Συνδυαστική Απαρίθμηση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συνδυαστική Απαρίθμηση"

Transcript

1 Συνδυαστική Απαρίθμηση Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

2 Συνδυαστική Απαρίθμηση Υπολογισμός (με συνδυαστικά επιχειρήματα) του πλήθους των διαφορετικών αποτελεσμάτων ενός «πειράματος». «Πείραμα»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων αποτελεσμάτων. Π.χ. ρίψη ζαριών, μοίρασμα τράπουλας, ανάθεση γραφείων, επιλογή password, 6άδες Lotto, Πληθάριθμος δυναμοσυνόλου: αν Α = n, τότε P(A) = 2 n Βασικές αρχές και έννοιες: Κανόνες γινομένου και αθροίσματος, αρχή εγκλεισμού αποκλεισμού. Διατάξεις και μεταθέσεις (με ή χωρίς) επανάληψη. Συνδυασμοί (με ή χωρίς) επανάληψη. Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 2

3 Κανόνας Γινομένου Πείραμα Α με n αποτελέσματα. Πείραμα Β με m αποτελέσματα. Αν αποτελέσματα Α και Β είναι ανεξάρτητα, τότε συνδυασμός των πειραμάτων Α και Β έχει n m αποτελέσματα. Ανεξάρτητα: το αποτέλεσμα του Α δεν επηρεάζει (ως προς τον αριθμό των αποτελεσμάτων) το αποτέλεσμα του Β, και αντίστροφα. Π.χ. Α Β = Α Β Επιλογή ενός ψηφίου 0-9 και ενός κεφαλαίου Ελληνικού γράμματος: = 240 διαφορετικά αποτελέσματα. #συμβ/ρών (με κεφαλαία Ελληνικά) μήκους 10: #παλινδρομικών συμβ/ρών μήκους 10: #συναρτήσεων από Α στο Β ( A = n, B = m): #συναρτήσεων 1-1 από Α στο Β (m n): Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 3

4 Κανόνας Αθροίσματος Πείραμα Α με n αποτελέσματα. Πείραμα Β με m αποτελέσματα. Αν αποτελέσματα Α και Β είναι αμοιβαία αποκλειόμενα, τότε συνδυασμός των πειραμάτων Α ή Β έχει n+m αποτελέσματα. Αμοιβαία αποκλειόμενα: η παρατήρηση αποτελέσματος του Α αποκλείει την παρατήρηση αποτελέσματος του Β, και αντίστροφα. Α Β = Α + Β, αν Α Β = Αρχή εγκλεισμού αποκλεισμού: Α Β = Α + Β - Α Β 5 Ελληνικά, 7 Αγγλικά, και 10 Γερμανικά βιβλία. Τρόποι να διαλέξουμε 2 βιβλία σε διαφορετική γλώσσα: Ελλ. Αγγλ.: 5 7 = 35 Ελλ. Γερμ.: 5 10 = 50 Αγγλ. Γερμ.: 7 10 = 70 Αμοιβαία αποκλειόμενα. Σύνολο: 155 διαφορετικές επιλογές. Τρόποι να διαλέξουμε 2 βιβλία: Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 4

5 Παραδείγματα #passwords με 6 8 χαρακτήρες αποτελούμενα από κεφαλαία (Αγγλικά) γράμματα και (τουλάχιστον ένα) δεκαδικό ψηφίο. #passwords μήκους k = 36 k 26 k #passwords = ( )-( ) #passwords μήκους 2 από Α, Β, C, D και 0, 1, 2 με τουλάχιστον ένα ψηφίο. Σωστό το = 33. Λάθος το (γιατί;) = 42 #δυαδικών συμβ/ρών μήκους 8 που είτε αρχίζουν από 1 είτε τελειώνουν σε 00: Όχι αμοιβαία αποκλειόμενα: = 160. Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 5

6 Διατάξεις Μεταθέσεις Διατάξεις P(n, k): k από n διακεκριμένα αντικείμενα σε k διακεκριμένες θέσεις (1 αντικείμενο σε κάθε θέση). P(n, k) = #τρόπων να πληρωθούν k διακεκριμένες θέσεις από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). #τρόπων να πληρώσουμε 4 (διαφορετικές) θέσεις εργασίας αν έχουμε 30 υποψήφιους: #συμβ/ρών μήκους 10 μεόλατασύμβολαδιαφορετικά από κεφαλαίους Ελληνικούς χαρακτήρες: Μεταθέσεις n αντικειμένων: P(n, n) = n! #αναθέσεων 10 (διαφορετικών) γραφείων σε 10 καθηγητές: #συμβ/ρών μήκους 24 με όλα τα σύμβολα διαφορετικά από κεφαλαίους Ελληνικούς χαρακτήρες: Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 6

7 Παραδείγματα #συμβ/ρών από 4 διαφορετικούς χαρακτήρες ακολουθούμενους από 3 διαφορετικά ψηφία: Ρ(24, 4) Ρ(10, 3) #τετραψήφιων δεκαδικών αριθμών που δεν αρχίζουν από 0 και δεν έχουν επαναλάμβανόμενα ψηφία: = #μεταθέσεων (κεφαλαίων Ελληνικών) όπου Α εμφανίζεται πριν από τα Β και Γ: Ρ(24, 21) 2! #μεταθέσεων όπου Α εμφανίζεται πριν το Β, και μετά από τα Γ και Δ: Ρ(24, 20) 2! Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 7

8 Διατάξεις με Επανάληψη #πενταψήφιων δεκαδικών αριθμών: 10 5 Διατάξεις με επανάληψη: n διακεκριμένα αντικείμενα (διαθέσιμα σε απεριόριστα «αντίγραφα») σε k διακεκριμένες θέσεις: Διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό στη χωρητικότητα), όταν η σειρά στις υποδοχές δεν έχει σημασία. #πενταψήφιων δεκαδικών αριθμών με τουλ. ένα 8: Πληθικός αριθμός δυναμοσυνόλου Α: 2 A A στοιχεία σε 2 υποδοχές (ανήκει δεν ανήκει στο υποσύνολο). #δυαδικών συμβ/ρών μήκους n με άρτιο πλήθος από 1: συμβ/ρά μήκους n 1, μοναδική συμ/ρά με άρτιο πλήθος 1. Ιδέα του parity bit. Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 8

9 Διατάξεις με Επανάληψη Διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό χωρητικότητας) με σειρά στις υποδοχές να έχει σημασία. Ιστιοφόρο έχει n κατάρτια στα οποία μπορεί να αναρτηθούν k διαφορετικές σημαίες. Πόσα διαφορετικά σήματα; Κυκλικές μεταθέσεις n ατόμων: #τρόπων που n άνθρωποι κάθονται σε κυκλικό τραπέζι (διακρίνουμε μεταξύ δεξιά και αριστερά). Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 9

10 Συνδυασμοί Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). Διαφορετικές 6άδες Lotto (από 1-49): #υποσυνόλων με k στοιχεία από σύνολο n στοιχείων: #τρόπων στελέχωσης 5μελούς κοινοβουλευτικής επιτροπής, όπου μέλη ισότιμα: #δυαδικών συμβ/ρών μήκους 32 με (ακριβώς) επτά 1: #επιλογών 3 αριθμών ώστε άθροισμα να διαιρείται από 3. Αριθμοί σε 3 ομάδες 100 αριθμών με βάση mod 3. Είτε 3 από ίδια ομάδα είτε έναν από κάθε ομάδα. Τελικά 3C(100, 3) = Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 10

11 Μεταθέσεις με Ομάδες #συμβ/ρών (μήκους 8) με γράμματα λέξης ΕΦΗΒΙΚΟΣ: 8! #συμβ/ρών (μήκους 8) με γράμματα λέξης ΠΑΡΑΠΟΝΑ: Μεταθέσεις με ομάδες ίδιων αντικειμένων: 8!/(2!3!1!1!1!) Μεταθέσεις n αντικειμένων σε k ομάδες ίδιων αντικειμένων με πληθάριθμο n 1, n 2,, n k αντίστοιχα: #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 Δ: Αν πρώτο και τελευταίο Α: Αν δεν πρέπει να εμφανίζεται ΔΔΔΔ: Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 11

12 Παραδείγματα Έστω το «τετράγωνο» που ορίζεται από τα σημεία (0, 0), (0, 8), (10, 0), και (10, 8). Πόσα διαφορετικά «μονοπάτια» από το (0, 0) στο (10, 8), αν σε κάθε βήμα μετακινούμαστε είτε κατά μια μονάδα προς τα πάνω είτε κατά μιαμονάδαπροςταδεξιά. Πρέπει να κάνουμε 8 βήματα Πάνω και 10 βήματα Δεξιά. #μονοπατιών = #μεταθέσεων 8 Πκαι10 Δ = 18!/(10! 8!) Ακολουθίες α 1,..., α n και β 1,..., β m. #τρόπων καταγραφής στοιχείων των 2 ακολουθιών ώστε να διατηρείται η σειρά μεταξύ των στοιχείων της ίδιας ακολουθίας; Μεταθέσεις n A και m B δείχνουν θέσεις στοιχείων κάθε ακολουθίας. Δεδομένη η σειρά των στοιχείων κάθε ακολουθίας. Τελικά: (n+m)!/(n! m!). Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 12

13 Συνδυασμοί με Επανάληψη Διαφορετικά αποτελέσματα από ρίψη 2 (ίδιων) ζαριών: 21 Συνδυασμοί με επανάληψη: k από n διακεκριμένα αντικείμενα (διαθέσιμα σε απεριόριστα «αντίγραφα»). Διανομή k ίδιων αντικειμένων σε n διακεκριμένες υποδοχές (χωρίς περιορισμό στη χωρητικότητα). Διανομές αντιστοιχούν σε μεταθέσεις k 1 και n-1 0. #1 ανάμεσα σε 0 καθορίζει #αντικειμένων σε κάθε υποδοχή. #διανομών k ίδιων αντικειμένων σε n διακεκριμένες υποδοχές ώστε καμία υποδοχή κενή (k n). C(n+ (k n) 1, k n) = C(k 1, k n) = C(k 1, n 1) Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 13

14 Ανακεφαλαίωση Προβλήματα Διατάξεων σε k διακεκριμένες θέσεις επιλογή k από τα n αντικείμενα, κάθε επιλογή είναι «διαφορετική» n διακεκριμένα αντικείμενα Προβλήματα Συνδυασμών σε k μη διακεκριμένες θέσεις επιλογή k από τα n αντικείμενα, οι επιλογές είναι «ίδιες» χωρίς επανάληψη (κάθε αντικείμενο διαθέσιμο σε 1 «αντίγραφο») n! Pnk (, ) = ( n k)! με επανάληψη (κάθε αντικείμενο διαθέσιμο σε πολλά «αντίγραφα») Ισοδύναμο με διανομή k διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές δεν παίζει ρόλο η σειρά στις υποδοχές παίζει ρόλο η σειρά στις υποδοχές k n ( n+ k 1)! ( n 1)! με επανάληψη (κάθε αντικείμενο διαθέσιμο σε πολλά «αντίγραφα») χωρίς επανάληψη (κάθε αντικείμενο διαθέσιμο σε 1 «αντίγραφο») Ισοδύναμο με διανομή k μη διακεκριμένων αντικειμένων σε n διακεκριμένες υποδοχές n! ( n+ k 1)! Cn ( + k 1, k) = ( n 1)! k! Cnk (, ) = ( n k)! k! Μεταθέσεις (n = k): P( nn, ) = n! Μεταθέσεις n αντικειμένων όταν έχουμε k ομάδες ίδιων αντικ. με πληθάριθμο n 1,, n k : n1 n2 n!!! n! k Συνδυαστική Απαρίθμηση 14

15 Παραδείγματα 10 όμοιες καραμέλες σε 3 διακεκριμένα παιδιά: Επιλογή 10 από 12 παιδιά (σειρά επιλογής έχει σημασία): Επιλογή 10 από 12 παιδιά (σειρά επιλογής δεν έχει σημασία): Επιλογή 10 από 3 χρώματα με επανάληψη (σειρά επιλογής δεν έχει σημασία): Επιλογή 3 από 10 χρώματα με επανάληψη (σειρά επιλογής δεν έχει σημασία): Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 15

16 Παραδείγματα #τοποθέτησης 8 (ίδιων / διακεκριμένων) πύργων σε μια σκακιέρα 8x8, ώστε να μην απειλεί ο ένας τον άλλο. Ένας πύργος σε κάθε γραμμή. Οπύργοςτης1 ης γραμμής με 8 τρόπους, οπύργοςτης2 ης γραμμής με 7 τρόπους, κοκ. Αν πύργοι ίδιοι, συνολικά: 8! τρόποι. Αν πύργοι διακεκριμένοι: πολλαπλασιάζουμε με μεταθέσεις: 8!. Συνολικά: (8!) 2 τρόποι a b c d e f g h Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 16

17 Παραδείγματα 40 βουλευτές του κόμματος Α, 35 βουλευτέςτουκόμματοςβ, και 25 βουλευτέςτουκόμματοςγ. #τρόπων να ορίσουμε 10 (μη διακεκριμένες) 3μελείς κοινοβουλευτικές ομάδες, με έναν βουλευτή από κάθε κόμμα, αν κάθεβουλευτήςμπορείνασυμμετέχεισε1 το πολύ ομάδα; #τρόποι επιλογής 10 βουλευτών κόμματος Α: C(40, 10). #τρόποι επιλογής και «τοποθέτησης» 10 βουλ. Β: P(35, 10). #τρόποι επιλογής και «τοποθέτησης» 10 βουλ. Γ: P(25, 10). #τρόπων συνολικά: 40!35!25!/(10!30!25!15!). Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 17

18 Παραδείγματα #ακεραίων λύσεων της εξίσωσης x 1 + x 2 + x 3 + x 4 = 20 Αν x i 0: C( , 20) = C(23, 20) = C(23, 3) Αν x i 1: C( , 16) = C(19, 16) = C(19, 3) Αν x 1 2, x 2 4, x 3 1, x 4 5: C( , 8) = C(11, 3) 5 διαφορετικά γράμματα (π.χ. Α, Β, Γ, Δ, Ε) και 20 κενά _. #συμβ/ρών που αρχίζουν και τελειώνουν με γράμμα και έχουν ανάμεσα σε διαδοχικά γράμματα τουλάχιστον 3 κενά. Μεταθέσεις 5 γραμμάτων: 5! 12 κενά στις 4 διακεκριμένες «υποδοχές» ανάμεσα σε γράμματα. Υπόλοιπα 8 κενά στις 4 «υποδοχές» με C( , 8) τρόπους. Τελικά: C(11, 8) 5! συμβ/ρές. Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 18

19 Παραδείγματα #διμελών σχέσεων στο σύνολο Α, Α = n: Όλες: Ανακλαστικές: Συμμετρικές: Αντισυμμετρικές: Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 19

20 Παραδείγματα n θρανία στη σειρά για k φοιτητές που εξετάζονται (n 2k-1). #τοποθετήσεων ώστε τουλάχιστον μια κενή θέση ανάμεσα σε κάθε ζευγάρι φοιτητών. Μεταθέσεις k φοιτητών: k! (καταλαμβάνουν k θρανία). Τοποθετούμε k 1 θρανία ανάμεσά τους. Υπόλοιπα n 2k+1 (ίδια) θρανία στις k+1 διακεκριμένες «υποδοχές» στην αρχή, στο τέλος, και ανάμεσα σε φοιτητές. C((k+1) + (n 2k+1) 1, n-2k+1) = C(n k+1, n-2k+1) = C(n k+1, k) Τελικά C(n k+1, k) k! = (n-k+1)!/(n-2k+1)! Διαφορετικά μεταθέσεις (με ομάδες) k διαφορετικών αντικειμένων (φοιτητών) και n-2k+1 ίδιων αντικειμένων (ελεύθερων θρανίων). Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 20

21 Παραδείγματα #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 Δ όπου δεν εμφανίζεται το ΓΑ. #συμβ/ρών μήκους 19 από 7 Α, 8 Β, και 4 Δ: 19!/(7!8!4!) Δημιουργούνται 20 διακεκριμένες «υποδοχές» για τα 5 Γ. Εξαιρούνται οι 7 πριν από κάθε Α. Διανομή 5 Γσε13 διακεκριμένες «υποδοχές»: C(17, 5). Τελικά: [19!/(7!8!4!)] [17!/(5!12!)]. #συμβ/ρών μήκους 24 από 7 Α, 8 Β, 5 Γ, και 4 Δ όπου το πρώτο Β εμφανίζεται πριν το πρώτο Α. #επιλογών θέσεων για 4 Δ (από 24): C(24, 4). #επιλογών θέσεων για 5 Γ (από 20): C(20, 5). Ένα Β σε πρώτη διαθέσιμη θέση. #επιλογών θέσεων για υπόλοιπα 7 Β (από 14): C(14, 7). Συνολικά: [24!/(4!5!15!)] [14!/(7!7!)]. Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 21

22 Παραδείγματα #διανομών 22 διαφορ. βιβλίων πάχους 5 εκ. σε 3 διακεκριμένα ράφια μήκους 1 μ. το καθένα ώστε κανένα ράφι κενό. k διακεκριμένα αντικείμενα σε n διακεκριμένες υποδοχές ώστε καμία υποδοχή κενή (k n, πάχος βιβλίων δεν συνιστά περιορισμό). Αν αντικείμενα ίδια, #διανομών: C(k 1, n 1). Αντικείμενα διαφορετικά: C(k 1, n 1) k! Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 22

23 Διατάξεις με Επανάληψη #εβδομαδιαίων προγραμμάτων μελέτης για μαθήματα Μ, Φ, Χ, Ο ώστε κάθε μάθημα τουλάχιστον 1 ημέρα. Αρχή εγκλεισμού αποκλεισμού: #προγραμμάτων χωρίς (τουλ.) 1 μάθημα: 3 7 (4 περιπτώσεις). #προγραμμάτων χωρίς (τουλ.) 2 μαθήματα: 2 7 (6 περιπτώσεις). #προγραμμάτων χωρίς (τουλ.) 3 μαθήματα: 1 7 = 1 (4 περιπτ.) #προγραμμάτων χωρίς (τουλ.) 4 μαθήματα: 0 Τελικά: = 8400 Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 23

24 Παραδείγματα 2n+1 κοινοβουλευτικές έδρες να μοιραστούν σε 3 κόμματα ώστε αν οποιαδήποτε 2 συμφωνούν να έχουν πλειοψηφία. #διανομών 2n+1 (ίδιες) μπάλες σε 3 διακεκριμένες υποδοχές ώστε κάθε υποδοχή n μπάλες. #διανομών χωρίς περιορισμούς: #διανομών όπου κάποια υποδοχή έχει n+1 μπάλες: Επιλέγουμε (με 3 τρόπους) υποδοχή με «πλειοψηφία». Τοποθετούμεσεαυτήn+1 μπάλες. #διανομών υπόλοιπων n μπαλών στις 3 υποδοχές: Τελικά #διανομών: Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 24

25 Υποσύνολα Πολυσυνόλου #διαιρετών του 180; Ανάλυση σε γινόμενο πρώτων παραγόντων: 180 = #διαιρετών 180 = #υποσυνόλων {2:2, 3:2, 5:1} #διαιρετών του 180 = = 18. #υποσύνολων πολυσυνόλου με k στοιχεία όπου κάθε στοιχείο p είναι διαθέσιμο σε n p «αντίγραφα». (1+n 1 )(1+n 2 ) (1+n k ) Για #μη κενών υποσυνόλων: (1+n 1 )(1+n 2 ) (1+n k ) 1 #διαιρετών του 1400; Ανάλυση σε γινόμενο πρώτων παραγόντων: 1400 = #διαιρετών 1400 = #υποσυνόλων {2:3, 5:2, 7:1} #διαιρετών του 1400 = = 24. Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 25

26 Εφαρμογή: Διακριτή Πιθανότητα Διακριτός δειγματοχώρος: αριθμήσιμο σύνολο Ω, όπου ω Ω, αντιστοιχούμε p(ω) [0, 1] και Γεγονός Ε: υποσύνολο Ω. p(e) = Πιθανότητα για 6άρες στο τάβλι: 1/36. Πιθανότητα για 6-5 στο τάβλι: 2/36. Πιθανότητα για ίδιο αποτέλεσμα στα 2 ζάρια: 6*1/36 = 1/6. Πιθανότητα τουλάχιστον 2 από k (τυχαία επιλεγμένους) ανθρώπους να έχουν γενέθλια την ίδια ημέρα; Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 26

27 Εφαρμογή: Διακριτή Πιθανότητα Ρίχνουμε 4 (ίδια / διακ.) ζάρια. Πιθανότητα κανένα να μην φέρει 6; Αφού η πιθανότητα δεν σχετίζεται με «ταυτότητα» ζαριών, δεν παίζει ρόλο αν τα ζάρια είναι διακεκριμένα ήόχι. Τα θεωρούμε διακεκριμένα, ώστεόλαταενδεχόμεναισοπίθανα. Όλα τα ενδεχόμενα: 6 4 = Ενδεχόμενα χωρίς 6: 5 4 = 625. Ενδεχόμενα με τουλάχιστον ένα 6: = 671. Έχουμε 10 ζευγάρια παπούτσια ανακατεμένα σε ένα ντουλάπι. Επιλέγουμε τυχαία 8 παπούτσια απότοντουλάπι. Ποια η πιθανότητα να μην επιλέξουμε κανένα ζευγάρι παπουτσιών; Ποια η πιθανότητα να επιλέξουμε ακριβώς ένα ζευγάρι παπουτσιών; Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 27

28 Δυωνυμικοί Συντελεστές Δυωνυμικό Θεώρημα: Ως άμεση συνέπεια: Προκύπτει συνδυαστικά ως #υποσυνόλων συνόλου με n στοιχεία. Με x = 1 και y = 1: Απόδειξη για τύπο εγκλεισμού αποκλεισμού: Για x = 2 και y = 1: Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 28

29 Ταυτότητα του Pascal Ταυτότητα του Pascal: #τρόπων να επιλέξουμε k από n αντικείμενα: είτε επιλέγουμε το τελευταίο και επιλέγουμε τα άλλα k 1 από τα υπόλοιπα n-1 αντικείμενα, είτε δενεπιλέγουμετοτελευταίοκαι επιλέγουμε όλα τα k από τα υπόλοιπα n-1 αντικείμενα. Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 29

30 Τρίγωνο του Pascal Αναδρομική σχέση για υπολογισμό δυωνυμικών συντελεστών: Η τεχνική σήμερα είναι γνωστή ως δυναμικός προγραμματισμός. n Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 30

31 Ταυτότητα Vandermonde Ταυτότητα Vandermonde: #τρόπων να επιλέξουμε r από n (αριθμημένες) πράσινες μπάλες και m (αριθμημένες) κόκκινες μπάλες: Επιλέγουμε r k από m κόκκινες k από n πράσινες με C(m, r k) C(n, k) τρόπους. Αμοιβαία αποκλειόμενα ενδεχόμενα για διαφορετικές τιμές του k. Άμεση συνέπεια: Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 31

32 Δημιουργία Μεταθέσεων... n αντικειμένων σε λεξικογραφική σειρά. Συνάρτηση που επιστρέφει (λεξικογραφικά) επόμενη μετάθεση. Ελάχιστη: αντικείμενα σε αύξουσα σειρά. Μέγιστη: αντικείμενα σε φθίνουσα σειρά. Δεδομένης μετάθεσης α 1 α 2...α n : Υπολόγισε ελάχιστη δυνατή κατάληξη που επιδέχεται (λεξικογραφικής) αύξησης. Υπολογισμός επόμενης μετάθεσης (που δεν έχει εμφανιστεί ήδη ως κατάληξη) για αυτή την κατάληξη Διακριτά Μαθηματικά (Άνοιξη 2017)

33 Δημιουργία Μεταθέσεων Δεδομένης μετάθεσης α 1 α 2...α n : Μέγιστος δείκτης j τ.ω. α j < α j+1 (άρα α j+1 > α j+2 > α n-1 > α n ) Επόμενη μετάθεση α 1 α 2...α n : Πρόθεμα α 1... α j-1 αμετάβλητο. α j = ελάχιστο από τα α j+1,..., α n που «ξεπερνά» το α j. Υπόλοιπα από τα α j, α j+1,..., α n (εκτός αυτού που πήρε θέση j) σε αύξουσα σειρά Διακριτά Μαθηματικά (Άνοιξη 2017)

34 Δημιουργία Μεταθέσεων Υλοποίηση: Μέγιστο j τ.ω. α j < α j+1. Ισχύει ότι α j+1 > α j+2 >... > α n. Μετά την αντιμετάθεση των α j και α k, τα α j+1,, α n είναι ταξινομημένα σε φθίνουσα σειρά. Αντιμετάθεση ζευγών (α j+1, α n ), (α j+2, α n-1 ), κοκ. καταλήγει σε ταξινόμηση σε αύξουσα σειρά. Υλοποίηση χωρίς ταξινόμηση σε χρόνο Ο(n). Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 34

35 Δημιουργία Συνδυασμών Όλοι οι (2 n ) συνδυασμοί n αντικειμένων: δημιουργία δυαδικών αριθμών μήκους n. Δημιουργία όλων των συνδυασμών k αντικειμένων από n σε λεξικογραφική σειρά. Συνάρτηση για επόμενο συνδυασμό. Αντικείμενα σε αύξουσα σειρά. Ελάχιστος: k. Μέγιστος: (n k +1) n Δεδομένης μετάθεσης α 1 α 2...α n : Υπολόγισε ελάχιστη δυνατή κατάληξη που επιδέχεται αύξησης. Αύξηση λαμβάνει υπόψη ότι έχουμε συνδυασμούς Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 35

36 Δημιουργία Συνδυασμών Δεδομένου συνδυασμού α 1 α 2...α k : Μέγιστος δείκτης j τ.ω. α j n k+j (άρα α j+1 α k μέγιστος συνδυασμός k j στοιχείων) Επόμενος συνδυασμός α 1 α 2...α k : Πρόθεμα α 1... α j-1 αμετάβλητο. α j = α j +1. Τα επόμενα στοιχεία (α j +2, α j + 3,...) στις υπόλοιπες θέσεις Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 36

37 Δημιουργία Συνδυασμών Υλοποίηση σε χρόνο Ο(k). Διακριτά Μαθηματικά (Άνοιξη 2017) Συνδυαστική Απαρίθμηση 37

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ

Συνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθµηση

Συνδυαστική Απαρίθµηση Συνδυαστική Απαρίθµηση ιδάσκοντες:. Φωτάκης,. Σούλιου, Θ. Λιανέας Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Παραδείγματα Συνδυαστική Απαρίθμηση Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο n θρανία στη σειρά

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση

Συνδυαστική Απαρίθμηση Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων «πειράματος» ή «γεγονότος» (με συνδυαστικά επιχειρήματα). «Πείραμα» ή «γεγονός»: διαδικασία με συγκεκριμένο (πεπερασμένο) σύνολο παρατηρήσιμων

Διαβάστε περισσότερα

Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»).

Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). Συνδυασμοί Συνδυασμοί C(n, k): #επιλογών k από n διακεκριμένα αντικείμενα (διαθέσιμα σε ένα «αντίγραφο»). ιαφορετικές 6άδες Lotto (από 1-49): #υποσυνόλων με k στοιχεία από σύνολο n στοιχείων: #τρόπων στελέχωσης

Διαβάστε περισσότερα

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά

Διαβάστε περισσότερα

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική)

ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) ΠΛΗ 20, 1 η ΟΣΣ (Συνδυαστική) Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Οργανωτικά Ζητήματα Επικοινωνία: Επίλυση αποριών, οδηγίες,..., και λοιπά

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

Gutenberg

Gutenberg Διακριτά Μαθηματικά * Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Φροντιστήριο: Α. Κόλλια (akollia@ceid.upatras.gr) * Οι διαφάνειες (πλην αυτών για τις σχέσεις αναδρομής) έχουν παραχθεί από τη Δρ. Ε. Παπαϊωάννου,

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 4: Διατάξεις Μεταθέσεις Συνδυασμοί Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4

n ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4 Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα

Διαβάστε περισσότερα

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αρχή του Περιστερώνα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση:

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Συνδυαστική ανάλυση μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση:

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙ 1 / 15 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή

Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων; Στην αρχή Στοιχειώδης συνδυαστική Συνδυασμοί και διατάξεις με επανάληψη Διατάξεις με επανάληψη: Με πόσους τρόπους μπορώ να διατάξω r από n αντικείμενα όταν επιτρέπονται επαναληπτικές εμφανίσεις των αντικειμένων;

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13

Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/ / 13 Διακριτά Μαθηματικά Φροντιστήριο Στοιχειώδης Συνδυαστική-Θέματα & Ασκήσεις 03/11/2016 1 / 13 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = (

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

(n + r 1)! (n 1)! (n 1)!

(n + r 1)! (n 1)! (n 1)! Στοιχειώδης συνδυαστική Διανομή αντικειμένων σε υποδοχές Διανομή Αντικειμένων σε Υποδοχές Με πόσους τρόπους μπορούμε να διανείμουμε r αντικείμενα (διακεκριμένα ή όχι) σε n υποδοχές. Διακρίνουμε περιπτώσεις:

Διαβάστε περισσότερα

Απαρίθμηση: Εισαγωγικά στοιχεία

Απαρίθμηση: Εισαγωγικά στοιχεία Απαρίθμηση: Εισαγωγικά στοιχεία Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών Απαρίθμηση: μέτρηση αντικειμένων με ορισμένες

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

(Γραμμικές) Αναδρομικές Σχέσεις

(Γραμμικές) Αναδρομικές Σχέσεις (Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Πέμπτη, 19/4/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα/ Συνδυαστική Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα

Διακριτά Μαθηματικά. Απαρίθμηση. Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Διακριτά Μαθηματικά Απαρίθμηση Βασικές τεχνικές απαρίθμησης Αρχή Περιστεριώνα Συνδυαστική ανάλυση - μελέτη της διάταξης αντικειμένων 17 ος αιώνας: συνδυαστικά ερωτήματα για τη μελέτη τυχερών παιχνιδιών

Διαβάστε περισσότερα

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι

κ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διακριτά Μαθηματικά 3 η γραπτή εργασία, Σχέδιο Λύσεων Επιμέλεια: Δ. Φωτάκης, Δ. Σούλιου ΘΕΜΑ (Συνδυαστική,.6 μονάδες)

Διαβάστε περισσότερα

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G

m + s + q r + n + q p + s + n, P Q R P Q P R Q R F G Λύσεις Θεμάτων Θεμελίων των Μαθηματικών 1. Εστω A, B, C τυχόντα σύνολα. Να δειχθεί ότι A (B C) (A B) (A C). Απόδειξη. Εστω x τυχαίο στοιχείο του A (B C). Εξ ορισμού, το x ανήκει σε ακριβώς ένα από τα A,

Διαβάστε περισσότερα

Συνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018

Συνδυαστική. Σύνθετο Πείραμα. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Τρίτη, 17/04/2018 HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραμα Σύνθετο Πείραμα Πείραμα:Οποιαδήποτε διαδικασίαπου μπορεί να οδηγήσει σε ένα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1

Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Διακριτά Μαθηματικά 1ο Φροντιστήριο 07/10/2016 1 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Διατάξεις r αντικειμένων επιλεγμένων από n αντικείμενα χωρίς επανατοποθέτηση: P(n, r) = n! (n r)! Αντιμεταθέσεις

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Ι Φροντιστήριο Στοιχειώδης Συνδυαστική ΙΙΙ 1 / 16 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις στοιχείων

Διαβάστε περισσότερα

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αρχή του Περιστερώνα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση: διμελής σχέση

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Μαθηματική Επαγωγή ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αρχή του Περιστερώνα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση: διμελής σχέση

Διαβάστε περισσότερα

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχέσεις Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διμελής Σχέση Διατεταγμένο ζεύγος (α, β):

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου

ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Αρχή του Περιστερώνα ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συναρτήσεις Συνάρτηση: διµελής

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή Μαθηματική Επαγωγή Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 6o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

, για κάθε n N. και P είναι αριθμήσιμα.

, για κάθε n N. και P είναι αριθμήσιμα. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΔΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ Διδάσκοντες: Δ.Φωτάκης Θ. Σούλιου η Γραπτή Εργασία Ημ/νια παράδοσης 5/4/8 Θέμα (Διαδικασίες Απαρίθμησης.

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 5: Μεταθέσεις & Συνδυασμοί

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 5: Μεταθέσεις & Συνδυασμοί Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 5: Μεταθέσεις & Συνδυασμοί Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν

Διαβάστε περισσότερα

α n z n = 1 + 2z 2 + 5z 3 n=0

α n z n = 1 + 2z 2 + 5z 3 n=0 Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην

Διαβάστε περισσότερα

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 3 ΒΑΣΙΚΕΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ ΜΕΘΟΔΟΙ ΑΠΑΡΙΘΜΗΣΗΣ Πολλαπλασιαστική αρχή (multiplicatio rule). Έστω ότι ένα πείραμα Ε 1 έχει 1 δυνατά αποτελέσματα. Έστω επίσης ότι για κάθε ένα από αυτά τα δυνατά

Διαβάστε περισσότερα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Διακριτά Μαθηματικά Συνδυαστική

Διακριτά Μαθηματικά Συνδυαστική Διακριτά Μαθηματικά Γεώργιος Χρ. Μακρής http://users.sch.gr/gmakris 7 Αυγούστου 2012 Η είναι ένα κομμάτι των Μαθηματικών που επικεντρώνεται στη "μέτρηση" του πλήθους των αντικειμένων ενός συνόλου. Η ασχολείται

Διαβάστε περισσότερα

Σύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου:

Σύνολα. Ορισμός Συνόλου. Υποσύνολα και Κενό Σύνολο. Στοιχεία ενός συνόλου: Ορισμός Συνόλου Σύνολα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Σύνολο είναι μια συλλογή διακεκριμένων

Διαβάστε περισσότερα

Αρχή Εγκλεισµού-Αποκλεισµού

Αρχή Εγκλεισµού-Αποκλεισµού Αρχή Εγκλεισµού-Αποκλεισµού ιδάσκοντες:. Φωτάκης,. Σούλιου, Θ. Λιανέας Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πληθικός Αριθµός

Διαβάστε περισσότερα

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!

P(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n! Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός

Διαβάστε περισσότερα

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.

Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017. HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό

Διαβάστε περισσότερα

P(n, r) = n r. (n r)! n r. n+r 1

P(n, r) = n r. (n r)! n r. n+r 1 Διακριτά Μαθηματικά Φροντιστήριο Ασκήσεις στη Στοιχειώδη Συνδυαστική 1 / 12 Επανάληψη Κανόνας Αθροίσματος Κανόνας Γινομένου Χωρίς επαναλήψεις στοιχείων P(n, r) = n! (n r)! C(n, r) = ( ) n r Με επαναλήψεις

Διαβάστε περισσότερα

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σχέσεις ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιμελής Σχέση ιατεταγμένο ζεύγος (α, β): ύο αντικείμενα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός

Διακριτά Μαθηματικά. Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Διακριτά Μαθηματικά Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός- Αποκλεισμός Αρχή Εγκλεισμού-Αποκλεισμού (Ι) Όταν δύο εργασίες μπορούν να γίνουν ταυτόχρονα, ΔΕ μπορούμε να χρησιμοποιούμε τον κανόνα αθροίσματος

Διαβάστε περισσότερα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα

Κανονικές Γλώσσες. Κανονικές Γλώσσες. Κανονικές Γλώσσες και Αυτόματα. Κανονικές Γλώσσες και Αυτόματα Κανονικές Γλώσσες Κανονικές Γλώσσες Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Κανονική γλώσσα αν παράγεται από κανονική γραμματική. Παραγωγές P (V Σ) Σ * ((V Σ) ε) Παραγωγές μορφής:

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Απαρίθμηση: Διωνυμικοί συντελεστές Συνδυασμοί Το πλήθος των συνδυασμών r από n στοιχεία, C(n,r) συμβολίζεται και ως Ο αριθμός αυτός λέγεται και διωνυμικός συντελεστής Οι αριθμοί αυτοί

Διαβάστε περισσότερα

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α

Πιθανότητες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Γενικής κεφάλαιο 3 94 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α Πιθανότητες Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 3 0 0. 8 8. 8 8 Kglykos.gr 7 / 0 / 0 6 Γενικής κεφάλαιο 3 94 ασκήσεις και τεχνικές σε 8 σελίδες εκδόσεις Καλό πήξιμο ΓΛΥΚΟΣ ΚΩΝ/ΝΟΣ τηλ.

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Τρίτη, 19/04/2016 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραµα Πείραµα: Οποιαδήποτε διαδικασία που µπορεί να οδηγήσει σε ένα αριθµό παρατηρήσιµων

Διαβάστε περισσότερα

Γεννήτριες Συναρτήσεις

Γεννήτριες Συναρτήσεις Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:

Διαβάστε περισσότερα

(1) 98! 25! = 4 100! 23! = 4

(1) 98! 25! = 4 100! 23! = 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2015 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 5 Συνδυαστική Ανάλυση ΙΙ και Εισαγωγή στις ιακριτές Τυχαίες Μεταβλητές

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Συνδυαστική. Που το πάμε. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Πέμπτη, 27/4/2017

Συνδυαστική. Που το πάμε. Πείραμα Συνδυαστική. Το υλικό των. ΗΥ118 Διακριτά Μαθηματικά, Άνοιξη Πέμπτη, 27/4/2017 HY118-Διακριτά Μαθηματικά Πέμπτη, 27/4/2017 Συνδυαστική Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 2 Πείραμα Πείραμα:Οποιαδήποτε διαδικασίαπου μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών

ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών ιακριτές Μέθοδοι για την Επιστήμη των Υπολογιστών ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1 Κεφάλαιο 2: Στοιχεία Λογικής - Μέθοδοι Απόδειξης 1. Να αποδειχθεί ότι οι λογικοί τύποι: (p ( (( p) q))) (p q) και p είναι λογικά ισοδύναμοι. Θέλουμε να αποδείξουμε ότι: (p ( (( p) q))) (p q) p, ή με άλλα

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2018 Τελική Εξέταση Ιουνίου Λύσεις ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 018 Τελική Εξέταση Ιουνίου Λύσεις Προσοχή: Οι παρακάτω λύσεις είναι ενδεικτικές, μπορεί να υπάρχουν και άλλες που επίσης να είναι σωστές. Θέμα 1: [16 μονάδες]

Διαβάστε περισσότερα

#(A B) = (#A)(#B). = 2 6 = 1/3,

#(A B) = (#A)(#B). = 2 6 = 1/3, Κεφάλαιο 4 Πιθανότητες και συνδυαστική Οπως είδαμε σε κάποια παραδείγματα των προηγουμένων κεφαλαίων, συχνά συναντάμε καταστάσεις όπου όλες οι δυνατές εκφάνσεις ενός τυχαίου πειράματος έχουν την ίδια πιθανότητα.

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα

Διαβάστε περισσότερα

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι Σχέσεις ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιµελής Σχέση ιατεταγµένο ζεύγος (α, β):

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση

Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση Μη-Αριθμήσιμα Σύνολα, ιαγωνιοποίηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αριθμήσιμα

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2015-2016 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ :

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη

Διαβάστε περισσότερα

N(F I G) = = N N(F ) N(I ) N(G)+N(FI ) + N(FG)+N(IG) N(FIG) = = = 200

N(F I G) = = N N(F ) N(I ) N(G)+N(FI ) + N(FG)+N(IG) N(FIG) = = = 200 Διακριτά Μαθηματικά Ι Φροντιστήριο Αρχή Εγκλεισμού-Αποκλεισμού 1 / 9 Σε ένα σχολείο υπάρχουν 1000 μαθητές. Απ αυτούς οι 400 μιλάνε Γαλλικά, οι 300 Ιταλικά και 200 μιλάνε Γερμανικά. Εάν υπάρχουν 200 μαθητές,που

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ C ΣΕΙΡΑ 1 η Δ.Π.Θ. - Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο Β Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης ΜΑΘΗΜΑ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ

ΚΕΦΑΛΑΙΟ 4 Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ 50 ΚΕΦΑΛΑΙΟ Η ΑΡΧΗ ΕΓΚΛΕΙΣΜΟΥ ΑΠΟΚΛΕΙΣΜΟΥ Εισαγωγή. Η αρχή του εγκλεισμού αποκλεισμού είναι ένα ισχυρό μέσο απαρίθμησης με το οποίο υπολογίζεται ο αριθμός των στοιχείων της ένωσης και της τομής των συμπληρωμάτων

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Σύνολα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ορισμός Συνόλου Σύνολο είναι μια συλλογή

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Διακριτά Μαθηματικά Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ

ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ κεφ - ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΙΓΜΑΤΙΚΟΣ ΧΩΡΟΣ ΕΝΔΕΧΟΜΕΝΑ Σε ένα συρτάρι υπάρχουν δύο κάρτες, μία άσπρη και μία κόκκινη Παίρνουμε στην τύχη μία κάρτα από το συρτάρι, καταγράφουμε το χρώμα της και την ξαναβάζουμε

Διαβάστε περισσότερα

Γλώσσες Χωρίς Συμφραζόμενα

Γλώσσες Χωρίς Συμφραζόμενα Γλώσσα χωρίς Συμφραζόμενα Γλώσσες Χωρίς Συμφραζόμενα Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα