ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ.
|
|
- Τώβιας Αναγνωστάκης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Γιάννης Λιαπέρδος
2 2 ΑΝΤΙΚΕΙΜΕΝΟ ΤΗΣ ΔΙΑΛΕΞΗΣ Άλγεβρα Διακοπτών Κυκλωματική Υλοποίηση Λογικών Πυλών με Ηλεκτρονικά Ελεγχόμενους Διακόπτες Υλοποίηση λογικών συναρτήσεων σε τεχνολογία CMOS Άλλες Λογικές «Οικογένειες»
3 3 ΒΙΒΛΙΟΓΡΑΦΙΑ sites.google.com/site/electronicsteipel (Εκπαιδευτικό Υλικό>Ψηφιακά Ηλεκτρονικά>Θεωρία> >Συμπληρωματικές Σημειώσεις>Σχεδίαση Λογικών Κυκλωμάτων) «Ηλεκτρονική για την Πληροφορική και τις Τηλεπικοινωνίες», κεφ. 3, παρ. 3.3 και 3.4 (sites.google.com/site/electronicsteipel Εκπαιδευτικό Υλικό>Αναλογικά Ηλεκτρονικά>Θεωρία>Σημειώσεις)
4 4 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Λογικές καταστάσεις ενός διακόπτη 0 1
5 5 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Υλοποίηση της λογικής πράξης AND με διακόπτες A B A B A Β Α Β
6 6 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Υλοποίηση της λογικής πράξης AND με διακόπτες Α Β
7 7 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Υλοποίηση της λογικής πράξης AND με διακόπτες
8 8 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Υλοποίηση της λογικής πράξης OR με διακόπτες A B A+B A Β Α+Β
9 9 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Υλοποίηση της λογικής πράξης OR με διακόπτες A B
10 10 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Υλοποίηση της λογικής πράξης OR με διακόπτες
11 11 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Απόδειξη ταυτοτήτων της άλγεβρας Boole με τη βοήθεια της άλγεβρας διακοπτών A A+A=? A = 0 = 1 A A+A=A
12 12 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Απόδειξη ταυτοτήτων της άλγεβρας Boole με τη βοήθεια της άλγεβρας διακοπτών A A+0=? 0 = 0 = 1 A A+0=A
13 13 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Απόδειξη ταυτοτήτων της άλγεβρας Boole με τη βοήθεια της άλγεβρας διακοπτών A A+1=? 1 = 0 = 1 1 A+1=1
14 14 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Απόδειξη ταυτοτήτων της άλγεβρας Boole με τη βοήθεια της άλγεβρας διακοπτών A A+Α=? A A A = 0 = 1 1 A+Α=1
15 15 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Απόδειξη ταυτοτήτων της άλγεβρας Boole με τη βοήθεια της άλγεβρας διακοπτών A Α=? A Ā A Ā = 0 = 1 0 A Α=0
16 16 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ ΣΥΜΠΕΡΑΣΜΑ Οι κανόνες της Άλγεβρας Διακοπτών ταυτίζονται με τους κανόνες της Άλγεβρας Boole, επομένως, μπορούμε να υλοποιούμε σύνθετες συναρτήσεις της Άλγεβρας Boole με διακόπτες
17 17 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Παράδειγμα: Δίνεται το κύκλωμα του πιο κάτω σχήματος (έχει, άραγε, κάποια χρησιμότητα;). Να υλοποιηθεί με (μηχανικούς) διακόπτες.
18 18 ΑΛΓΕΒΡΑ ΔΙΑΚΟΠΤΩΝ Απάντηση: A Β Β C C A Τι συμβαίνει όταν A=B=C=0?
19 19 Ηλεκτρονόμος (Relay)
20 20 Λειτουργία Ηλεκτρονόμου ΙΝ Control OUT
21 21 Λειτουργία Ηλεκτρονόμου ΙΝ Control OUT
22 22 Λειτουργία Ηλεκτρονόμου Control ΙΝ OUT
23 23 Προβλήματα Υλοποίησης Λογικών Κυκλωμάτων με Ηλεκτρομηχανικούς Διακόπτες Όγκος ENIAC λυχνίες κενού 7200 κρυσταλλοδίοδοι 1500 ηλεκτρονόμοι αντιστάτες πυκνωτές συγκολλήσεις 30 τόνοι
24 24 Προβλήματα Υλοποίησης Λογικών Κυκλωμάτων με Ηλεκτρομηχανικούς Διακόπτες Κατανάλωση ηλεκτρικής ισχύος ENIAC kw * * Λέγεται πως όταν λειτουργούσε ο ENIAC τα φώτα στην πόλη της Φιλαδέλφειας φωτοβολούσαν πιο αμυδρά!
25 25 Προβλήματα Υλοποίησης Λογικών Κυκλωμάτων με Ηλεκτρομηχανικούς Διακόπτες Μειωμένη Αξιοπιστία ENIAC 1946 (βλάβες, bugs!)
