάρτης
Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα με γεωγραφική ταυτότητα. Θα πρέπει συνεπώς να λειτουργούν
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Εισαγωγικές Ένvοιες ΙI Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Σημειώσεις Μαθηματικών 1
Σημειώσεις Μαθηματικών 1 Αναλυτική Γεωμετρία Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Αναλυτική Γεωμετρία 4.1 Εξίσωση Καμπύλης Έστω C μια καμπύλη στο R. H C αποτελείται από άπειρα σημεία Μ(x,y). Έξίσωση μιας
Μαθηματικός Ορισμός Τρισδιάστατου Χώρου
Μαθηματικός Ορισμός Τρισδιάστατου Χώρου (R 3 ), κατ επέκτασιν του διδιάστατου Ο R 3 είναι ένα σύνολο σημείων με συντεταγμένες (x,y,z) Τα x, y και z έχουν τις εξής ιδιότητες: Το καθένα από αυτά διατρέχει
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΕΙΣΑΓΩΓΗ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Αναπληρωτής Καθηγητής Πανεπιστημίου Δυτικής Αττικής 3ο εξάμηνο ΝΕΟ eclass http://eclass.uniwa.gr Παρουσιάσεις,
Π. ΣΑΒΒΑΪΔΗΣ, ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝΩ Α.Π.Θ
Π. ΣΑΒΒΑΪΔΗΣ, ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑΤΟΣ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝΩ Α.Π.Θ Ο χάρτης ως υπόβαθρο των ΓΣΠ Tα ΓΣΠ βασίζονται στη διαχείριση πληροφοριών που έχουν άμεση σχέση με το γεωγραφικό χώρο, περιέχουν δηλαδή δεδομένα
πάχος 0 πλάτος 2a μήκος
B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ
9/3/2014. Εισαγωγή ορισμοί. Χαρτογραφία. Αυτό οφείλεται πρώτα στη σημαντική συνεισφορά στις διαδικασίες της κατασκευής χαρτών πολλών επιστημών
Εισαγωγή ορισμοί Χαρτογραφία Αυτό οφείλεται πρώτα στη σημαντική συνεισφορά στις διαδικασίες της κατασκευής χαρτών πολλών επιστημών Διάλεξη 4 ΧΑΡΤΕΣ -DATUMs καθώς επίσης και στην χρησιμοποίηση αυτών από
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών.
14 η εβδομάδα (26/01/2017) Έγιναν οι ασκήσεις 28, 29 και 30. Έγινε επανάληψη στη Θεωρία Καμπυλών και στη Θεωρία Επιφανειών. 13 η εβδομάδα (16/01/2017 & 19/01/2017) Ασυμπτωτική διεύθυνση και ασυμπτωτικό
5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
SECTIN 1 5 ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ 5.1 Σε δύο ιαστάσεις Συστήµατα συντεταγµένων Για να καθοριστεί η θέση, το σχήµα και η κίνηση των σωµάτων στο χώρο (που θεωρείται Ευκλείδειος, δηλαδή µε θετική απόσταση µεταξύ
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα
Πανεπιστηµιο Ιωαννινων σχολη θετικων επιστηµων τµηµα µαθηµατικων τοµεας αλγεβρας και γεωµετριας αναλυτικη γεωµετρια διδασκων : χρηστος κ. τατακης υποδειξεις λυσεων των θεµατων της 7.06.016 ΘΕΜΑ 1. µονάδες
Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος
Παραδείγματα τριπλών oλοκληρωμάτων Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Να υπολογισθεί το ολοκλήρωμα I = x e + z dv όπου = [, ] [,] [,] Η ολοκλήρωση, όπως φαίνεται από τα άκρα ολοκλήρωσης, γίνεται πάνω
Μέθοδοι Μεηαζτημαηιζμού ηοσ Ελλειυοειδούς εκ Περιζηροθής ζε Σθαιρική Επιθάνεια
Μέθοδοι Μεηαζτημαηιζμού ηοσ Ελλειυοειδούς εκ Περιζηροθής ζε Σθαιρική Επιθάνεια Αθανάζιος Ηλ. Παλληκάρης Methods of Transforming the Ellipsoid of Revolution onto the Surface of a Sphere thanasios Pallikaris
Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας
Σχολή Ναυτικών Δοκίμων
Σχολή Ναυτικών Δοκίμων Μάθημα: ΣΤΟΙΧΕΙΑ ΜΑΥΤΙΛΙΑΣ Α ΜΗΧ Θεματική Ενότητα: ΕΙΔΗ ΠΛΟΥ. ΟΡΘΟΔΡΟΜΙΑ, ΛΟΞΟΔΡΟΜΙΑ Καθηγητής Δρ. Α. Παλληκάρης Απρίλιος 2016 ΠΑΡΑΔΟΣΙΑΚΗ ΝΑΥΣΙΠΛΟΪΑ ΜΕ ΧΡΗΣΗ ΕΝΤΥΠΩΝ ΝΑΥΤΙΚΩΝ ΧΑΡΤΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ
ΑΠΟΤΥΠΩΣΕΙΣ - ΧΑΡΑΞΕΙΣ ΠΡΟΣΔΙΟΡΙΣΜΟΙ ΕΜΒΑΔΩΝ ΚΑΙ ΟΓΚΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr Αποτυπώσεις - Χαράξεις Παρουσιάσεις, Ασκήσεις,
ΔΙΑΣΤΑΣΕΙΣ. Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων
ΔΙΑΣΤΑΣΕΙΣ Διαστάσεις σε κύκλους, τόξα, γωνίες κώνους Μέθοδοι τοποθέτησης διαστάσεων Η Σωστή τοποθετηση Διαστασεων στο Μηχανολογικο Σχεδιο ειναι απαραιτητη για τη Σωστή Κατασκευή Εχετε κατι να παρατηρησετε;
Ο χώρος. 1.Μονοδιάστατη κίνηση
Ο χώρος Τα χελιδόνια έρχονται και ξανάρχονται. Κάθε χρόνο βρίσκουν μια γωνιά για να χτίσουν τη φωλιά, που θα γίνει το επίκεντρο του χώρου τους. Ο χώρος είναι ένας οργανικός χώρος, όπως εκείνος που αφορά
Ανθή Μαρία Κουρνιάτη. Νίκος Κουρνιάτης
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αρχιτεκτόνων Μηχανικών Τομέας III : Αρχιτεκτονικής Γλώσσας, Επικοινωνίας & Σχεδιασμού ntua ACADEMIC OPEN COURSES Ανθή Μαρία Κουρνιάτη Επίκουρη Καθηγήτρια, Σχολή Αρχιτεκτόνων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 015 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defined. Σκοποί Μαθήματος (Επικεφαλίδα
14 Μαρτίου 2015, Τρίκαλα Ποιές ιδιότητες του σχήματος διατηρούνται; Ποιές ιδιότητες του σχήματος διατηρούνται; Τα σημεία της περιφέρειας ισαπέχουν από το κέντρο; Ποιές ιδιότητες του σχήματος διατηρούνται;
ΑΣΚΗΣΕΙΣ. 4. Να βρεθεί η κάθετη καμπυλότητα του υπερβολικού παραβολειδούς. 5. Να βρεθεί η κάθετη καμπυλότητα της ελικοειδούς επιφάνειας.
ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ Α.Π.Θ. ΜΑΘΗΜΑ: ΚΛΑΣΙΚΗ ΔΙΑΦΟΡΙΚΗ ΓΕΩΜΕΤΡΙΑ ΙΙ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2018 19 Kαθηγητής Στυλιανός Σταματάκης URL: http://stamata.webpages.auth.gr/geometry/ ΑΣΚΗΣΕΙΣ 1. Να εξεταστεί πώς αλλάζει
Λύσεις στο επαναληπτικό διαγώνισμα 3
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή
ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ
Ενότητα 17 ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ ΕΦΑΡΜΟΓΕΣ Ασκήσεις για λύση 1. Σε ένα ορθογώνιο ΑΒΓΔ η πλευρά ΑΒ αυξάνεται με ρυθμό cm / s, ενώ η πλευρά ΒΓ ελαττώνεται με ρυθμό 3 cm / s. Να βρεθούν: i) ο ρυθμός μεταβολής
ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - ΣΥΝΟΨΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΡΟΜΠΟΤΙΚΗ - Π. ΑΣΒΕΣΤΑΣ E MAIL: pasv@uniwa.gr Εφαρμογές ρομποτικής στην Ιατρική Κλασσική χειρουργική Ορθοπεδικές επεμβάσεις Νευροχειρουργική Ακτινοθεραπεία Αποκατάσταση φυσιοθεραπεία 2 Βασικοί
ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση
ΓΕΩΔΑΙΣΙΑ 4η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΜΑΘΗΜΑΤΟΣ 1. Ορισμός
Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Ηλεκτρικό πεδίο νόμος Gauss Νίκος Ν. Αρπατζάνης Νόμος Gauss Ο νόµος του Gauss εκφράζει τη σχέση μεταξύ της συνολικής ηλεκτρικής ροής που διέρχεται από μια κλειστή επιφάνεια και του φορτίου
9. Τοπογραφική σχεδίαση
9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής
ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ. Διδακτικές σημειώσεις. Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ, MSc Γεωπληροφορική ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΤΟΠΟΓΡΑΦΙΑ ΙΙΙ Διδακτικές σημειώσεις Δρ. Συμεών Κατσουγιαννόπουλος Διπλ. ΑΤΜ MSc Γεωπληροφορική
Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός
Σχεδιασμός Υλοποίηση: Αλκιβιάδης Γ. Τζελέπης, M.Sc Mathematics, Model High School Evangeliki of Smirni. Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός Το Πρόβλημα Να αποδειχθεί ο νόμος της ανάκλασης: Μία φωτεινή
Tοπογραφικά Σύμβολα. Περιγραφή Χάρτη. Συνήθως στους χάρτες υπάρχει υπόμνημα με τα σύμβολα που χρησιμοποιούνται. Τα πιο συνηθισμένα είναι τα εξής:
Tοπογραφικά Σύμβολα Συνήθως στους χάρτες υπάρχει υπόμνημα με τα σύμβολα που χρησιμοποιούνται. Τα πιο συνηθισμένα είναι τα εξής: Κεντρική Αρτηρία Ρέμα Δευτερεύουσα Αρτηρία Πηγάδι Χωματόδρομος Πηγή Μονοπάτι
ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ
ΚΑΡΤΕΣΙΑΝΟ ΣΥΣΤΗΜΑ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ Δυο κάθετοι μεταξύ τους προσανατολισμένοι και βαθμονομημένοι άξονες A Α Έστω σημείο Α στο επίπεδο Η θέση του προσδιορίζεται από τις προβολές στους άξονες A, A 0 A Η
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΗΛΕΚΤΡΟΟΠΤΙΚΗΣ ΚΑΙ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΛΙΚΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 - ΖΩΓΡΑΦΟΥ, 157 73 ΑΘΗΝΑ
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
( ) Κλίση και επιφάνειες στάθµης µιας συνάρτησης. x + y + z = κ ορίζει την επιφάνεια µιας σφαίρας κέντρου ( ) κ > τότε η
Έστω Κλίση και επιφάνειες στάθµης µιας συνάρτησης ανοικτό και σταθερά ( µε κ f ( ) ορίζει µια επιφάνεια S στον f : ) τότε η εξίσωση, ονοµάζεται συνήθως επιφάνεια στάθµης της f. εξίσωση, C συνάρτηση. Αν
Στην στερεογραφική προβολή δεν μπορούν να μετρηθούν αποστάσεις αλλά μόνο γωνιώδεις σχέσεις.
ΔΙΚΤΥΑ SCHMIDT Στερεογραφική προβολή Η στερεογραφική προβολή είναι μια μέθοδος που προσφέρει το πλεονέκτημα της ταχύτατης λύσης προβλημάτων που λύνονται πολύπλοκα με άλλες μεθόδους. Με την στερεογραφική
ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ. n S f x, y,z ΔV (1) n i i i i i 1
ΚΕΦΑΛΑΙΟ 5 ο ΤΡΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Τα τριπλά ολοκληρώματα ορίζονται με τρόπο ανάλογο με τα διπλά ολοκληρώματα. Ισχύουν ανάλογα θεωρήματα ολοκληρωσιμότητας και ανάλογες ιδιότητες. Θεωρούμε μια συνάρτηση f,,
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή. Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση
Μηχανολογικό Σχέδιο με τη Βοήθεια Υπολογιστή Γεωμετρικός Πυρήνας Παραμετρική Σχεδίαση Παραμετρική σχεδίαση Παραμετρικό αντικείμενο (2D σχήμα/3d στερεό) ονομάζουμε το αντικείμενο του οποίου η (γεωμετρική)