Διαμόρφωση Παλμών. Pulse Modulation

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διαμόρφωση Παλμών. Pulse Modulation"

Transcript

1 Διαμόρφωση Παλμών Pulse Modulation

2 Δειγματοληψία

3 Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες κατά 1/2W sec Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να ανακτηθεί πλήρως από δείγματά του που λαμβάνονται με ρυθμό 2W ανά sec Nyquist 1928, Shannon 1949

4 Φάσμα σήματος μετά τη δειγματοληψία x () t = x( nt ) δ ( t nt ) δ n= x () t = x() t δ ( t nt ) δ n= s 1 n Xδ ( f ) = X( f) δ f Ts n= Ts 1 n Xδ ( f ) = X( f ) δ f Ts n= Ts 1 n Xδ ( f ) = X f = f s X f nf Ts n= Ts n= s s ( ) s

5 Επίδραση δειγματοληψίας στο φάσμα Αρχικό σήμα x(t) F X(f) Μετά τη δειγματοληψία x δ (t) t F -W 0 W T s X δ (f) f t -2f s -f s 0 f s 2 f s -f s -W -f s +W -W W f s -W f s +W f

6 Περιοδικότητα φάσματος Η δειγματοληψία αντιγράφει το φάσμα του αρχικού σήματος στα ακέραια πολλαπλάσια της συχνότητας δειγματοληψίας Εάν η συχνότητα δειγματοληψίας f s 2W, τότε το αρχικό σήμα μπορεί να ληφθεί με διάβαση μέσω βαθυπερατού φίλτρου Εάν f s < 2W εμφανίζεται παραλλαγή (aliasing), δηλαδή, αναδίπλωση του φάσματος

7 Παραλλαγή T s X δ (f) -2f s -f s 0 f s 2 f s f

8 Παραλλαγή Ανακατασκευασμένο σήμα

9 Παραλλαγή Στη δειγματοληψία σημάτων μουσικής και βίντεο το φαινόμενο της παραλλαγής πρέπει να αποφευχθεί Εάν το μουσικό τμήμα περιέχει υψηλές συχνότητες που δεν γίνονται ακουστές, μετά τη δειγματοληψία αυτές θα ακουστούν ως χαμηλές συχνότητες Ανάγκη για φίλτρο αντι-παραλλαγής (anti-aliasing) Στο βίντεο ή κινηματογράφο εμφανίζεται ως το φαινόμενο της αργά ή αντίστροφα κινούμενης ρόδας

10 Παραλλαγή Τα προηγούμενα παραδείγματα αφορούν τη χρονική εκδοχή της παραλλαγής Στηχωρικήεκδοχήτης εμφανίζεται στις ψηφιακές φωτογραφίες και είναι γνωστή ως μορφές Moiré Ανάγκη για φίλτρο αντιπαραλλαγής (antialiasing)

11 Ανάκτηση του σήματος Τα δείγματα του σήματος αρκούν για την ανακατασκευή του Είναι οι συντελεστές Fourier του περιοδικού φάσματος x () t = x( nt ) δ ( t nt ) δ n= X ( f ) = x( nt )exp( j2 π nft ) δ n= 1/ T s s s x( nt ) = T X ( f )exp( jn2 π ft ) df s s δ s 0 s s

12 Ανάκτηση του σήματος Εάν Τ s 1/2W τοαρχικόσήμαείναιηέξοδος οποιουδήποτε βαθυπερατού φίλτρου, όπου T f W s 1 H ( f) = 0 f W Ts? αλλού

13 Ιδανικό φίλτρο ανάκτησης T s X δ (f) -1/Τ s 0 1/Τ s f -1/T s +W -W W 1/Τ s -W

14 Ανάκτηση του σήματος Έστω βαθυπερατό φίλτρο ανάκτησης εύρους ζώνης B, όπου W B f W τότε x( t) = X( f )exp( j2 π ft) df = T X ( f )exp( j2 π ft) df B = T x( nt )exp( j2 πnft )exp( j2 π ft) df = T ( ) exp 2 ( ) s x nts j π f t nts df = 2 BT x( nt )sinc 2B t nt B B s s s B n = n= B B s ( ) s s s n= s δ

15 Ανάκτηση του σήματος Για το ιδανικό βαθυπερατό φίλτρο ανάκτησης εύρους ζώνης W και Τ s =1/2W ( ) ( ) xt () = 2 WT xnt ( )sinc 2W t nt s s s n= t = xnt ( s)sinc n n= Ts = xnt ( )sinc ft n n= s s

16 Τι σημαίνει αυτό; Μπορούμε να λάβουμε το αρχικό σήμα χωρίς λάθη αθροίζοντας καθυστερημένες εκδοχές συναρτήσεων sinc με βάρη τα δείγματα x(3t s ) ( ) sinc 2W t 3T s x(t) T s 2T s 3T s 4T s 5T s t

17 Πρακτικά θέματα δειγματοληψίας Η συνάρτηση δειγματοληψίας αποτελείται από παλμούς πεπερασμένου πλάτους και διάρκειας αντί κρουστικές συναρτήσεις Οδηγεί σε ποικίλα συστήματα διαμόρφωσης Το σήμα είναι χρονικά πεπερασμένο, άρα το φάσμα του δεν μπορεί να είναι βαθυπερατό Το φίλτρο ανάκτησης δεν είναι ιδανικό

18 Μη ιδανικό φίλτρο ανάκτησης Οι ανεπιθύμητες συχνότητες που περνούν από το φίλτρο εμφανίζονται ως υψίσυχνος θόρυβος

19 Χρονικά πεπερασμένο σήμα Οδηγεί σε παραλλαγή (aliasing), δηλαδή, αναδίπλωση του φάσματος Υψηλές συχνότητες εμφανίζονται ως χαμηλότερες συχνότητες

20 Δειγματοληψία ζωνοπερατών σημάτων Ζωνοπερατό σήμα εύρους ζώνης W με συχνότητες στην περιοχή από f L έως f H (0<f L <f H, W= f H -f L ) μπορεί να ανακτηθεί από δείγματα που λαμβάνονται με ρυθμό 2fΗ 2f L < fs < n+ 1 n f όπου n =0,1, ακέραιος τέτοιος ώστε n < L και το φίλτρο ανάκτησης έχει κρουστική απόκριση ( n+ 1) t nt ( n+ 1) sinc nsinc Ts Ts W

21 Δειγματοληψία ζωνοπερατών σημάτων Παράδειγμα, στη ραδιοφωνία FM έχουμε f L = 88 MHz, f H = 108 MHz, W = 20 MHz, οπότε 88 n < 4,4 = 20 Για n=4, 43,2 MHz < f s < 44 MHz Για n=3, 54 MHz < f s < 58,67 MHz Για n=2, 72 MHz < f s < 88 MHz Για n=1, 108 MHz < f s < 176 MHz Για n=0, 216 MHz < f s (ρυθμός Nyquist)

22 Συστήματα διαμόρφωσης παλμών

23 Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM): T m(t) PDM T PPM A PAM T d T s t

24 Διαμόρφωση παλμών Ηδιαμόρφωση πλάτους παλμών (PAM) παράγεται από τεμαχιστή (chopper) Συχνά χρησιμοποιείται κύκλωμα sample-andhold με αποτέλεσμα παλμούς επίπεδης κορυφής

25 Τεμαχιστής (chopper)

26 Παραγωγή PAM Το διαμορφωμένο σήμα PAM είναι το γινόμενο του σήματος επί τη συνάρτηση δειγματοληψίας (σειρά παλμών)

27 Φάσμα PAM Εάν το σήμα είναι βαθυπερατό, τότε μπορεί να ανακτηθεί από το διαμορφωμένο σήμα PAM x () t = x()() t s t s st ( ) = τ f sinc( nfτ)exp( jn2 π ft) s s s n= x ( t) = τ f sinc( nfτ)exp( jn2 π f t) x( t) s s s s n= X ( f ) = τ f sinc( nfτ) X( f nf ) s s s s n=

28 Φάσμα PAM Το αποτέλεσμα της πεπερασμένης διάρκειας παλμού είναι ο πολλαπλασιασμός του n-στου λοβού με dsinc( nd) όπου η σταθερά d είναι ο κύκλος εργασίας (duty cycle) του παλμού d = τ f = s τ T s

29 Φάσμα PAM Ο πρώτος όρος είναι το φάσμα του σήματος, πολλαπλασιασμένο με d, άρα με διάβαση από βαθυπερατό φίλτρο ανακτάμε το σήμα Χ d = τ f = s τ T s Χ

30 Δείγματα με επίπεδη κορυφή flat top sampling 8 6 Analog PAM time

31 PAM και δείγματα με επίπεδη κορυφή x () t = x( nt ) p( t nt ) p s s n x p() t = p() t x( nts) δ ( t nts) n x () t = p() t x () t p X ( f ) = P( f ) X ( f ) p δ δ

32 Φάσμα PAM με δείγματα επίπεδης κορυφής Το αποτέλεσμα της δειγματοληψίας με δείγματα επίπεδης κορυφής ισοδυναμεί με τη διάβαση του ιδανικού σήματος δειγματοληψίας μέσω φίλτρου P(f) Το P(f) δρα ως βαθυπερατό φίλτρο που εξασθενεί τις υψηλές συχνότητες του PAM Φαινόμενο ανοίγματος (aperture effect) Το φαινόμενο ανοίγματος μπορεί να διορθωθεί με εξισωτή (equalizer) H ( f ) = Kexp( j2 π fτ ) / P( f ) eq d

33 Φάσμα PAM με δείγματα επίπεδης κορυφής Εάν ο κύκλος εργασίας είναι μικρός δεν απαιτείται σχεδόν καθόλου ισοστάθμιση τ d = 1 T s Χ Χ

34 Ανάκτηση σήματος Εάν Τ s 1/2W μπορούμε να ανακτήσουμε το σήμα με χρήση κατάλληλου φίλτρου Αλλιώς εμφανίζεται παραλλαγή

35 Παραγωγή PDM και PPM

36 Μετατροπή PDM, PPM σε PAM Η θέση ή η διάρκεια προσδιορίζουν το πλάτος

37 Παράδειγμα μετατροπής Η θέση ή η διάρκεια προσδιορίζουν το πλάτος

38 Παλμοκωδική διαμόρφωση

39 Frequency Division Multiplexing (FDM) Στις αναλογικές μεθόδους πολυπλεξίας συχνότητας, που χρησιμοποιήθηκαν στην τηλεφωνία (SSB-FDM), λόγω μη γραμμικοτήτων, εμφανίζεται το πρόβλημα της διαφωνίας (cross-talk) μεταξύ των καναλιών φωνής

40 Time Division Multiplexing (TDM) Μια εναλλακτική μέθοδος είναι η πολυπλεξία το πεδίο του χρόνου (TDM) Ο δίαυλος μοιράζεται στα προς μετάδοση σήματα σε χρονική βάση Τα διαφορετικά σήματα μεταδίδονται δειγματοληπτημένα σε διαφορετικές χρονικές στιγμές

41 Συγχρονισμός ΣεόλατασυστήματαTDM πρέπει να υπάρχει συγχρονισμός μεταξύ πομπού και δέκτη! Διαφορετικά δεν θα ληφθούν τα σωστά σήματα

42 Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι μια ψηφιακή αναπαράσταση του αναλογικού σήματος όπου το πλάτος του σήματος δειγματοληπτείται, κβαντίζεται και μεταδίδεται ως σειρά συμβόλων, συνήθως, δυαδικών (bit) Ο δέκτης από τους λαμβανόμενους παλμούς ανακτά τη ψηφιακή ακολουθία συμβόλων και ανακατασκευάζει το αναλογικό σήμα μέσω μετατροπέα D/A

43 Pulse-code modulation (PCM) Δοκιμάσθηκε για πρώτη φορά το 1948 στα Bell Labs για τη μετάδοση αναλογικού σήματος φωνής 4kHz ως ψηφιακού σήματος 64 kbps Σε συνδυασμό με TDM, η PCM άρχισε να χρησιμοποιείται στο τηλεφωνικό σύστημα 1962 στις ΗΠΑ: 24 κανάλια φωνής σε φορέα 1,5 Mbps 1969 στην Ευρώπη, 30 κανάλια φωνής σε φορέα 2 Mbps Η PCM διευκολύνει τη ψηφιακή μετάδοση από σημείο σε σημείο (σε σειρά ζεύξεων) Εκτός από την τηλεφωνία, η PCM χρησιμοποιείται στον ψηφιακό ήχο σε προσωπικούς υπολογιστές και στα CD (δεν συνηθίζεται στα DVD)

44 Pulse Code Modulation (PCM) Πομπός Βαθυπερατό φίλτρο Δειγματοληψία Κβάντιση PAM/HDB-3 Δίαυλος Δέκτης Βαθυπερατό φίλτρο PAM/HDB-3 Αναγέννηση παλμών

45 Κβάντιση Το σήμα έχει συνεχείς τιμές εντός της δυναμικής του περιοχής Το σήμα PAM έχει συνεχείς τιμές σε διακριτές χρονικές στιγμές Το κβαντισμένο σήμα PAM έχει πεπερασμένες τιμές (εδώ οι λέξεις 3 bit)

46 Συγχρονισμός ΌπωςσεόλατασυστήματαTDM, απαιτείται συγχρονισμός μεταξύ πομπού και δέκτη Εάν τα ρολόγια στον πομπό και τον δέκτη διαφέρουν, αυτό θα οδηγήσει σε παραμορφώσεις του σήματος Στην PCM ο χρονισμός στον δέκτη εξάγεται από το λαμβανόμενο σήμα Το φάσμα του συρμού των λαμβανόμενων παλμών περιέχει τη συχνότητα του ρολογιού

47 Κωδικοποίηση γραμμής Η κωδικοποίηση γραμμής χρησιμοποιείται για τη μετάδοση των ψηφιακών συμβόλων στηβασικήζώνη(baseband) Διευκολύνει την ανάκτηση του ρολογιού και τον συγχρονισμό του δέκτη Η κωδικοποίηση γραμμής πρέπει να μην οδηγεί σε μακριές σειρές από μηδενικά, που θα αποσυγχρονίσουν τον δέκτη να μη δημιουργεί συνιστώσα DC να απαιτεί μικρό εύρος ζώνης

48 Κωδικοποίηση γραμμής Μονοπολική [0,Α] RZ, NRZ Πολική [-Α/2,Α/2] RZ, NRZ Διπολική [-Α,0,Α] AMI Manchester Πολική τετραδική

49 Κωδικοποίηση γραμμής High Density Bipolar (HDB3) Τέσσερα συνεχόμενα 0 αντικαθίστανται από τρία 0 και παραβίαση κώδικα ή αντιστάθμιση, δύο 0 και παραβίαση κώδικα Παλμός αντιστάθμισης

50 Πομπός PCM Analog-to-Digital Converter Q-PAM (πλάτος κβαντισμένου σήματος) PAM Q-PAM PAM (πλάτος αναλογικού σήματος) M = 2, v = 8 v q= M = 256 v = log q 2/ q ( ) M : σύμβολα q: στάθμες κβαντισμού v : αριθμός bit r: ρυθμός εξόδου M

51 Κυματομορφές PCM Αναλογικό σήμα Σήμα PAM Κβαντισμένο σήμα PAM Σήμα λάθους = διαφορά αναλογικού σήματος από το κβαντισμένο σήμα PAM

52 Δέκτης PCM Digital-to-Analog Converter ( q ) 1/ q Το σφάλμα κβαντισμού έχει όριο ε 1/ q k Q-PAM 2/q PAM (πλάτος αναλογικού σήματος) ( q ) 1/ q T S Q-PAM (πλάτος κβαντισμένου σήματος)

53 Αποδιαμόρφωση PCM Στην περίπτωση δυαδικής σηματοδότησης, ο συγκριτής αποφασίζει για το εάν μεταδόθηκε 0 ή 1, ανάλογα με το εάν η στάθμη του σήματος (συν το θόρυβο) είναι μεγαλύτερη ή μικρότερη από ένα κατώφλι V

54 Σφάλμα κβαντισμού Τα σφάλμα κβαντισμού είναι η διαφορά μεταξύ των κυματομορφών Q-PAM και PAM ε = x ( nt ) x( nt ) n q s s Υποθέτοντας ομοιόμορφη κατανομή όλων των σταθμών πλάτους του σήματος q σ ε ε ε 1/ q = = q n d = 2 1/ q 3 1 q 2 q /2 1/ q Q-noise PDF 1/ q

55 Σηματοθορυβική σχέση εξόδου Το σήμα στην είσοδο του δέκτη PCM, υποθέτοντας δίαυλο χωρίς λάθη, είναι x () t = [ ( ) ] ( ) q x nt + ε δ t nt s n s n Το σήμα στην έξοδο του δέκτη PCM είναι y () t = x() t + sinc( ) D ε f t n n s n Η ισχύς του σήματος στην έξοδο είναι 2 S x S D x = = 1 Η σηματοθορυβική σχέση στην έξοδο ορίζεται από την ισχύ του σήματος προς την ισχύ του θορύβου κβαντισμού SNR o S = = σ x 2 3q S 2 x q

56 Σηματοθορυβική σχέση εξόδου Επειδή q=2 ν εκφράζοντας τη σηματοθορυβική σχέση σε db 2ν SNR = 10log (3 2 S ) = ν + 10log ( S ) ν o 10 x 10 x με την ισότητα να ισχύει για S x =1 Για συστήματα PCM φωνής έχουμε ν=8, άρα SNR o 52,8 db Για μουσική ο λόγος xt () / σ είναι μεγάλος max x 2 επομένως S x = σ 1 x Σε κάποια συστήματα ήχου v=14, αλλά SNR o 60 db αντί του ορίου 88,8 db Ανάγκη για μη ομοιόμορφη κβάντιση

57 Μη γραμμικοί κβαντιστές Για την αντιμετώπιση του δυναμικού εύρους σημάτων στην PCM χρησιμοποιούνται μη ομοιόμορφοι κβαντιστές Αναλογική είσοδος Συμπίεση (μη γραμμικό φίλτρο) Ομοιόμορφος κβαντιστής Έξοδος PCM

58 Συμπίεση-Αποσυμπίεση Για σήματα φωνής σε συστήματα τηλεφωνίας στην PCM χρησιμοποιούνται συμπιεστές Νόμου μ (μ-law) στις ΗΠΑ και Ιαπωνία ln(1 + μ x ) y = sgn( x ), x 1 ln(1 + μ) Νόμου A (A-law) στην Ευρώπη y Ax sgn( ), 1 x x < 1 ln A = + A 1 + ln( Ax) sgn( x), 1 x 1 1+ lna A

59 Συμπίεση-Αποσυμπίεση Η αποσυμπίεση είναι η αντίστροφή πράξη της συμπίεσης Νόμου μ (μ-law) (1 + μ) y 1 x = sgn( y ), y 1 μ Νόμου A (A-law) 1+ lna, 1 y y < A 1+ lna x = sgn( x) exp( y (1 + ln A 1)) 1 y < 1 A 1+ lna

60 Συμπίεση Με τη συμπίεση μειώνεται το δυναμικό εύρος του σήματος και έτσι αυξάνεται η αποδοτικότητα της κωδικοποίησης Το αποτέλεσμα είναι καλύτερος λόγος σήματος προς παραμόρφωση σε σχέση με ομοιόμορφη κβάντιση για δεδομένο αριθμό bit

61 PCM και θόρυβος διαύλου Ο θόρυβος στον δίαυλο αλλοιώνει τις τιμές των κωδικών λέξεων Λάθη σε bit Η επίδραση του θορύβου είναι μεγαλύτερη στα πιο σημαντικά bit Για το bit τάξης m έχουμε αλλαγή 2 m σταθμών κβαντισμού ύψους 2/q, άρα λάθος ε =± (2/ q)2 m 2 m Το μέσο λάθος είναι ε 2 m 4 q 1 4 = ν 3 q 2 3 ν

62 PCM και θόρυβος διαύλου Ο θόρυβος αποκωδικοποίησης είναι επομένως σ = νp ε P d e m e όπου P e η πιθανότητα σφάλματος bit Η ισχύς θορύβου στην έξοδο είναι qPe N = σ + σ = D q d 2 3q και η σηματοθορυβική σχέση γίνεται SNR o 3q = qpe S x

63 PCM και θόρυβος διαύλου Η επίδραση των σφαλμάτων bit εξαρτάται από την 2 ποσότητα qp 4 e Έχουμε δύο ακραίες καταστάσεις SNR o 3qS P 1/4q x e 3S x P 1/4q e 4P 2 2 e 2

64 Γκαουσιανός θόρυβος διαύλου Πιθανότητα σφάλματος για πολική σηματοδοσία P e Q = Q ( SNR ) ( SNR ) c c /2 μονοπολική πολική πιθανότητα σφάλματος για Μ-κη σηματοδοσία 1 3 P = 2 1 e Q SNR 2 c M M 1 όπου Q(x), η συμπληρωματική συνάρτηση κατανομής της κανονικής κατανομής 2 1 t Qx ( ) = exp dt x 2π 2

65 Κατώφλι P e 10 5 Εάν τα σφάλματα μετάδοσης είναι αμελητέα και το PCM λειτουργεί πάνω από το κατώφλι 1 3 Λύνοντας την P = e Q SNR 2 c M M 1 Λαμβάνουμε την ελάχιστη σηματοθορυβική σχέση για λειτουργία πάνω από το κατώφλι SNR 2 6( M 1) cth, και λαμβάνοντας υπόψη το εύρος ζώνης μετάδοσης SNR B W SNR ν M 2 = ( / ) 6 ( 1) bth, T oth, 5

66 Γκαουσιανός θόρυβος διαύλου Για q=32 ή 128 και S x =0,5 Η επίδοση του PCM παραμένει σταθερή μέχρις ότου η πιθανότητα σφάλματος μεγαλώσει Μετά έχουμε δραματική πτώση Φαινόμενο κατωφλίου

67 Πιθανότητα σφάλματος Υποθέτουμε μονοπολική (on-off) σηματοδότηση οπότε το σήμα στην έξοδο είναι ykt ( s) = ak + nkt ( s) όπου α k =0 όταν μεταδίδεται το bit 0 και α k =1 όταν μεταδίδεται το bit 1 Θεωρούμε τις δύο υποθέσεις H 0 : α k =0 και y=n (μετάδοση 0) H 1 : α k =1 και y=a+n (μετάδοση 1)

68 Πιθανότητα σφάλματος Η κατανομή του λαμβανόμενου σήματος ανάλογα με το τι μεταδόθηκε είναι py( y H0) = pn( y) py( y H1) = pn( y A) όπου p Ν (y) η κατανομή του θορύβου Στην περίπτωση λευκού θορύβου 2 ( ) 1 exp n pn n = πσ σ

69 Πιθανότητα σφάλματος Επομένως η πιθανότητα σφάλματος είναι P = PP + PP, P = P{ H }, P = P{ H } e 0 e0 1 e P = P{ Y > V H } = p ( y H ) dy e0 0 Y 0 V P = P{ Y < V H } = p ( y H ) dy e1 1 Y 1 V

70 Βέλτιστο κατώφλι Το βέλτιστο κατώφλι προκύπτει από την σχέση P p ( V H ) = Pp ( V H ) 0 Y opt 0 1 Y opt 1 Για ισοπίθανες εμφανίσεις 0 και 1 P = P = p ( V H ) = p ( V H ) Y opt 0 Y opt ( ) P P P = + e e0 e1

71 Πιθανότητα σφάλματος σε λευκό θόρυβο Οι πιθανότητες σφάλματος για κατώφλι V είναι V Pe0 = pn( y) dy = Q V σ V A V Pe 1 = pn( y A) dy = Q σ Για ισοπίθανες εμφανίσεις 0 και 1 V opt = A/2 A = = = Pe0 Pe 1 Pe Q 2 σ

72 Πιθανότητα σφάλματος Για μονοπολική σηματοδότηση Για πολική σηματοδότηση SR = SR = A 2 /4 A 2 /2 Άρα 2 2 A A SNRc /2, μονοπολική = = 2σ 4N R SNRc πολική και επομένως P e Q = Q ( SNR ) c ( SNR ) c /2, μονοπολική, πολική

73 Πιθανότητα σφάλματος

74 Επαναλήπτες Στα συστήματα μετάδοσης χρησιμοποιούνται αναγεννητικοί επαναλήπτες Ο αναγεννητικός επαναλήπτης ανιχνεύει τα bit στην είσοδο και αναγεννά το ψηφιακό σήμα στην έξοδο Εάν η πιθανότητα σφάλματος είναι αμελητέα, τότε το σήμα στην έξοδο είναι ακριβές αντίγραφο του αρχικού σήματος Για μικρές πιθανότητες σφάλματος, η παρεμβολή των επαναληπτών απλώς τις προσθέτει

75 Εύρος ζώνης σήματος PCM Το (διαμορφωμένο) σήμα PCM όταν μεταδίδεται μέσω του διαύλου είναι ένα σήμα συνεχούς χρόνου καιέχειτοδικότουεύροςζώνης Το εύρος ζώνης εξαρτάται τόσο από το ρυθμό μετάδοσης r και από την κωδικοποίηση γραμμής Εάν χρησιμοποιηθούν παλμοί sinc Εάν χρησιμοποιηθούν τετραγωνικοί παλμοί 1 1 BT r = ν fs 2 2 B = r = vf T s

76 Εύρος ζώνης σήματος PCM Για δειγματοληψία στο ρυθμό Nyquist f s =2W, οπότε Κατώτερο όριο εύρος ζώνης BT νw Για τετραγωνικούς παλμούς BT = 2vW Στην πράξη vw < B < 2vW T

77 Παράδειγμα PCM Στην τηλεφωνία το φάσμα του σήματος φωνής εκτείνεται από τα 300 Hz μέχρι τα 3400 Hz Ο ρυθμός δειγματοληψίας είναι 8 khz Τα δείγματα κωδικοποιούνται σε λέξεις των 8 bit Προκύπτει ρυθμός 64 kbps και απαιτείται εύρος ζώνης για τη μετάδοση τουλάχιστον 32 khz (το πολύ 64 khz)

78 PCM και συστήματα πολυπλεξίας Στην εφαρμογή της PCM στα τηλεφωνικά συστήματα μετάδοσης γίνεται πολυπλεξία πολλών καναλιών φωνής Στις ΗΠΑ χρησιμοποιείται το σύστημα T1 όπου 24 κανάλια φωνής πολυπλέκονται σε πλαίσιο των 125 μs (=1/8000) για μετάδοση πάνω από μια συνήθη τηλεφωνική γραμμή Στην Ευρώπη χρησιμοποιείται το σύστημα Ε1 όπου πολυπλέκονται 30 κανάλια φωνής και άλλα 2 για συγχρονισμό και σηματοδοσία

79 PCM και συστήματα πολυπλεξίας Πλαίσιο T1 Κανάλια=χρονοσχισμές συγχρονισμός Πλαίσιο E1 Σηματοδοσία

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Διαμόρφωση Παλμών. Pulse Modulation

Διαμόρφωση Παλμών. Pulse Modulation Διαμόρφωση Παλμών Pulse Modulation Συστήματα διαμόρφωσης παλμών Είδη διαμόρφωσης παλμών Pulse Amplitude Modulation (PAM): A m(t) Pulse Position Modulation (PPM): T d m(t) Pulse Duration Modulation (PDM)

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Εφαρμογή στις ψηφιακές επικοινωνίες

Εφαρμογή στις ψηφιακές επικοινωνίες Δειγματοληψία Εφαρμογή στις ψηφιακές επικοινωνίες Γεννήτρια σήματος RF, (up converter Ενισχυτής) Προενισχυτής down-converter Ψηφιοποιητής σήματος RF Μονάδα ψηφ. επεξεργασίας Μονάδα ψηφ. επεξεργασίας 100

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Θεώρημα δειγματοληψίας

Θεώρημα δειγματοληψίας Δειγματοληψία Θεώρημα δειγματοληψίας Ένα βαθυπερατό σήμα πεπερασμένης ενέργειας που δεν περιέχει συχνότητες μεγαλύτερες των W Hertz μπορεί να περιγραφθεί πλήρως από τις τιμές του σε χρονικές στιγμές ισαπέχουσες

Διαβάστε περισσότερα

Μετάδοση σήματος PCM

Μετάδοση σήματος PCM Μετάδοση σήματος PCM Συγχρονισμός ΌπωςσεόλατασυστήματαTDM, απαιτείται συγχρονισμός μεταξύ πομπού και δέκτη Εάν τα ρολόγια στον πομπό και τον δέκτη διαφέρουν, αυτό θα οδηγήσει σε παραμορφώσεις του σήματος

Διαβάστε περισσότερα

Μετάδοση σήματος PCM

Μετάδοση σήματος PCM Μετάδοση σήματος PCM Θόρυβος κατά τη μετάδοση Εύρος ζώνης μετάδοσης Το (διαμορφωμένο) σήμα PCM όταν μεταδίδεται μέσω του διαύλου είναι ένα σήμα συνεχούς χρόνου και έχει το δικό του εύρος ζώνης Το εύρος

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Εισαγωγή Δειγματοληψία + Περιεχόμενα n Εισαγωγή n αναλογικό η ψηφιακό σήμα; n ψηφιακά συστήματα επικοινωνιών n Δειγματοληψία

Διαβάστε περισσότερα

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Ένα ψηφιακό σήμα δεν είναι τίποτα άλλο από μια διατεταγμένη ακολουθία συμβόλων Η πηγή πληροφορίας παράγει σύμβολα από ένα αλφάβητο

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Συστήματα διαμόρφωσης παλμών Πολυπλεξία + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική

Διαβάστε περισσότερα

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Το ψηφιακό σήμα δεν είναι τίποτε άλλο από μια διατεταγμένη σειρά συμβόλων παραγόμενη από μια διακριτή πηγή πληροφορίας Η πηγή

Διαβάστε περισσότερα

Θόρυβος και λάθη στη μετάδοση PCM

Θόρυβος και λάθη στη μετάδοση PCM Θόρυβος και λάθη στη μετάδοση PCM Πότε συμβαίνουν λάθη Για μονοπολική (on-off) σηματοδότηση το σήμα στην έξοδο είναι, όπου α k =0 όταν y( kts) ak n( kts) μεταδίδεται το bit 0 και α k =Α όταν μεταδίδεται

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 3: Εισαγωγή στην Έννοια της Διαμόρφωσης Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Η ανάγκη για διαμόρφωση 2. Είδη διαμόρφωσης 3. Διαμόρφωση με ημιτονοειδές

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη

Διαβάστε περισσότερα

Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης

Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση και ιαµόρφωση Σηµάτων Βασικής Ζώνης Μορφοποίηση - Κωδικοποίηση πηγής Μορφοποίηση παλµών βασικής ζώνης Μορφοποίηση & µετάδοση βασικής ζώνης Mορφοποίηση-κωδικοποίηση πηγής Mορφοποίηση παλµών

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 2 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙςΤΗΜΗς & ΤΕΧΝΟΛΟΓΙΑς ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst33

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Κβάντιση και Κωδικοποίηση ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Χειμερινό Εξάμηνο Τμήμα Πληροφορικής και Τηλεπικοινωνίων Νικόλαος Χ. Σαγιάς Αναπληρωτής Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) 3.1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της εργαστηριακής αυτής άσκησης είναι η μελέτη της παλμοκωδικής διαμόρφωσης που χρησιμοποιείται στα σύγχρονα τηλεπικοινωνιακά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 4 : Σήματα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα ομιλίας Είδη /Κατηγορίες Σημάτων Στοιχειώδη Σήματα Χαρακτηριστικές Τιμές Σημάτων Τεχνικές

Διαβάστε περισσότερα

Κεφάλαιο 7. Ψηφιακή Διαμόρφωση

Κεφάλαιο 7. Ψηφιακή Διαμόρφωση Κεφάλαιο 7 Ψηφιακή Διαμόρφωση Ψηφιακή Διαμόρφωση 2 Διαμόρφωση βασικής ζώνης H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές διαμόρφωσης παλμών βασικής ζώνης, οι οποίες δεν απαιτούν τη χρήση ημιτονοειδούς

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 4 : Σήματα Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 4 : Σήματα Διάλεξη: Κώστας Μαλιάτσος Χρήστος Ξενάκης, Κώστας Μαλιάτσος Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα ομιλίας Είδη /Κατηγορίες Σημάτων Στοιχειώδη

Διαβάστε περισσότερα

Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως:

Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως: ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ Πλεονεκτήματα: Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως: Αύξηση απαίτησης εύρους

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Διαφορική Παλμοκωδική Διαμόρφωση + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:

Διαβάστε περισσότερα

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία Θ.Ε. ΠΛΗ22 (2012-13) 2η Γραπτή Εργασία Στόχος: Η 2 η εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος

Διαβάστε περισσότερα

Δίκτυα Απευθείας Ζεύξης

Δίκτυα Απευθείας Ζεύξης Δίκτυα Απευθείας Ζεύξης Επικοινωνία μεταξύ δύο υπολογιστώνοιοποίοιείναι απευθείας συνδεδεμένοι Φυσικό Επίπεδο. Περίληψη Ζεύξεις σημείου προς σημείο (point-to-point links) Ανάλυση σημάτων Μέγιστη χωρητικότητα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 7 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 12: Δειγματοληψία και ανακατασκευή (IV) Παρεμβολή (Interpolation) Γενικά υπάρχουν πολλοί τρόποι παρεμβολής, π.χ. κυβική παρεμβολή (cubic spline

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 6 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ 5.1 Tο θεώρημα δειγματοληψίας. Χαμηλοπερατά σήματα 5.2 Διαμόρφωση πλάτους παλμού 5.3 Εύρος ζώνης καναλιού για ένα PAM σήμα 5.4 Φυσική δειγματοληψία

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 9 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ

Σεραφείµ Καραµπογιάς ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός z Εφαρµογές 1. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΗΜΑΤΑ Γενική εικόνα τι

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 4: Μετατροπή Αναλογικών Σημάτων σε Ψηφιακά Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Δειγματοληψία: Ιδανική

Διαβάστε περισσότερα

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής.

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής. Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 2 η : «Βασικές Β έ αρχές ψηφιακού ήχου» Φλώρος Ανδρέας Επίκ. Καθηγητής Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s5 e-mail:

Διαβάστε περισσότερα

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών)

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Κύριοι παράμετροι στη σχεδίαση παλμών είναι (στο πεδίο συχνοτήτων): Η Συχνότητα του 1ου μηδενισμού (θέλουμε μικρό BW). H ελάχιστη απόσβεση των πλαγίων λοβών

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 9: Παλμοκωδική Διαμόρφωση (PCM) Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της μεθόδου παλμοκωδικής

Διαβάστε περισσότερα

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος

Διαβάστε περισσότερα

Αρχές Τηλεπικοινωνιών

Αρχές Τηλεπικοινωνιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.

Διαβάστε περισσότερα

Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Συστήματα Πολυμέσων. Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης. Θρασύβουλος Γ. Τσιάτσος Τμήμα Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγικά θέματα Ψηφιοποίησης Θρασύβουλος Γ. Τσιάτσος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 1: Χωρητικότητα Καναλιών Το θεώρημα Shannon - Hartley Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Δυαδική σηματοδοσία 2. Μορφές δυαδικής σηματοδοσίας 3.

Διαβάστε περισσότερα

Ραδιοτηλεοπτικά Συστήματα Ενότητα 3: Θεωρία Ψηφιοποίησης

Ραδιοτηλεοπτικά Συστήματα Ενότητα 3: Θεωρία Ψηφιοποίησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ραδιοτηλεοπτικά Συστήματα Ενότητα 3: Θεωρία Ψηφιοποίησης Δρ. Νικόλαος- Αλέξανδρος Τάτλας Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 7-8 : Συστήματα Δειγματοληψία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Κεφάλαιο 7 ο Ταξινόμηση Συστημάτων Κρουστική Απόκριση Κεφάλαιο

Διαβάστε περισσότερα

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Εφαρμογές της Ανάλυσης Fourier Αθανάσιος

Διαβάστε περισσότερα

Μάθημα Εισαγωγή στις Τηλεπικοινωνίες

Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Μάθημα Εισαγωγή στις Τηλεπικοινωνίες Τεχνικές Μετάδοσης : Διαμόρφωση και πολυπλεξία Μάθημα 10 ο 11 ο 12 ο ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τομέας Επικοινωνιών και Επεξεργασίας Σήματος Τμήμα Πληροφορικής

Διαβάστε περισσότερα

Διαδικασία Ψηφιοποίησης (1/2)

Διαδικασία Ψηφιοποίησης (1/2) Διαδικασία Ψηφιοποίησης (1/2) Η διαδικασία ψηφιοποίησης περιλαμβάνει: Φιλτράρισμα και δειγματοληψία Κβαντισμό και κωδικοποίηση Φιλτράρισμα και δειγματοληψία Κβαντισμός και κωδικοποίηση Κβαντισμός Τα αναλογικά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 3 ο : Πολυπλεξία με διαίρεση

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Διαμόρφωσης Παλμών Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΔΕΙΓΜΑΤΟΛΗΨΙΑ (Δ/ΨΙΑ) Δειγματοληψία:

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα 3: Ψηφιοποίηση της Πληροφορίας. Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τεχνολογία Πολυμέσων. Ενότητα 3: Ψηφιοποίηση της Πληροφορίας. Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τεχνολογία Πολυμέσων Ενότητα 3: Ψηφιοποίηση της Πληροφορίας Νικολάου Σπύρος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 5 ο : Προσαρμοσμένα Φίλτρα Βασική

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 8: Δειγματοληψία - Διαμόρφωση παλμών Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή της διαδικασίας

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: demestihas@uowm.gr Συστήματα Επικοινωνιών Ι Διαμόρφωση και αποδιαμόρφωση πλάτους SSB και VSB Μετατόπιση συχνότητας Πολυπλεξία FDM + Περιεχόμενα n n n n n n n Διαμόρφωση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Κωδικοποίηση Κυματομορφής

Ψηφιακές Τηλεπικοινωνίες. Κωδικοποίηση Κυματομορφής Ψηφιακές Τηλεπικοινωνίες Κωδικοποίηση Κυματομορφής Σύνδεση με τα Προηγούμενα Οι τεχνικές κωδικοποίησης αναλογικής πηγής διακρίνονται σε τεχνικές κωδικοποίησης κυματομορφής τεχνικές ανάλυσης σύνθεσης Οι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Θ.Ε. ΠΛΗ22 ( ) 2η Γραπτή Εργασία Θ.Ε. ΠΛΗ 0-3 η Γραπτή Εργασία Στόχος: Η η ΑΠΑΝΤΗΣΕΙΣ εργασία αποσκοπεί στην κατανόηση των συστατικών στοιχείων των αναλογικών διαμορφώσεων, της δειγματοληψίας, και της μετατροπής του αναλογικού σήματος

Διαβάστε περισσότερα

Περιεχόµενα διαλέξεων 2ης εβδοµάδας

Περιεχόµενα διαλέξεων 2ης εβδοµάδας Εισαγωγή οµή και πόροι τηλεπικοινωνιακού συστήµατος Σήµατα Περιεχόµενα διαλέξεων 1ης εβδοµάδας Εισαγωγή Η έννοια της επικοινωνιας Ιστορική αναδροµή οµή και πόροι τηλεπικοινωνιακού συστήµατος οµή τηλεπικοινωνιακού

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Δρ. Στέλιος Τιμοθέου ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΑ ΘΕΜΑΤΑ ΜΑΣ ΣΗΜΕΡΑ Αναλογικά και ψηφιακά συστήματα Μετατροπή

Διαβάστε περισσότερα

Ψηφιακές Επικοινωνίες

Ψηφιακές Επικοινωνίες Ψηφιακές Επικοινωνίες Ενότητα 3: Μαθιόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μέρος Α 3 Διαμόρφωση βασικής ζώνης (1) H ψηφιακή πληροφορία μεταδίδεται απ ευθείας με τεχνικές

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 6: Διαμόρφωση Πλάτους (2/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση Απλής Πλευρικής Ζώνης (SSB) Διαμόρφωση Υπολειπόμενης Πλευρικής Ζώνης (VSB)

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 11: Ψηφιακή Διαμόρφωση Μέρος Α Μιχαήλ Λογοθέτης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Περιγραφή διαμόρφωσης παλμών κατά

Διαβάστε περισσότερα

Ενότητα 4: Δειγματοληψία - Αναδίπλωση

Ενότητα 4: Δειγματοληψία - Αναδίπλωση Ενότητα 4: Δειγματοληψία - Αναδίπλωση Σήματα και Συστήματα Τα συστήματα επεξεργάζονται ένα ή περισσότερα σήματα: Το παραπάνω σύστημα μετατρέπει το σήμα x(t) σε y(t). π.χ. Σε ένα σήμα ήχου μπορεί να ενισχύσει

Διαβάστε περισσότερα

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8)

Διάλεξη 3. Δειγματοληψία και Ανακατασκευή Σημάτων. Δειγματοληψία και Ανακατασκευή Σημάτων. (Κεφ & 4.6,4.8) University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 3 Δειγματοληψία και Ανακατασκευή (Κεφ. 4.0-4.3 & 4.6,4.8) Περιοδική δειγματοληψία (periodic sampling) Περίοδος (sampling period) T Συχνότητα

Διαβάστε περισσότερα

Εξίσωση Τηλεπικοινωνιακών Διαύλων

Εξίσωση Τηλεπικοινωνιακών Διαύλων Εξίσωση Τηλεπικοινωνιακών Διαύλων ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΜΔΕ ΠΡΟΗΓΜΈΝΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΉΜΑΤΑ ΚΑΙ ΔΙΚΤΥΑ Ενότητα 2 η Φίλτρα Μηδενισμού της ISI Νικόλαος Χ.

Διαβάστε περισσότερα

SOURCE. Transmitter. Channel Receiver

SOURCE. Transmitter. Channel Receiver Εισαγωγή στις Τηλεπικοινωνίες Εισαγωγή στα Σήµατα Ψηφιακές Επικοινωνίες - ειγµατοληψία ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ Διαμόρφωση Βασικής Ζώνης ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Χειμερινό Εξάμηνο Τμήμα Πληροφορικής και Τηλεπικοινωνίων Νικόλαος Χ. Σαγιάς Αναπληρωτής Καθηγητής Wepage: hp://eclass.uop.gr/courses/tst25

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 9 ο : Δειγματοληψία και Ανασύσταση

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Σήματος. Νόκας Γιώργος

Εισαγωγή στην Επεξεργασία Σήματος. Νόκας Γιώργος Εισαγωγή στην Επεξεργασία Σήματος Νόκας Γιώργος Βιβλιογραφία στον εύδοξο 1. Γ. Β. Μουστακίδης, Βασικές Τεχνικές Ψηφιακής Επεξεργασίας Σημάτων και Συστημάτων, εκδόσεις Α. Τζιόλα & Υιοί Ο.Ε., Θεσσαλονίκη,

Διαβάστε περισσότερα

Αναδρομή- PCM Ιεραρχίες PDH-SDH. Τα κυκλώματα που χρησιμοποιούν διαφορετική διόδευση μετάδοσης σε κάθε κατεύθυνση καλούνται κανάλια.

Αναδρομή- PCM Ιεραρχίες PDH-SDH. Τα κυκλώματα που χρησιμοποιούν διαφορετική διόδευση μετάδοσης σε κάθε κατεύθυνση καλούνται κανάλια. Συστήματα Μετάδοσης Αναδρομή- PCM Ιεραρχίες PDH-SDH ΜΕΤΑΔΟΣΗ - 1 Ένα Σύστημα Μετάδοσης παρέχει κυκλώματα μεταξύ των κόμβων του δικτύου. Τα κυκλώματα που χρησιμοποιούν διαφορετική διόδευση μετάδοσης σε

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης

Ψηφιακές Τηλεπικοινωνίες. Βέλτιστος Δέκτης Ψηφιακές Τηλεπικοινωνίες Βέλτιστος Δέκτης Σύνδεση με τα Προηγούμενα Επειδή το πραγματικό κανάλι είναι αναλογικό, κατά τη διαβίβαση ψηφιακής πληροφορίας, αντιστοιχίζουμε τα σύμβολα σε αναλογικές κυματομορφές

Διαβάστε περισσότερα

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής 15/3/9 Από το προηγούμενο μάθημα... Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 3 η : «Επεξεργαστές Ε ξ έ Δυναμικής Περιοχής» Φλώρος

Διαβάστε περισσότερα

Αποδιαμόρφωση σημάτων CW με θόρυβο

Αποδιαμόρφωση σημάτων CW με θόρυβο Αποδιαμόρφωση σημάτων CW με θόρυβο Ορισμοί Το σήμα στη λήψη (μετά το φίλτρο προ-ανίχνευσης) είναι r( t) s( t) n( t) όπου s S, n N R Οι σηματοθορυβικές σχέσεις είναι S S W S SNR SNRb, SNRo N N0B B N Ο ζωνοπερατός

Διαβάστε περισσότερα

Pulse Amplitude (PAM) Pulse Code (PCM) Pulse Width (PWM) Delta (DM) Pulse Position (PPM) Adaptive Delta (ADM)

Pulse Amplitude (PAM) Pulse Code (PCM) Pulse Width (PWM) Delta (DM) Pulse Position (PPM) Adaptive Delta (ADM) Εισαγωγή στις Τηλεπικοινωνίες ιαµόρφωση Παλµών Αναλογική/Ψηφιακή PCM/DPCM DM/ADM ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση

Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση ΒΕΣ 4 Συμπίεση και Μετάδοση Πολυμέσων Ψηφιακή Αναπαράσταση Σήματος: Δειγματοληψία, Κβαντισμός και Κωδικοποίηση Τι είναι Σήμα; Βασικές έννοιες επεξεργασίας σημάτων Πληροφορίες που αντιλαμβανόμαστε μέσω

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών Ι

Συστήματα Επικοινωνιών Ι + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: demestihas@uowm.gr Συστήματα Επικοινωνιών Ι Θόρυβος σε συστήματα διαμόρφωσης συνεχούς κυματομορφής (CW) + Περιεχόμενα n Θόρυβος σε συστήματα διαμόρφωσης συνεχούς κυματομορφής

Διαβάστε περισσότερα

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος

Γιατί Διαμόρφωση; Μια κεραία για να είναι αποτελεσματική πρέπει να είναι περί το 1/10 του μήκους κύματος Γιατί Διαμόρφωση; Μετάδοση ενός σήματος χαμηλών συχνοτήτων μέσω ενός ζωνοπερατού καναλιού Παράλληλη μετάδοση πολλαπλών σημάτων πάνω από το ίδιο κανάλι - Διαχωρισμός συχνότητας (Frequency Division Multiplexing)

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο

Διαβάστε περισσότερα

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα»

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ Δίκτυα Υπολογιστών Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» Φυσικό στρώμα: Προσδιορίζει τις φυσικές διεπαφές των συσκευών Μηχανικό Ηλεκτρικό Λειτουργικό Διαδικαστικό

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 6: Ψηφιακή Διαμόρφωση Φάσης Phase Shift Keying (PSK) με Ορθογωνική Σηματοδοσία Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Ορθογωνική Σηματοδοσία Διαμόρφωση

Διαβάστε περισσότερα