26 26 Ηλεκτρονικές Λυχνίες Κενού γυάλινο περίβλημα άνοδος πλέγμα κάθοδος θερμαντήρας
27 27 Τρανζίστορ B C E G D S
28 28 Γενική Μορφή Ιδανικού Ηλεκτρονικά Ελεγχόμενου Διακόπτη C IN OUT
29 29 Τύποι Ιδανικών Ηλεκτρονικά Ελεγχόμενων Διακοπτών Ø 1 IN n OUT IN n OU Ø 1 n OUT IN n OUT
30 30 Τύποι Ιδανικών Ηλεκτρονικά Ελεγχόμενων Διακοπτών Ø 1 IN p OUT IN p O Ø 1 p OUT IN p OUT
31 31 Ποια η λειτουργία του πιο κάτω κυκλώματος; +5V +5V Ø V in n 1 n V out = 0V = Ø Ποιος ο ρόλος του αντιστάτη; 0V 0V
32 32 Πύλη «Ταυτότητας» (Α=Α) +5V +5V Ø n 1 n V out = 0V = Ø V out = 5V = 1 0V 0V
33 33 Ποια η λειτουργία του πιο κάτω κυκλώματος; +5V +5V V out = 5V = 1 Ø n 1 n V in 0V 0V
34 34 +5V Πύλη «Αναστροφής» (Α ΝΟΤ) +5V V out = 5V = 1 V out = 0V = Ø Ø n 1 n 0V 0V
35 35 +5V Α n Πύλη AND Β n V out = Α Β 0V
36 36 +5V V out = Α+Β AB Πύλη NAND Α p n Β n p 0V
37 37 +5V Πύλη OR Α n n Β V out = Α+Β 0V
38 38 +5V Πύλη NOR V out = Α Β A+B Α n p n p Β 0V
39 39 Παρόμοια, για διακόπτες τύπου p
40 40 +5V Πύλη «Ταυτότητας» (Α=Α) V out = 5V = 1 +5V Προσέξτε πως οι διακόπτες τύπου p συνδέονται πλησιέστερα στο λογικό 0 (γη). Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; V out = 0V = Ø 1 p Ø p 0V 0V
41 41 +5V Πύλη «Αναστροφής» (Α ΝΟΤ) +5V Προσέξτε πως οι διακόπτες τύπου p συνδέονται πλησιέστερα στο λογικό 1 (+5V). 1 p Ø p Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; V out = 0V = Ø V out = 5V = 1 0V 0V
42 42 Προσέξτε πως οι διακόπτες τύπου p συνδέονται πλησιέστερα στο λογικό 0 (γη). +5V Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; Πύλη AND V out = Α Β Α p p Β Προσέξτε πως οι διακόπτες τύπου p συνδέονται παράλληλα. Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; 0V
43 43 Προσέξτε πως οι διακόπτες τύπου p συνδέονται πλησιέστερα στο λογικό 1 (+5V). +5V Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; Πύλη NAND Α p n p n Β Προσέξτε πως οι διακόπτες τύπου p συνδέονται παράλληλα. V out = Α+Β AB Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; 0V
44 44 Προσέξτε πως οι διακόπτες τύπου p συνδέονται πλησιέστερα στο λογικό 0 (γη). +5V Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; V out = Α+Β Πύλη OR Α p Προσέξτε πως οι διακόπτες τύπου p συνδέονται σε σειρά. Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; Β p 0V
45 45 Προσέξτε πως οι διακόπτες τύπου p συνδέονται πλησιέστερα στο λογικό 0 (γη). Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; Α +5V p n Πύλη NOR Β p n Προσέξτε πως οι διακόπτες τύπου p συνδέονται σε σειρά. V out = Α Β A+B Θυμάστε τι συνέβαινε στην περίπτωση διακοπτών τύπου n; 0V
46 46 Συνοψίζοντας: n p AND πάνω σειρά κάτω παράλληλα OR πάνω παράλληλα κάτω σειρά NAND κάτω σειρά πάνω παράλληλα NOR κάτω παράλληλα πάνω σειρά
47 47 ή αλλιώς: Διατηρώντας τον ίδιο τύπο διακοπτών: κάτω πάνω σε σειρά παράλληλα Μεταβάλλοντας τον τύπο των διακοπτών: + p n KAI +
48 48 Λογικές Πύλες με Συμπληρωματικούς Διακόπτες Συνδυάζουν διακόπτες τύπου n και τύπου p, όπως θα δούμε στη συνέχεια
49 49 A Πύλη «Ταυτότητας» (Α=Α) +5V n A Ποια πλεονεκτήματα θα μπορούσε να διαθέτει ένα συμπληρωματικό κύκλωμα, και ποια μειονεκτήματα; Λάβετε υπόψη σας τους εξής παράγοντες: «Όγκος» Είδη «εξαρτημάτων» Κατανάλωση ισχύος p 0V
50 50 Πύλη «Αναστροφής» (Α ΝΟΤ) +5V p A A n 0V
51 51 +5V Α n Πύλη AND Β n V out = Α Β Α p p Β 0V
52 52 +5V Α p p Β Πύλη NAND V out = Α Β Α n Β n 0V
53 53 +5V Α n n Β Πύλη OR V out = Α+Β Α p Β p 0V
54 54 +5V Α p Πύλη NOR Β p V out = Α+Β Α n n Β 0V
55 55 Εκτός από απλές λογικές πύλες, μπορούμε με παρόμοιο τρόπο να υλοποιούμε σύνθετες λογικές συναρτήσεις. Παράδειγμα 1: Δίνεται η λογική συνάρτηση F=AB+C. Να υλοποιηθεί με διακόπτες τύπου n.
56 56 To ζητούμενο κύκλωμα: +5V Α n n C Β n V out = Α Β+C 0V
57 57 Παράδειγμα 2: Δίνεται η λογική συνάρτηση F=AB+C. Να υλοποιηθεί με διακόπτες τύπου p.
58 58 To ζητούμενο κύκλωμα: +5V V out = Α Β+C Α p p Β C p 0V
59 59 Παράδειγμα 3: Δίνεται η λογική συνάρτηση F=AB+C. Να υλοποιηθεί με συμπληρωματικούς διακόπτες (τύπου p και τύπου n).
60 60 To ζητούμενο κύκλωμα: +5V Α n n C Β n V out = Α Β+C Α p p Β C p 0V
61 61 Παράδειγμα 4: Δίνεται η λογική συνάρτηση F=AB+C. Να υλοποιηθεί με συμπληρωματικούς διακόπτες (τύπου p και τύπου n).
62 62 To ζητούμενο κύκλωμα: +5V C p Α p p Β V out = Α Β+C Α n n C Β n 0V
63 63 Μη ιδανικοί ηλεκτρονικά ελεγχόμενοι διακόπτες το τρανζίστορ MOSFET MOSFET τύπου n (nmos) IN Ø Control 1 G D IN n OUT IN IN Control Ø n S OUT OUT IN 1 Control n OUT
64 64 Μη ιδανικοί ηλεκτρονικά ελεγχόμενοι διακόπτες το τρανζίστορ MOSFET MOSFET τύπου p (pmos) G IN D IN Ø Control p OUT IN 1 IN Control Ø p S OUT OUT IN 1 Control p OUT
65 65 Σύμβολα: Μη ιδανικοί ηλεκτρονικά ελεγχόμενοι διακόπτες το τρανζίστορ MOSFET n p
66 66 Tο τρανζίστορ nmos ως διακόπτης V DD V DD D G S I C V C V DD -V T (i) 0 t V DD G V C 0V S D I C V DD 0 t (ii)
67 67 Tο τρανζίστορ pmos ως διακόπτης 0V V DD S G D I C V C V DD (i) 0V G 0 V C t 0V D S I C V DD V T 0 t (ii)
68 68 Tα τρανζίστορ MOS ως διακόπτες ΣΥΜΠΕΡΑΣΜΑΤΑ Τα nmos μεταβιβάζουν καλά το λογικό 0, άρα θα πρέπει να τοποθετούνται πλησιέστερα στη γη (0V) όταν χρησιμοποιούνται για την υλοποίηση λογικών κυκλωμάτων Τα pmos μεταβιβάζουν καλά το λογικό 1, άρα θα πρέπει να τοποθετούνται πλησιέστερα στη θετική τάση τροφοδοσίας (Vdd) όταν χρησιμοποιούνται για την υλοποίηση λογικών κυκλωμάτων Τα λογικά κυκλώματα που υλοποιούνται με βάση τους πιο πάνω κανόνες αντιστοιχούν σε συμπληρώματα λογικών συναρτήσεων (NAND, NOR, ή γενικότερα F)
69 69 ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΤΕΧΝΟΛΟΓΙΑ CMOS Η λογική οικογένεια CMOS Αναστροφέας (πύλη NOT) G V DD S D A G D S Ā Πώς θα υλοποιούσατε μια «ταυτοτική» πύλη σε τεχνολογία CMOS; V SS
70 70 ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΤΕΧΝΟΛΟΓΙΑ CMOS Η λογική οικογένεια CMOS V DD πύλη NAND A B A AB B Πώς θα υλοποιούσατε μια πύλη AND σε τεχνολογία CMOS; V SS
71 71 ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΤΕΧΝΟΛΟΓΙΑ CMOS Η λογική οικογένεια CMOS V DD πύλη NOR A B A+B A B Πώς θα υλοποιούσατε μια πύλη OR σε τεχνολογία CMOS; V SS
72 72 ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΤΕΧΝΟΛΟΓΙΑ CMOS Υλοποίηση σύνθετων λογικών συναρτήσεων σε τεχνολογία CMOS V DD Παράδειγμα 1: Κάποιος ισχυρίζεται πως έχει υλοποιήσει τη συνάρτηση F=AB+C σε τεχνολογία CMOS όπως φαίνεται στο κύκλωμα του σχήματος. Σχολιάστε. A B C F=AB+C A B C V SS
73 73 ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΤΕΧΝΟΛΟΓΙΑ CMOS Υλοποίηση σύνθετων λογικών συναρτήσεων σε τεχνολογία CMOS V DD Παράδειγμα 2: Κάποιος ισχυρίζεται πως έχει υλοποιήσει τη συνάρτηση F=AB+C σε τεχνολογία CMOS όπως φαίνεται στο κύκλωμα του σχήματος. Σχολιάστε. Ā B C F=AB+C A B C V SS
74 74 ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΕ ΤΕΧΝΟΛΟΓΙΑ CMOS Υλοποίηση σύνθετων λογικών συναρτήσεων σε τεχνολογία CMOS V DD Παράδειγμα 3: A B Κάποιος ισχυρίζεται πως έχει υλοποιήσει τη συνάρτηση F=AB+C σε τεχνολογία CMOS όπως φαίνεται στο κύκλωμα του σχήματος. Σχολιάστε. A C F=(A+B) C F=AB+C C B V SS
75 75 Η ΛΟΓΙΚΗ ΟΙΚΟΓΕΝΕΙΑ DDL (Diode Diode Logic) Ποια λογική πύλη υλοποιεί το κύκλωμα του σχήματος; δ 1 A D 1 R Y δ 2 B D V 1
76 76 Η ΛΟΓΙΚΗ ΟΙΚΟΓΕΝΕΙΑ DDL (Diode Diode Logic) Υποβιβασμός της λογικής στάθμης 1 σε σειρά πυλών OR της οικογένειας DDL V 1 V T 1 0 V 1 V 1 -V T V T 1 0 V 1 V 1-2V T V T 1 0 V 1 V 1-3V T V T 1 0 V 1 V T?? V n
77 77 Η ΛΟΓΙΚΗ ΟΙΚΟΓΕΝΕΙΑ DDL (Diode Diode Logic) Ποια λογική πύλη υλοποιεί το κύκλωμα του σχήματος; δ 1 A D 1 R Y δ 2 B D V 1 Το κύκλωμα υποφέρει από αναβιβασμό της στάθμης του λογικού μηδενός ίση με την πτώση τάσης στα άκρα των διόδων
78 78 Η ΛΟΓΙΚΗ ΟΙΚΟΓΕΝΕΙΑ RTL (Resistor Transistor Logic) Ποια λογική πύλη υλοποιεί το κύκλωμα του σχήματος; V+ R C IN R A B C E OUT
79 79 Η ΛΟΓΙΚΗ ΟΙΚΟΓΕΝΕΙΑ RTL (Resistor Transistor Logic) Ποια λογική πύλη υλοποιεί το κύκλωμα του σχήματος; V+ R C A B R A R B B C E Y
80 80 Η ΛΟΓΙΚΗ ΟΙΚΟΓΕΝΕΙΑ nmos Ποια λογική πύλη υλοποιεί το κύκλωμα του σχήματος; V DD R IN G D S OUT
81 81 Ευχαριστώ για την προσοχή σας!
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία
K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα
K15 Ψηφιακή Λογική Σχεδίαση 6: Λογικές πύλες και λογικά κυκλώματα Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Λογικές πύλες Περιεχόμενα 1 Λογικές πύλες
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους
Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ Κριτική Ανάγνωση: Αγγελική Αραπογιάννη Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους Copyright ΣΕΑΒ, 215 Το παρόν έργο αδειοδοτείται υπό τους
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Εισαγωγή
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Εργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε αναστροφείς CMOS VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
i Το τρανζίστορ αυτό είναι τύπου NMOS. Υπάρχει και το συμπληρωματικό PMOS. ; Τι συμβαίνει στο τρανζίστορ PMOS; Το τρανζίστορ MOS(FET)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 25-6 Το τρανζίστορ MOS(FET) πύλη (gate) Ψηφιακή και Σχεδίαση πηγή (source) καταβόθρα (drai) (σχεδίαση συνδυαστικών κυκλωμάτων) http://di.ioio.gr/~mistral/tp/comparch/
«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 2 η :
Κεφάλαιο 3. Λογικές Πύλες
Κεφάλαιο 3 Λογικές Πύλες 3.1 Βασικές λογικές πύλες Τα ηλεκτρονικά κυκλώματα που εκτελούν τις βασικές πράξεις της Άλγεβρας Boole καλούνται λογικές πύλες.κάθε τέτοια πύλη δέχεται στην είσοδό της σήματα με
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS
Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Α. Αναστροφέας MOSFET. Α.1 Αναστροφέας MOSFET µε φορτίο προσαύξησης. Ο αναστροφέας MOSFET (πύλη NOT) αποτελείται από
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Περιεχόμενα Βασικά ηλεκτρικά χαρακτηριστικά
Ψηφιακή Λογική και Σχεδίαση
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 26-7 Ψηφιακή Λογική και Σχεδίαση (σχεδίαση συνδυαστικών κυκλωμάτων) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης Το τρανζίστορ
Πολυσύνθετες πύλες. Διάλεξη 11
Πολυσύνθετες πύλες NMOS και CMOS Διάλεξη 11 Δομή της διάλεξης Εισαγωγή ΗσύνθετηλογικήNMOS ΗσύνθετηλογικήCMOS Η πύλη μετάδοσης CMOS Ασκήσεις 2 Πολυσύνθετες πύλες NMOS και CMOS Εισαγωγή 3 Εισαγωγή Στη λογική
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Δίοδοι, BJT και MOSFET ως Διακόπτες 2
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Δίοδοι, BJT και MOSFET ως Διακόπτες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ιδανικός διακόπτης ΙΔΑΝΙΚΟΣ ΔΙΑΚΟΠΤΗΣ ΠΡΑΓΜΑΤΙΚΟΣ ΔΙΑΚΟΠΤΗΣ
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων
Πρόγραμμα Επικαιροποίησης Γνώσεων Αποφοίτων ΕΝΟΤΗΤΑ Μ ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Εκπαιδευτής: Γ. Π. ΠΑΤΣΗΣ, Επικ. Καθηγητής, Τμήμα Ηλεκτρονικών Μηχανικών, ΤΕΙ Αθήνας ΒΑΣΙΚΕΣ ΠΥΛΕΣ ΨΗΦΙΑΚΗΣ ΛΟΓΙΚΗΣ. Τι σημαίνει
Εισαγωγή στα κυκλώµατα CMOS 2
1 η Θεµατική Ενότητα : Εισαγωγή στα κυκλώµατα CMOS Επιµέλεια διαφανειών:. Μπακάλης Εισαγωγή Τεχνολογία CMOS = Complementary Metal Oxide Semiconductor Συµπληρωµατικού Ηµιαγωγού Μετάλλου Οξειδίου Αποτελείται
Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Εκτέλεση πράξεων
K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων
K24 Ψηφιακά Ηλεκτρονικά 4: Σχεδίαση Συνδυαστικών Κυκλωμάτων TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 4 Ένα ψηφιακό κύκλωμα με n εισόδους
Κεφάλαιο Τρία: Ψηφιακά Ηλεκτρονικά
Κεφάλαιο Τρία: 3.1 Τι είναι αναλογικό και τι ψηφιακό µέγεθος Αναλογικό ονοµάζεται το µέγεθος που µπορεί να πάρει οποιαδήποτε τιµή σε µια συγκεκριµένη περιοχή τιµών π.χ. η ταχύτητα ενός αυτοκινήτου. Ψηφιακό
Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.
Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. 1 Οι λογικές πύλες (ή απλά πύλες) είναι οι θεμελιώδεις δομικές μονάδες των ψηφιακών κυκλωμάτων. Όπως φαίνεται και από την ονομασία
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο Κυκλώματα CMOS. Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005 Κυκλώματα CMOS Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κυκλώματα CMOS Περίληψη Τρανζίστορ και μοντέλα διακόπτη ίκτυα CMOS
Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική
Υλοποίηση λογικών πυλών µε τρανζίστορ MOS Εισαγωγή στην Ηλεκτρονική Λογική MOS Η αναπαράσταση των λογικών µεταβλητών 0 και 1 στα ψηφιακά κυκλώµατα γίνεται µέσω κατάλληλων επιπέδων τάσης, όπου κατά σύµβαση
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Κ. Δεμέστιχας Εργαστήριο Πληροφορικής Γεωπονικό Πανεπιστήμιο Αθηνών Επικοινωνία μέσω e-mail: cdemest@aua.gr, cdemest@cn.ntua.gr 1 4. ΑΛΓΕΒΡΑ BOOLE ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΜΕΡΟΣ Α 2 Άλγεβρα
Βασικές CMOS Λογικές οικογένειες (CMOS και Domino)
Βασικές CMOS Λογικές οικογένειες (CMOS και Domino) CMOS Κάθε λογική πύλη αποτελείται από δύο τμήματα p-mos δικτύωμα, τοποθετείται μεταξύ τροφοδοσίας και εξόδου. Όταν είναι ενεργό φορτίζει την έξοδο στην
Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2
Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs Διάλεξη 2 Δομή της διάλεξης Επανάληψη άλγεβρας Boole Λογική με διόδους Λογική Αντιστάσεων-Τρανζίστορ (Resistor-Transistor Logic ή RTL) Λογική Διόδων-Τρανζίστορ
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ. Κεφάλαιο 3
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΨΗΦΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Κεφάλαιο 3 Δυαδική λογική Με τον όρο λογική πρόταση ή απλά πρόταση καλούμε κάθε φράση η οποία μπορεί να χαρακτηριστεί αληθής ή ψευδής με βάση το νόημα της. π.χ. Σήμερα
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 5: Το CMOS transistor και κυκλώµατα CMOS ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Κυκλώµατα
Εργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε λογικά δίκτυα πολλών σταδίων
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 8: Διπολικά Τρανζίστορ
Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 8: Διπολικά Τρανζίστορ Γιάννης Λιαπέρδος TI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ιστορικά Στοιχεία Περιεχόμενα 1 Ιστορικά
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών) Διεργασίες Μικροηλεκτρονικής Τεχνολογίας, Οξείδωση, Διάχυση, Φωτολιθογραφία, Επιμετάλλωση, Εμφύτευση, Περιγραφή CMOS
Ψηφιακά Κυκλώματα (1 ο μέρος) ΜΥΥ-106 Εισαγωγή στους Η/Υ και στην Πληροφορική
Ψηφιακά Κυκλώματα ( ο μέρος) ΜΥΥ-6 Εισαγωγή στους Η/Υ και στην Πληροφορική Ψηφιακά κυκλώματα Οι δύο λογικές τιμές, αντιστοιχούν σε ηλεκτρικές τάσεις Υλοποιούνται με τρανζίστορ ή διόδους: ελεγχόμενοι διακόπτες
Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Κεφάλαιο 1 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Κυκλώματα 2
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων MOS Ψηφιακά Κυκλώματα Κεφάλαιο 1 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Άλγεβρα oole Χάρτης Karnaugh 2. MOS τρανζίστορ 3.
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1
Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μικροηλεκτρονική - VLSI
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 6.1: Συνδυαστική Λογική - Βασικές Πύλες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών) Τα μοντέρνα ψηφιακά κυκλώματα (λογικές πύλες, μνήμες, επεξεργαστές και άλλα σύνθετα κυκλώματα) υλοποιούνται σήμερα
4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα
ΚΕΦΑΛΑΙΟ 4 ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ 4.1 Εισαγωγή Για την υλοποίηση των λογικών πυλών χρησιμοποιήθηκαν αρχικά ηλεκτρονικές λυχνίες κενού και στη συνέχεια κρυσταλλοδίοδοι και διπολικά τρανζίστορ. Τα ολοκληρωμένα
Εργαστήριο Εισαγωγής στη Σχεδίαση Συστημάτων VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Εισαγωγή στην Αρχιτεκτονική Η/Υ
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2014-15 Εισαγωγή στην Αρχιτεκτονική (θεμελιώδεις αρχές λειτουργίας των υπολογιστών) http://di.ionio.gr/~mistral/tp/comparch/ Μ.Στεφανιδάκης
Εισαγωγή στις κρυσταλλολυχνίες (Transistors)
Εισαγωγή στις κρυσταλλολυχνίες (Transistors) Dr. Petros Panayi Διακόπτες Ένας διακόπτης είναι μια συσκευή που αλλάζει τη ροή ενός κυκλώματος. Το πρότυπο είναι μια μηχανική συσκευή (παραδείγματος χάριν
Το μάθημα συνοπτικά (1) Το μάθημα συνοπτικά (2) Τι είναι ένα υπολογιστικό σύστημα ;
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2016-17 Εισαγωγή στην Αρχιτεκτονική (θεμελιώδεις αρχές λειτουργίας των υπολογιστών) http://mxstef.gthub.o/courses/comparch/ Μ.Στεφανιδάκης
4 η ΕΝΟΤΗΤΑ. Το MOSFET
4 η ΕΝΟΤΗΤΑ Το MOSFET Άσκηση 12η. Ενισχυτής κοινής πηγής με MOSFET, DC λειτουργία. 1. Υλοποιείστε το κύκλωμα του ενισχυτή κοινής πηγής με MOSFET (2Ν7000) του Σχ. 1. V DD = 12 V C by R g = 50 C i R A 1
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ
ΟΜΑ Α Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 23 ΜΑΪΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ): ΗΛΕΚΤΡΟΛΟΓΙΑ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:
Ψηφιακά Συστήματα. 3. Λογικές Πράξεις & Λογικές Πύλες
Ψηφιακά Συστήματα 3. Λογικές Πράξεις & Λογικές Πύλες Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016. [59382199] 2. Floyd
Κεφάλαιο 9 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Λογικές ομές 2
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Συνδυαστική Λογική Κεφάλαιο 9 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Στατική CMOS λογική και λογική 2. Διαφορική λογική 3.
ΘΕΜΑ : ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΔΙΑΡΚΕΙΑ: 1 περιόδος. 24/11/2011 12:09 Όνομα: Λεκάκης Κωνσταντίνος καθ. Τεχνολογίας
ΘΕΜΑ : ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ ΔΙΑΡΚΕΙΑ: 1 περιόδος 24/11/2011 12:09 καθ. Τεχνολογίας ΜΙΚΡΟΕΠΕΞΕΡΓΑΣΤΗΣ Ένας μικροεπεξεργαστής είναι ένα ολοκληρωμένο κύκλωμα που επεξεργάζεται όλες τις πληροφορίες σε ένα
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή
Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole
K15 Ψηφιακή Λογική Σχεδίαση 4+5: Άλγεβρα Boole Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ορισμός της δίτιμης άλγεβρας Boole Περιεχόμενα 1 Ορισμός της
Εκτέλεση πράξεων. Ψηφιακά Ηλεκτρονικά και Δυαδική Λογική. Πράξεις με δυαδικούς αριθμούς. Πράξεις με δυαδικούς αριθμούς
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 24-5 Πράξεις με δυαδικούς αριθμούς (λογικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης ; Ποιες κατηγορίες
Τρανζίστορ διπολικής επαφής (BJT)
Πανεπιστήμιο Πατρών Τμήμα Μηχανικών Ηλεκτρονικών Υπολογιστών & Πληροφορικής Μάθημα: Βασικά Ηλεκτρονικά Τρανζίστορ διπολικής επαφής (BJT) Εργασία του Βασίλη Σ. Βασιλόπουλου Χειμερινό Εξάμηνο 2017-18 Πηγή:
Γ2.1 Στοιχεία Αρχιτεκτονικής. Γ Λυκείου Κατεύθυνσης
Γ2.1 Στοιχεία Αρχιτεκτονικής Γ Λυκείου Κατεύθυνσης Ορισμός άλγεβρας Boole Η άλγεβρα Boole ορίζεται, ως μία αλγεβρική δομή A, όπου: (α) Το Α είναι ένα σύνολο στοιχείων που περιέχει δύο τουλάχιστον στοιχεία
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2 ΛΟΓΙΚΕΣ ΠΥΛΕΣ OR, NOR, XOR Σκοπός: Να επαληθευτούν πειραµατικά οι πίνακες αληθείας των λογικών πυλών OR, NOR, XOR. Να δειχτεί ότι η πύλη NOR είναι οικουµενική.
Ψηφιακά Ηλεκτρονικά. Μάθηµα 2ο.. Λιούπης
Ψηφιακά Ηλεκτρονικά Μάθηµα 2ο. Λιούπης Transistor διπολικής επαφής (BJT) I B B C E I C Στα ψηφιακά κυκλώµατα χρησιµοποιείται κατά κύριο λόγο ως διακόπτης Στο σχήµαφαίνεταιένα τυπικό BJT τύπου NPN I B :
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Σκοπός : 1. Γνωριμία με το τρανζίστορ. Μελέτη πόλωσης του τρανζίστορ και ευθεία φορτίου. 2. Μελέτη τρανζίστορ σε λειτουργία
V Vin $N PULSE 1.8V p 0.1p 1n 2n M M1 $N 0002 $N 0001 Vout $N 0002 MpTSMC180 + L=180n + W=720n + AD=0.324p + AS=0.
Εργασία Μικροηλεκτρονικής 2013-2014 Θέμα: Σχεδίαση και Ανάλυση CMOS Αντιστροφέα και CMOS Λογικών Κυκλωμάτων στο SPICE Ονοματεπώνυμο: Αλέξανδρος Γεώργιος Μουντογιαννάκης Σχολή: Τμήμα Επιστήμης Υπολογιστών
4/10/2008. Στατικές πύλες CMOS και πύλες με τρανζίστορ διέλευσης. Πραγματικά τρανζίστορ. Ψηφιακή λειτουργία. Κανόνες ψηφιακής λειτουργίας
2 η διάλεξη 25 Σεπτεμβρίου Πραγματικά τρανζίστορ Στατικές πύλες CMOS και πύλες με τρανζίστορ διέλευσης Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Η τάση στο gate του τρανζίστορ
Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 12: Καθρέφτες Ρεύματος και Ενισχυτές με MOSFETs
Υ60 Σχεδίαση Αναλογικών Ολοκληρωμένων Κυκλωμάτων 12: Καθρέφτες Ρεύματος και Ενισχυτές με MOSFETs Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Ενισχυτής
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Άλγεβρα Boole και Λογικές Πύλες 2. Επιμέλεια Διαφανειών: Δ.
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Άλγεβρα Boole και Λογικές Πύλες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Αξιωματικός Ορισμός Άλγεβρας Boole Άλγεβρα Boole: είναι μία
Εισαγωγή στην Αρχιτεκτονική Η/Υ
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2017-18 Εισαγωγή στην Αρχιτεκτονική (θεμελιώδεις αρχές λειτουργίας των υπολογιστών) http://mixstef.github.io/courses/comparch/ Μ.Στεφανιδάκης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ - VLSI Ενότητα: Συνδιαστικά κυκλώματα, βασικές στατικές λογικές πύλες, σύνθετες και δυναμικές πύλες Κυριάκης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 8 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Άλγεβρα Boole Ορισμοί Λογικές πράξεις Πίνακες αληθείας Πύλες
ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ
ΑΣΚΗΣΗ 1 ΛΟΓΙΚΕΣ ΠΥΛΕΣ 1.1 ΣΚΟΠΟΣ Η εξοικείωση με τη λειτουργία των Λογικών Πυλών και των Πινάκων Αληθείας. 1.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ Οι λογικές πύλες είναι ηλεκτρονικά κυκλώματα που δέχονται στην είσοδο ή στις
Μνήμες RAM. Διάλεξη 12
Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη
ΙΚΑΝΟΤΗΤΕΣ: 1. Αναγνωρίζει απλούς κωδικοποιητές - αποκωδικοποιητές.
ΙΚΑΝΟΤΗΤΕΣ: 1. Αναγνωρίζει απλούς κωδικοποιητές - αποκωδικοποιητές. 2.Επαληθεύει τη λειτουργία των κωδικοποιητών αποκωδικοποιητών με τη βοήθεια πινάκων 3. Υλοποιεί συνδυαστικά κυκλώματα με αποκωδικοποιητές
Το μάθημα συνοπτικά (1) Το μάθημα συνοπτικά (2) Τι είναι ένα υπολογιστικό σύστημα ;
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2017-18 Εισαγωγή στην Αρχιτεκτονική (θεμελιώδεις αρχές λειτουργίας των υπολογιστών) http://mxstef.gthub.o/courses/comparch/ Μ.Στεφανιδάκης
ΑΣΠΑΙΤΕ Εργαστήριο Ψηφιακών Συστημάτων & Μικροϋπολογιστών Εργαστηριακές Ασκήσεις για το μάθημα «Λογική Σχεδίαση» ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH
ΑΣΚΗΣΗ 3 ΠΙΝΑΚΕΣ KARNAUGH 3.1 ΣΚΟΠΟΣ Η κατανόηση της απλοποίησης λογικών συναρτήσεων με χρήση της Άλγεβρας Boole και με χρήση των Πινάκων Karnaugh (Karnaugh maps). 3.2 ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ 3.2.1 ΑΠΛΟΠΟΙΗΣΗ
K14 Αναλογικά Ηλεκτρονικά 5: Ειδικοί Τύποι Διόδων
K14 Αναλογικά Ηλεκτρονικά 5: Ειδικοί Τύποι Διόδων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Δίοδος Zener Περιεχόμενα 1 Δίοδος Zener 2 Δίοδος χιονοστιβάδας
Ψηφιακά Ηλεκτρονικά. Κεφάλαιο 1ο. Άλγεβρα Boole και Λογικές Πύλες. (c) Αμπατζόγλου Γιάννης, Ηλεκτρονικός Μηχανικός, καθηγητής ΠΕ17
Ψηφιακά Ηλεκτρονικά Κεφάλαιο 1ο Άλγεβρα Boole και Λογικές Πύλες Αναλογικά μεγέθη Αναλογικό μέγεθος ονομάζεται εκείνο που μπορεί να πάρει οποιαδήποτε τιμή σε μια περιοχή τιμών, όπως η ταχύτητα, το βάρος,
Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ
Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Οικογένειες Ψηφιακής Λογικής Τάση τροφοδοσίας Λογικά επίπεδα - Περιθώριo θορύβου Χρόνος μετάβασης Καθυστέρηση διάδοσης Κατανάλωση ισχύος Γινόμενο
Φόρτιση πυκνωτή μέσω αντίστασης Εάν αρχικά, η τάση στο άκρο του πυκνωτή είναι 0, τότε V DD V(t) για την τάση σε χρόνο t, V(t) θα έχουμε V t ( t ) (1 e ) V DD Αποφόρτιση πυκνωτή Εάν αρχικά, η τάση στο άκρο
Λογικά Κυκλώματα CMOS. Διάλεξη 5
Λογικά Κυκλώματα CMOS Διάλεξη 5 Δομή της διάλεξης Εισαγωγή Η τεχνολογία αντιστροφέων CMOS Λειτουργία του κυκλώματος Χαρακτηριστική μεταφοράς τάσης Περιθώρια θορύβου Κατανάλωση ισχύος Οι πύλες CMOS NOR
Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ.
ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Αναλογικά & Ψηφιακά Κυκλώματα ιαφάνειες Μαθήματος ρ. Μηχ. Μαραβελάκης Εμ. ΝΑΛΟΓΙΚΑ Άλγεβρα Boole Οι αρχές της λογικής αναπτύχθηκαν από τον George Boole (85-884) και τον ugustus De
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης
Καθυστέρηση στατικών πυλών CMOS
Καθυστέρηση στατικών πυλών CMOS Πρόχειρες σημειώσεις Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Άνοιξη 2008 Παρόλο που οι εξισώσεις των ρευμάτων των MOS τρανζίστορ μας δίνουν
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΜΑ Α Α
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 4 ΙΟΥΛΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΠΑΡΑΓΩΓΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ
ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ
ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων
Κεφάλαιο 5. Λογικά κυκλώματα
Κεφάλαιο 5 Λογικά κυκλώματα 5.1 Εισαγωγή Κάθε συνάρτηση boole αντιστοιχεί σε έναν και μοναδικό πίνακα αλήθειας. Εάν όμως χρησιμοποιήσουμε τα γραφικά σύμβολα των πράξεων, μπορούμε για κάθε συνάρτηση που
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
Ε_3.Ηλ3Τ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (ος Κύκλος) ΗΛΕΚΤΡΟΛΟΓΙΑ Ηµεροµηνία: Κυριακή 8 Απριλίου 03 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Α. Η τιµή της ευκινησίας µ ενός
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Ενότητα: Ασκήσεις Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σελίδα 2 1. Άσκηση 1... 5 2. Άσκηση 2... 5 3. Άσκηση 3... 7 4. Άσκηση 4...
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ψηφική Σχεδίαση
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ψηφική Σχεδίαση Ενότητα 4: Υλοποίηση Κυκλωμάτων με πύλες NOT AND και NOR, περιττή συνάρτηση, συνάρτηση ισοτιμίας. Δρ. Μηνάς Δασυγένης @ieee.ormdasygg Εργαστήριο
ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014
ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ/ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: Θεωρητική Μάθημα: Ψηφιακά Ηλεκτρονικά Τάξη: Β Αρ. Μαθητών: 8 Κλάδος: Ηλεκτρολογία Ημερομηνία:
Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων CMOS Αναστροφέας Κεφάλαιο ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας VLSI Systems ad Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. I V χαρακτηριστική
ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ
Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ A. Πίνακες αληθείας λογικών πυλών. Στη θετική λογική το λογικό 0 παριστάνεται µε ένα χαµηλό δυναµικό, V L, ενώ το λογικό 1
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΤΕΧΝΟΛΟΓΙΑ (ΙΙ) ΤΕΧΝΙΚΩΝ ΣΧΟΛΩΝ ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα : Τεχνολογία και
Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες
Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία
3. Απλοποίηση Συναρτήσεων Boole
3. Απλοποίηση Συναρτήσεων Boole 3. Μέθοδος του χάρτη Η πολυπλοκότητα ψηφιακών πυλών που υλοποιούν μια συνάρτηση Boole σχετίζεται άμεσα με την πολύπλοκότητα της αλγεβρικής της έκφρασης. Η αλγεβρική αναπαράσταση
Εισαγωγή στην πληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα
Δυαδικές συναρτήσεις Άλγεβρα Boole Λογικά διαγράμματα 1. Για a=1, b=1 και c=0, υπολογίστε τις τιμές των λογικών παραστάσεων ab c, a+b +c, a+b c και ab +c Δώστε τα σύνολα τιμών των δυαδικών μεταβλητών a,
Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων
Ηλεκτρονική Μάθημα VIΙΙ Ψηφιακά Κυκλώματα Υλοποίηση Λογικών Συναρτήσεων Καθηγητής Αντώνιος Γαστεράτος Τμήμα Ε.ΔΙ.Π. Μηχανικών Δρ. Αθανάσιος Παραγωγής Ψωμούλης και Διοίκησης, Δ.Π.Θ. Τμήμα Μηχανικών Παραγωγής
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων
K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ & Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΛΟΓΙΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΤΕΧΝΟΛΟΓΙΑΣ & ΠΑΡΑΓΩΓΗΣ)
Κεφάλαιο 4 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Λογικός Φόρτος 2
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Λογικός Φόρτος Κεφάλαιο 4 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση. Μοντέλο γραμμικής καθυστέρησης. Λογικός και ηλεκτρικός φόρτος
ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου
Απαραίτητα όργανα και υλικά ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου 7. Απαραίτητα όργανα και υλικά. Τροφοδοτικό DC.. Πολύμετρα (αμπερόμετρο, βολτόμετρο).. Πλακέτα για την
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές 12 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ E-mail: leo@mail.ntua.gr URL: http://users.ntua.gr/leo 1 GROUP I A Λ ΤΡΙΤΗ PC-Lab GROUP IΙ Μ Ω ΠΑΡΑΣΚΕΥΗ Central Κέντρο
9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 61 9. OIΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ ΠΟΛΛΑΠΛΩΝ ΕΙΣΟ ΩΝ I. Βασική Θεωρία Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί
6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η)
6. Σχεδίαση Κυκλωμάτων Λογικής Κόμβων (ΚΑΙ), (Η) 6. Εισαγωγή Όπως έχουμε δει οι εκφράσεις των λογικών συναρτήσεων για την συγκεκριμένη σχεδίαση προκύπτουν εύκολα από χάρτη Καρνώ -Karnaugh. Έτσι βρίσκουμε
Ψηφιακά Συστήματα. 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων
Ψηφιακά Συστήματα 4. Άλγεβρα Boole & Τεχνικές Σχεδίασης Λογικών Κυκλωμάτων Βιβλιογραφία 1. Φανουράκης Κ., Πάτσης Γ., Τσακιρίδης Ο., Θεωρία και Ασκήσεις Ψηφιακών Ηλεκτρονικών, ΜΑΡΙΑ ΠΑΡΙΚΟΥ & ΣΙΑ ΕΠΕ, 2016.
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα