ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές"

Transcript

1 ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας

2 Η έννοια της Πιθανότητας

3 Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη φαινομένων όπου υπάρχει αβεβαιότητα. Κάθε τέτοιο φαινόμενο στο οποίο μπορεί να εμφανισθούν πολλά διαφορετικά αποτελέσματα χωρίς να υπάρχει τρόπος να καθορισθεί ποιο αποτέλεσμα θα εμφανισθεί κάθε φορά, αποτελεί αντικείμενο μελέτης της θεωρίας πιθανοτήτων.

4 Πείραμα τύχης: Μια διαδικασία που παράγει παρατηρήσεις Το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος τύχης λέγεται δειγματικός χώρος και συμβολίζεται συνήθως με Ω. Ο δειγματικός χώρος μπορεί να αποτελείται από πεπερασμένο ή άπειρα το πλήθος στοιχεία.

5 Τι ορίζουμε ως «σύνολο»; Σύνολο λέγεται κάθε καλά ορισμένη συλλογή από διαφορετικά μεταξύ τους αντικείμενα. Τα σύνολα συμβολίζονται συνήθως με ένα κεφαλαίο γράμμα του αλφαβήτου, ενώ τα στοιχεία τους με μικρά. c Το στοιχείο c ανήκει στο σύνολο Α Το πλήθος των στοιχείων ενός συνόλου Α λέγεται πληθικός αριθμός και συμβολίζεται με

6 Σχέσεις συνόλων Δύο σύνολα λέγονται ίσα αν περιέχουν ακριβώς τα ίδια στοιχεία. Αν κάθε στοιχείο του συνόλου Α είναι και στοιχείο του συνόλου Β, τότε το Α λέγεται υποσύνολο του Β και το Β υπερσύνολο του Α.

7 Το καθολικό σύνολο και το κενό σύνολο Το σύνολο που περιέχει όλα τα στοιχεία που μας ενδιαφέρουν άρα και όλα τα σύνολα που περιέχουν κάποια από τα στοιχεία αυτά λέγεται καθολικό ή βασικό σύνολο και συμβολίζεται με Ω. Το σύνολο που δεν περιέχει κάποιο στοιχείο λέγεται κενό σύνολο και συμβολίζεται με

8 Το συμπληρωματικό ενός συνόλου Αν, τότε ορίζουμε ως το συμπληρωματικό του σύνολου Α ή συμπλήρωμα του Α το σύνολο των στοιχείων του Ω που ΔΕΝ είναι στοιχεία του Α. Το συμπληρωματικό σύνολο του Α συμβολίζεται με. { : A}

9 Σύνολα που «δημιουργούνται» από σύνολα Έστω Α και Β δύο σύνολα που σχετίζονται με το ίδιο βασικό σύνολο Ω, και. Ως ένωση των συνόλων Α και Β ορίζουμε το σύνολο αυτό που περιέχει αυτά τα στοιχεία του Ω που ανήκουν ή στο Α ή στο Β. Η ένωση των συνόλων Α και Β συμβολίζεται με. { : ή } Ως τομή των συνόλων Α και Β ορίζουμε το σύνολο αυτό που περιέχει αυτά τα στοιχεία του Ω που ανήκουν και στο Α και στο Β. Η τομή των συνόλων Α και Β συμβολίζεται με. { : και }

10 Σύνολα που «δημιουργούνται» από σύνολα Έστω Α και Β δύο σύνολα που σχετίζονται με το ίδιο βασικό σύνολο Ω, και. Ως διαφορά των συνόλων Α και Β ορίζουμε το σύνολο αυτό που περιέχει αυτά τα στοιχεία του Ω που ανήκουν στο Α και δεν ανήκουν στο Β. Η διαφορά των συνόλων Α και Β συμβολίζεται με. { : και

11 Χρήσιμες ιδιότητες

12 Χρήσιμες ιδιότητες

13 Πρόταση

14 Παραδείγματα α. Μελετώντας το "πείραμα τύχης" της γέννησης ενός παιδιού έχουμε δύο δυνατά "αποτελέσματα": Αγόρι Α ή κορίτσι Κ. Επομένως ο δειγματικός χώρος είναι ο A,K. β. Κατά τη ρίψη ενός νομίσματος 3 φορές τα δυνατά "αποτελέσματα" είναι τριάδες από κεφαλές Κ και γράμματα Γ. Άρα ο δειγματικός χώρος του "συγκεκριμένου πειράματος τύχης" είναι ο,,,,,,,. γ. Ένα λευκό και ένα μαύρο ζάρι ρίχνονται συγχρόνως. Το αποτέλεσμα του πειράματος είναι ένα ζεύγος i,j με i, j 6 όπου με i συμβολίσαμε την ένδειξη του λευκού ζαριού και με j την ένδειξη του μαύρου. Ο δειγματικός χώρος Ω αποτελείται από 36 ζεύγη, τα,,,,...,,6,,,..,,6,..., 6,,..., 6,6.

15 Ενδεχόμενα Κάθε υποσύνολο Α του δειγματικού χώρου Ω λέγεται ενδεχόμενο ή γεγονός. Κατά την εκτέλεση ενός πειράματος θα λέμε ότι συνέβη το ενδεχόμενο Α αν το αποτέλεσμα του πειράματος ήταν κάποιο στοιχείο του Α. Στην αντίθετη περίπτωση θα λέμε ότι δεν συνέβη το ενδεχόμενο Α ή καλύτερα ότι συνέβη το ενδεχόμενο Α.

16 Ενδεχόμενα Κάθε υποσύνολο Α του δειγματικού χώρου Ω που περιέχει μόνο ένα στοιχείο λέγεται και απλό ενδεχόμενο. Αν το υποσύνολο Α του δειγματικού χώρου Ω περιέχει περισσότερα από ένα στοιχεία λέγεται σύνθετο ενδεχόμενο.

17 Κλασσικός ορισμός της πιθανότητας Laplace, 8 Τα στοιχεία του συνόλου ενδεχομένου Α ονομάζονται συνήθως «ευνοϊκές περιπτώσεις» ή «ευνοϊκά αποτελέσματα», ενώ τα στοιχεία του βασικού συνόλου δειγματικού χώρου Ω «δυνατές περιπτώσεις» ή «δυνατά αποτελέσματα».

18 Για τη συνολοσυνάρτηση A, όπως ορίστηκε από τον Laplace ισχύει: A 0 για κάθε ενδεχόμενο A 3 A B A B για κάθε ζεύγος ξένων ενδεχομένων Α και Β του Ω A B

19 Παράδειγμα Ρίχνουμε ένα νόμισμα 3 φορές. Ο δειγματικός χώρος του πειράματος τύχης είναι,,,,,,,. και έχει N Ω 8 στοιχεία. Τα ενδεχόμενα Α i : εμφανίζονται i κεφαλές Κ, i = 0,,,3 δίδονται από τα σύνολα Α 0 = {ΓΓΓ} απλό ενδεχόμενο Α = {ΚΓΓ, ΓΚΓ, ΓΓΚ} σύνθετο ενδεχόμενο Α = {ΚΚΓ, ΚΓΚ, ΓΚΚ} σύνθετο ενδεχόμενο Α 3 = {ΚΚΚ} απλό ενδεχόμενο. Συνεπώς οι πιθανότητες των ενδεχομένων: Α i : εμφανίζονται ακριβώς i κεφαλές i = 0,,,3 θα είναι: Α 0 Α 3 Α 3 Α 4 ΡΑ 0,ΡΑ,ΡΑ ΡΑ 4 Ν 8 Ν 8 Ν 8 Ν 8

20 Βασικές αρχές απαρίθμησης. των στοιχείων συνόλων

21 Το αντικείμενο της Συνδυαστικής Μέθοδοι απαρίθμησης: Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνόλων τους τα οποία έχουν συγκεκριμένες ιδιότητες. Οι μέθοδοι απαρίθμησης αποτελούν το κύριο αντικείμενο της Συνδυαστικής. Η συστηματική ανάπτυξη τέτοιων τεχνικών οι οποίες δεν απαιτούν την πλήρη καταγραφή των στοιχείων των υπό μελέτη συνόλων, είναι ιδιαίτερα χρήσιμη στις περιπτώσεις κατά τις οποίες τα σύνολα αυτά έχουν μεγάλο πλήθος στοιχείων.

22 Η ΑΡΧΗ ΤΟΥ ΑΘΡΟΙΣΜΑΤΟΣ Η αρχή του αθροίσματος μπορεί να διατυπωθεί ανάλογα με την περίπτωση που εξετάζουμε, αν αντικαταστήσουμε τη γενική λέξη «στοιχείο» με τις λέξεις «αντικείμενο», «ενέργεια», «γεγονός», «τρόπος μετακίνησης» κλπ.

23 Η ΠΟΛΛΑΠΛΑΣΙΑΣΤΙΚΗ ΑΡΧΗ Η πολλαπλασιαστική αρχή μπορεί και πάλι να διατυπωθεί ανάλογα με το πρόβλημα που έχουμε, αντικαθιστώντας τη λέξη «στοιχείο» με τις π.χ. τις λέξεις «αντικείμενο», «ενέργεια», «γεγονός» κλπ.

24 Διάταξη και Μετάθεση Ορισμοί Έστω Χ= {,,..., ν } ένα πεπερασμένο σύνολο με ν στοιχεία,,..., ν και k ένας θετικός ακέραιος μικρότερος ή ίσος του ν k ν. Το πλήθος των διατάξεων των ν στοιχείων ανά k συμβολίζεται με k

25 Πρόταση αριθμός διατάξεων Στην ειδική περίπτωση k = ν, βρίσκουμε ότι ο αριθμός των μεταθέσεων των ν στοιχείων υπολογίζεται από: ν ν = νν -... ν - ν + = ν ν Η τελευταία παράσταση, η οποία περιλαμβάνει το γινόμενο των ν πρώτων φυσικών αριθμών συμβολίζεται με ν! και διαβάζεται «ν παραγοντικό», δηλαδή ν! = 3 ν.

26 ΣΥΝΔΥΑΣΜΟΙ Ορισμός Έστω Χ = {,,..., ν } ένα πεπερασμένο σύνολο με ν στοιχεία,,..., ν και k ένας θετικός ακέραιος μικρότερος ή ίσος του ν k ν.

27 Πρόταση

28 Εφαρμογές

29 Παράδειγμα τύχη ή τεχνική; Για την κλήρωση του Λόττο τοποθετούνται σε κληρωτίδα 49 σφαιρίδια, αριθμημένα από το έως το 49, και εξάγονται, το ένα μετά το άλλο, έξι από αυτά. Α. Πόσα είναι τα διαφορετικά αποτελέσματα που μπορεί να προκύψουν ως νικήτρια εξάδα, με τον τρόπο αυτό; Β. Ποια η πιθανότητα κάποιος να προβλέψει σωστά τους 6 αριθμούς επιλέγοντας τους 6 αγαπημένους του αριθμούς; Γ. Ποια η πιθανότητα κάποιος να προβλέψει σωστά τους 6 αριθμούς επιλέγοντας 6 αριθμούς στην τύχη;

30 Παράδειγμα Οι αριθμοί κυκοφορίας των αυτοκινήτων αποτελούνται από δύο μέρη. Το πρώτο σχηματίζεται με τη χρήση τριών λατινικών γραμμάτων τα οποία είναι κοινά στην όψη με ελληνικά γράμματα και το δεύτερο με τη χρήση τεσσάρων ψηφίων. Α. Πόσοι είναι οι διαφορετικοί αριθμοί κυκλοφορίας που μπορεί να σχηματιστούν με τον τρόπο αυτό; Β. Ποια η πιθανότητα, ένα αυτοκίνητο που επιλεγεί στην τύχη, να έχει αριθμό κυκλοφορίας που αρχίζει από σύμφωνο και να τελείωνει με το ψηφίο 0;

31 Παράδειγμα ενδιαφέρει η «διάταξη»; Μια επιχείρηση απασχολεί 5 εργαζόμενους, εκ των οποίων 0 είναι άνδρες. Α. Με πόσους διαφορετικούς τρόπους μπορεί να συσταθεί μια οκταμελής επιτροπή; Β. Ποια η πιθανότητα στην επιτροπή αυτή να συμμετέχουν 4 άντρες και 4 γυναίκες; Γ. Με πόσους διαφορετικούς τρόπους μπορεί να συσταθεί μια οκταμελής ομάδα εργασίας, με διαφορετικές αμοιβές στα μέλη της;

32 Περισσότερα αποτελέσματα χρήσιμα για υπολογισμό πιθανοτήτων

33 Αν Α, Β δύο υποσύνολα του Ω ενδεχόμενα, τότε: ' A A Αν B A B A B A B A B A Τα ενδεχόμενα Α και Β είναι ανεξάρτητα αν και μόνο αν B A B A Η δεσμευμένη πιθανότητα του Β δεδομένου του Α ορίζεται ως A B A A B Θεώρημα ολικής πιθανότητας ' ' B B A B B A A Τύπος του Bayes ' ' B B A B B A B B A A B B A A B

34 Αν A και },...,, { B B B μια διαμέριση του Ω με 0 B i για κάθε,,..., i. Τότε: i i i B B A A και i i i i i i i i B B A B B A A B B A A B για κάθε,,..., i. Γενικά, Θεώρημα ολικής πιθανότητας Τύπος Bayes

35 Παράδειγμα το διαγώνισμα Ένας φοιτητής συμμετέχει σε εξέταση με ερωτήσεις πολλαπλής επιλογής. Σε κάθε ερώτηση δινόνται m πιθανές απαντήσεις εκ των οποίων η μία μόνο είναι σωστή. Ο φοιτητής είναι υποχρεωμένος να απαντήσει στις ερωτήσεις επιλεγόντας μία από τις απαντήσεις που δίνονται, ενώ η πιθανότητα ο φοιτητής να γνωρίζει τη σωστή απάντηση σε μια ερώτηση είναι p. Α. Ποια η πιθανότητα ο φοιτητής να δώσει σωστή απάντηση σε μια ερώτηση; ΦΣ: ο φοιτητής γνωρίζει τη σωστή απάντηση ΣΑ: ο φοιτητής απάντησε σωστά ΦΣ : ο φοιτητής δεν γνωρίζει τη σωστή απάντηση ' ' p m p Θεώρημα ολικής πιθανότητας

36 Παράδειγμα το διαγώνισμα Ένας φοιτητής συμμετέχει σε εξέταση με ερωτήσεις πολλαπλής επιλογής. Σε κάθε ερώτηση δινόνται m πιθανές απαντήσεις εκ των οποίων η μία μόνο είναι σωστή. Ο φοιτητής είναι υποχρεωμένος να απαντήσει στις ερωτήσεις επιλεγόντας μία από τις απαντήσεις που δίνονται, ενώ η πιθανότητα ο φοιτητής να γνωρίζει τη σωστή απάντηση σε μια ερώτηση είναι p. Β. Αν ο φοιτητής απαντήσει σωστά σε μια ερώτηση, ποια η πιθανότητα να γνώριζε πράγματι την απάντηση; ΦΣ: ο φοιτητής γνωρίζει τη σωστή απάντηση ΣΑ: ο φοιτητής απάντησε σωστά ΦΣ : ο φοιτητής δεν γνωρίζει τη σωστή απάντηση Τύπος Bayes p p p m m m p p p

37 p m

38 Τυχαίες μεταβλητές

39 Τυχαία μεταβλητή ονομάζεται κάθε συνάρτηση με πεδίο ορισμού το δειγματικό χώρο Ω ενός πειράματος τύχης και πεδίο τιμών ένα υποσύνολο των πραγματικών αριθμών. Οι τυχαίες μεταβλητές συμβολίζονται με κεφαλαία γράμματα, π.χ. Χ, Υ, κλπ Το πεδίο τιμών μιας τυχαίας μεταβλητής X συμβολίζεται με X X { : X, }, δηλαδή, Έστω Χ μια τυχαία μεταβλητή η οποία ορίζεται σε ένα δειγματικό χώρο Ω. Η πραγματική συνάρτηση F με τύπο F X : X }, καλείται συνάρτηση κατανομής της τυχαίας μεταβλητής Χ.

40 Μια τυχαία μεταβλητή καλείται διακριτή αν το πεδίο τιμών της είναι πεπερασμένο ή αριθμησίμως άπειρο σύνολο. Έστω Χ μια διακριτή τυχαία μεταβλητή με πεδίο τιμών το X. Η πραγματική συνάρτηση f με 0 X X X f ονομάζεται συνάρτηση πιθανότητας της Χ Αν Χ μια διακριτή τυχαία μεταβλητή με συνάρτηση πιθανότητας f και συνάρτηση κατανομής F, τότε i i f X F Διακριτές τυχαίες μεταβλητές

41 Συνεχείς τυχαίες μεταβλητές Μια τυχαία μεταβλητή καλείται συνεχής αν υπάρχει μια μη αρνητική πραγματική συνάρτηση f : [0, τέτοια ώστε για κάθε υποσύνολο Α των πραγματικών αριθμών να ισχύει X A f d. Η συνάρτηση f καλείται συνάρτηση πυκνότητας της Χ. A Αν Χ μια συνεχής τυχαία μεταβλητή με συνάρτηση πυκνότητας f και συνάρτηση κατανομής F, τότε f d F X f t dt f F' στα σημεία συνέχειας της f a X b a X b a X b a X b f d F b F a b a

42 Χρήσιμες Κατανομές Πιθανοτήτων Α. Διακριτές Κατανομές

43 ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Η τυχαία μεταβλητή Χ που παίρνει τιμές 0,,,..., n για σταθερό n θα λέμε ότι ακολουθεί τη Διωνυμική κατανομή Χ~Βn,p αν έχει συνάρτηση πιθανότητας την όπου p παράμετρος που ικανοποιεί την 0 p Δίνει την πιθανότητα εμφάνισης επιτυχιών όταν εκτελούνται n ανεξάρτητες δοκιμές με δύο αποτελέσματα επιτυχία / αποτυχία, όταν σε κάθε δοκιμή η πιθανότητα εμφάνισης επιτυχίας είναι σταθερή και ίση με p. E X np, V X np p

44 Παράδειγμα Ο υπεύθυνος παραγωγής γνωρίζοντας ότι η πιθανότητα εμφάνισης ελαττωματικού προϊόντος στην παραγωγή είναι %, θέλει να υπολογίσει ποια είναι πιθανότητα σε ένα δείγμα 5 προϊόντων από την παραγωγή να βρεθούν ακριβώς ελαττωματικά.

45 ΓΕΩΜΕΤΡΙΚΗ ΚΑΤΑΝΟΜΗ Η τυχαία μεταβλητή Χ που παίρνει τιμές,,... θα λέμε ότι ακολουθεί τη γεωμετρική κατανομή Χ~Geop αν έχει συνάρτηση πιθανότητας την Δίνει την πιθανότητα εμφάνισης της πρώτης επιτυχίας ύστερα από εκτελέσεις ανεξάρτητων δοκιμών με δύο αποτελέσματα επιτυχία / αποτυχία, όταν σε κάθε δοκιμή η πιθανότητα εμφάνισης επιτυχίας είναι ίση με p. E X p, V X p p

46 Παράδειγμα Ο υπεύθυνος παραγωγής γνωρίζοντας ότι η πιθανότητα εμφάνισης ελαττωματικού προϊόντος στην παραγωγή είναι %, θέλει να υπολογίσει ποια είναι πιθανότητα το πρώτο ελαττωματικό της ημέρας να εμφανιστεί μετά την παραγωγή του 0 ου προϊόντος.

47 ΑΡΝΗΤΙΚΗ ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ Μια τυχαία μεταβλητή X ακολουθεί την αρνητική διωνυμική κατανομή Χ~ΝΒr,p αν έχει συνάρτηση πιθανότητας την r, r,... Δίνει την πιθανότητα εμφάνισης της r-οστης επιτυχίας ύστερα από εκτελέσεις ανεξάρτητων δοκιμών με δύο αποτελέσματα επιτυχία / αποτυχία, όταν σε κάθε δοκιμή η πιθανότητα εμφάνισης επιτυχίας είναι ίση με p. E X r p, V X r p p

48 ΚΑΤΑΝΟΜΗ OISSON Η τυχαία μεταβλητή Χ ακολουθεί την Κατανομή oisson Χ~λ αν η συνάρτηση πιθανότητας της είναι η 0,,,... Δίνει την πιθανότητα εμφάνισης «σπάνιων» ενδεχόμενων. E X V X

49 Παράδειγμα Ο υπεύθυνος παραγωγής μιας βιομηχανίας γνωρίζοντας ότι ο αριθμός των ελαττωμάτων που εμφανίζονται σε ένα φύλλο αλουμινίου τετραγωνικού μέτρου ακολουθεί την κατανομή oisson με παράμετρο 3, θέλει να υπολογίσει ποια είναι πιθανότητα σε ένα φύλο να εμφανισθούν ακριβώς ελαττώματα.

50 Χρήσιμες Κατανομές Πιθανοτήτων Β. Συνεχείς Κατανομές

51 ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η Κανονική κατανομή είναι η πιο σημαντική κατανομή πιθανοτήτων. Αποτελεί το κατάλληλο υπόδειγμα για την περιγραφή μεγάλου αριθμού φαινόμενων και χαρακτηριστικών. Η κανονική κατανομή συμβολίζεται με Νμ,σ και έχει συνάρτηση πυκνότητας πιθανότητας την f e

52 ΤΥΠΙΚΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ~ N0, Η Τυπική κανονική κατανομή έχει συνάρτηση πυκνότητας την Z z z e z f e 0, f e

53 ΑΠΟ ΤΗΝ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ ΣΤΗΝ ΤΥΠΙΚΗ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Έχουμε μια τυχαία μεταβλητή Χ η οποία ακολουθεί την κανονική κατανομή Χ~Νμ, σ. Εφαρμόζουμε τον μετασχηματισμό Ζ=Χ - μ/σ και έχουμε ότι: Η τυχαία μεταβλητή Ζ ακολουθεί την Τυπική κανονική κατανομή Ζ ~ Ν0,

54 Παρατηρήσεις Αν η τυχαία μεταβλητή Χ έχει την κανονική κατανομή N,, τότε E X, V X Αν η τυχαία μεταβλητή Z έχει την τυπική κανονική κατανομή N 0,, τότε z t dt z Z z z, όπου e η συνάρτηση κατανομής της Ζ. Ισχύει ότι z z. Για z [0,3], υπάρχουν πίνακες που δίνουν τις z

55 z

56 ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η συνάρτηση πυκνότητας πιθανότητας της κανονικής κατανομής είναι συμμετρική γύρω από το σημείο =μ μέση τιμή Όσο μεγαλύτερο είναι το σ τόσο περισσότερο «απλωμένη» είναι η f

57 Το διάστημα μιας τυπικής απόκλισης από τη μέση τιμή και από τις δυο πλευρές, δηλαδή το μ-σ,μ+σ περιέχει το 68% του εμβαδού της κατανομής. Το διάστημα μ-σ,μ+σ περιέχει το 95% του εμβαδού της κατανομής ενώ το 99.7% του εμβαδού εμπεριέχεται στο διάστημα μ-3σ,μ+3σ ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ

58 Παράδειγμα Ο υπεύθυνος παραγωγής μιας βιομηχανίας γνωρίζει ότι το βάρος των συσκευασιών που παράγονται ακολουθεί την Κανονική κατανομή με μέση τιμή 400 γραμμάρια και διακύμανση 5. Επίσης, γνωρίζει ότι οι ανοχές που επιτρέπουν οι προδιαγραφές που θέτει το τμήμα σχεδιασμού είναι ίσες με 385 και 45 αντίστοιχα. Ο υπεύθυνος παραγωγής θέλει να υπολογίσει ποια είναι η πιθανότητα ένα προϊόν που επιλέγει να είναι εντός προδιαγραφών.

59

60 Η ΕΚΘΕΤΙΚΗ ΚΑΤΑΝΟΜΗ Μια τυχαία μεταβλητή Χ με συνάρτηση πυκνότητας πιθανότητας την 0, 0 0, e f όπου λ >0 παράμετρος, θα λέμε ότι ακολουθεί την εκθετική κατανομή με παράμετρο λ. Η συνάρτηση κατανομής της εκθετικής είναι η 0, 0 0, e F και, X V X E

61 Παράδειγμα Η ποσότητα καφέ που επεξεργάζεται καθημερινά ένα εργοστάσιο συσκευασίας μπορεί να θεωρηθεί ότι ακολουθεί την εκθετική κατανομή με μέση τιμή 4 τόνους. Να βρεθεί η πιθανότητα κάποια συγκεκριμένη μέρα να επεξεργαστούν περισσότεροι από 4 τόνοι καφέ.

62 και οπότε

63 Η ΟΜΟΙΟΜΟΡΦΗ ΚΑΤΑΝΟΜΗ Μια τυχαία μεταβλητή Χ με συνάρτηση πυκνότητας πιθανότητας την, 0, f θα λέμε ότι ακολουθεί την ομοιόμορφη κατανομή στο διαστήμα α, β. Η συνάρτηση κατανομής της ομοιόμορφης είναι η F 0 και, X V X E

64 Άλλες χρήσιμες κατανομές

65 Η κατανομή Γάμμα Μια τυχαία μεταβλητή Χ με συνάρτηση πυκνότητας πιθανότητας την, 0 0, e f όπου α >0, β > 0 παράμετροι και 0 d e, α >0 θα λέμε ότι ακολουθεί την κατανομή Γάμμα., X V X E

66 Η κατανομή με ν βαθμούς ελευθερίας Μια τυχαία μεταβλητή Χ με συνάρτηση πυκνότητας πιθανότητας την, 0 0, / / e f θα λέμε ότι ακολουθεί την κατανομή χι τετράγωνο με ν βαθμούς ελευθερίας. Επειδή η είναι ιδιαίτερα χρήσιμη στη στατιστική, υπάρχουν έτοιμοι πίνακες που δίνουν τις τιμές, για τις οποίες ισχύει, X, όπου ~ X. Η κατανομή είναι η κατανομή Γάμμα με και., 0 0, /, 0 0, /, 0 0, /, e e e f

67 Ερώτημα: Με ποιά γνωστή κατανομή συμπίπτει η ;, 0 0,, 0 0, / / e e f 0, 0 0, e f 0 0 e d e Αλλά, 0 0, e f οπότε Δηλαδή εκθετική με παράμετρο λ=/

68

69 Η κατανομή t με ν βαθμούς ελευθερίας ή κατανομή του Student Gosset Μια τυχαία μεταβλητή Χ με συνάρτηση πυκνότητας πιθανότητας την f, θα λέμε ότι ακολουθεί την κατανομή t του Student με ν βαθμούς ελευθερίας t. E X 0, V X, Η t για μεγάλο ν, προσεγγίζει την τυπική κανονική κατανομή. Επειδή η t είναι ιδιαίτερα χρήσιμη στη στατιστική, υπάρχουν έτοιμοι πίνακες που δίνουν τις τιμές t, για τις οποίες ισχύει X t,, όπου X ~ t.

70 Κατανομή Student και τυπική κανονική

71 Η κατανομή F ή κατανομή του Snedecor Μια τυχαία μεταβλητή Χ με συνάρτηση πυκνότητας πιθανότητας την f, 0 θα λέμε ότι ακολουθεί την κατανομή F του Snedecor με ν >0 βαθμούς ελευθερίας για τον αριθμητή και ν >0 βαθμούς ελευθερίας για τον παρονομαστή F. Επειδή η F, είναι ιδιαίτερα χρήσιμη στη στατιστική, υπάρχουν έτοιμοι πίνακες που δίνουν τις τιμές X. ~ F,,,, f για τις οποίες ισχύει X f, όπου,,

72

73 Μερικά χρήσιμα αποτελέσματα

74 Αν X ~ N, και Y ~ N, και οι Χ, Υ είναι ανεξάρτητες τυχαίες μεταβλητές, τότε η τυχαία μεταβλητή W = X +Y ακολουθεί την N, Αν X ~ N0,, τότε η τυχαία μεταβλητή W = X ακολουθεί την έναν βαθμό ελευθερίας. χι τετράγωνο κατανομή με Αν X, X,..., X n είναι n ανεξάρτητες τυχαίες μεταβλητές που ακολουθούν την,..., κατανομή με, n βαθμούς ελευθερίας αντίστοιχα, τότε η τυχαία μεταβλητή Y X X... X n ακολουθεί τη Ερώτηση κατανόησης: Αν οι χι τετράγωνο κατανομή με ν βαθμούς ελευθερίας, όπου X,..., την N 0,, ποιά κατανομή ακολουθεί η τυχαία μεταβλητή Y W n i X i ;... n., X X n είναι n ανεξάρτητες τυχαίες μεταβλητές που ακολουθούν n i X i ; Ποιά κατανομή ακολουθεί η τ.μ. Y ~ N0, n W ~ n Δύο τυχαίες μεταβλητές Χ και Υ είναι ανεξάρτητες αν για κάθε ζεύγος τιμών τους, y ισχύει ότι f, y f f y XY X Y

75 Αν X ~ n μεταβλητή και Y ~ n και οι Χ, Υ είναι ανεξάρτητες τυχαίες μεταβλητές, τότε η τυχαία X n n X W ακολουθεί την Y n Y n ελευθερίας αριθμητή και n βαθμούς ελευθερίας παρονομαστή. Αν X ~ N0, και μεταβλητή Y ~ n F n,n την κατανομή F του Snedecor με n βαθμούς και οι Χ, Υ είναι ανεξάρτητες τυχαίες μεταβλητές, τότε η τυχαία X W ακολουθεί την κατανομή t του Student με n βαθμούς ελευθερίας. Y / n Ερώτηση κατανόησης: Αν οι Χ, Υ είναι ανεξάρτητες τυχαίες μεταβλητές, με X ~ N0, και ποιά κατανομή ακολουθεί η τυχαία μεταβλητή n X W ; Y Y ~ n W n X Y X Y n Y X / n X ~ N0, Y ~ n W ~ t n

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Τυχαία μεταβλητή (τ.μ.)

Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Σηµειώσεις για το µάθηµα ΣΥΝ ΥΑΣΤΙΚΗ Θεοδόσης ηµητράκος e-mail: dimitheo@aegean.gr

Διαβάστε περισσότερα

3. Κατανομές πιθανότητας

3. Κατανομές πιθανότητας 3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

Τυχαία Μεταβλητή (Random variable-variable aléatoire)

Τυχαία Μεταβλητή (Random variable-variable aléatoire) Τυχαία Μεταβλητή (Random varable-varable aléatore) Σε πολλούς τύπους πειραμάτων τα αποτελέσματα είναι από τη φύση τους πραγματικοί αριθμοί. Παραδείγματα τέτοιων πειραμάτων αποτελούν οι μετρήσεις των υψών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Εξετάσεις στο μάθημα ΠΙΘΑΝΟΤΗΤΕΣ Ι Ονοματεπώνυμο: Όνομα Πατρός:... ΑΜ:. Ημερομηνία: Σ Παρακαλώ μη γράφετε στα παρακάτω τετράγωνα Μέρος

Διαβάστε περισσότερα

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος

Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα

Διαβάστε περισσότερα

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Πανεπιστήμιο Πελοποννήσου

Πανεπιστήμιο Πελοποννήσου Πανεπιστήμιο Πελοποννήσου Τυχαίες μεταβλητές Κατανομές Τυχαία Μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) ονομάζεται η συνάρτηση που απεικονίζει το σύνολο των δυνατών αποτελεσμάτων ενός πειράματος στο σύνολο

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,

Διαβάστε περισσότερα

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος

Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία. Υπεύθυνος: Δρ. Κολιός Σταύρος Τ Ε Ι Ιονίων Νήσων Τμήμα Εφαρμογών Πληροφορικής στη Διοίκηση και την Οικονομία Υπεύθυνος: Δρ. Κολιός Σταύρος Θεωρία Συνόλων Σύνολο: Το σύνολο εκφράζει μία συλλογή διακριτών μονάδων οποιασδήποτε φύσης.

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 3: Πιθανότητες. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 3: Πιθανότητες Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ

3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με

Διαβάστε περισσότερα

Θεωρητικές Κατανομές Πιθανότητας

Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Θεωρητικές Κατανομές Πιθανότητας Α. ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ α) Διακριτή Ομοιόμορφη κατανομή β) Διωνυμική κατανομή γ) Υπεργεωμετρική κατανομή δ) κατανομή Poisson Β. ΣΥΝΕΧΕΙΣ

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων

Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ

ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή

Διαβάστε περισσότερα

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.

3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }. 3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΑΛΓΕΒΡΑ - Α ΛΥΚΕΙΟΥ ΔΙΑΔΡΑΣΤΙΚΟ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Επιμέλεια: Παπαδόπουλος Παναγιώτης Πείραμα τύχης 1 η δραστηριότητα Ρίξτε ένα κέρμα 5 φορές και καταγράψτε την πάνω όψη του: 1 η ρίψη:, 2 η ρίψη:, 3 η ρίψη:

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ και ΟΡΓΑΝΙΣΜΩΝ Θεματική Ενότητα: ΔΕΟ3 Ποσοτικές Μέθοδοι Ακαδημαϊκό Έτος: 009-0 ΤΥΠΟΛΟΓΙΟ ΣΤΑΤΙΣΤΙΚΗΣ - - ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΥΝΟΨΗΣ

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ Χαράλαµπος Α. Χαραλαµπίδης 12 Οκτωβρίου 2009 ΠΡΑΞΕΙΣ ΣΤΑ ΕΝ ΕΧΟΜΕΝΑ Ενωση ενδεχοµένων Η ένωση δύο ενδεχοµένων A και B (ως προς ένα δειγµατικό χώρο Ω), συµβολιζόµενη

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ

ΧΑΡΑΛΑΜΠΟΣ.ΣΠ. ΛΥΚΟΥΔΗΣ - ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Θεωρία Πιθανοτήτων Εάν οι συνθήκες τέλεσης ενός πειράματος καθορίζουν πλήρως το αποτέλεσμα του, τότε το πείραμα λέγεται αιτιοκρατικό. Είναι γνωστό ότι το αποσταγμένο νερό βράζει στους 100 βαθμού κελσίου.

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΑΠΑΡΙΘΜΗΣΗΣ 1.1 Απαρίθμηση και καταγραφή 1.2 Η αρχή του αθροίσματος 1.3 Η πολλαπλασιαστική αρχή 1.4 Άλλοι κανόνες απαρίθμησης 1.5 Πιθανότητες σε πεπερασμένους δειγματικούς χώρους 1.6 Γενικές

Διαβάστε περισσότερα

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών

Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Η παρουσίαση που ακολουθεί, αφορά την κανονική κατανομή και σκοπό έχει τη διευκόλυνση των φοιτητών του τμήματος Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών να αντιληφθούν τη σημασία της εν λόγω κατανομής

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.

ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }. ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος

Διαβάστε περισσότερα

Στοχαστικές Στρατηγικές

Στοχαστικές Στρατηγικές Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων.

Θεωρία Πιθανοτήτων, εαρινό εξάμηνο Λύσεις του τέταρτου φυλλαδίου ασκήσεων. Θεωρία Πιθανοτήτων, εαρινό εξάμηνο 207-8 Λύσεις του τέταρτου φυλλαδίου ασκήσεων 2 2 = 8 Ίδια Ρίχνουμε ένα νόμισμα τρεις φορές και θεωρούμε το ενδεχόμενο να προκύψουν και οι δυο όψεις του νομίσματος καθώς

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων

Διαβάστε περισσότερα

Έντυπο Υποβολής Αξιολόγησης Γ.Ε.

Έντυπο Υποβολής Αξιολόγησης Γ.Ε. Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Δειγματικές Κατανομές

Δειγματικές Κατανομές Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια

Διαβάστε περισσότερα

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

1. Πείραμα τύχης. 2. Δειγματικός Χώρος ΣΤΟΙΧΕΙΑ ΑΠΟ ΤΗ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ 1 ΣΤΟΙΧΕΙ ΠΟ ΤΗ ΘΕΩΡΙ ΠΙΘΝΟΤΗΤΩΝ 1. Πείραμα τύχης Πείραμα τύχης (π.τ.) ονομάζουμε κάθε πείραμα που μπορεί να επαναληφθεί όσες φορές επιθυμούμε υπό τις ίδιες συνθήκες και του οποίου το αποτέλεσμα είναι

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ Πιθανότητες Πραγματικοί αριθμοί Εξισώσεις Ανισώσεις Πρόοδοι Βασικές έννοιες των συναρτήσεων Μελέτη βασικών συναρτήσεων ΑΛΓΕΒΡΑ Α

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΟΧΑΣΤΙΚΑ ΜΟΝΤΕΛΑ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.outras@fme.aegean.gr Τηλ: 7035468 σ-άλγεβρα

Διαβάστε περισσότερα

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο Κατανομές Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς - - Χρησιμοποιώντας την Στατιστική Έστω οι διαφορετικές διατάξεις ενός αγοριού (B) και ενός κοριτσιού (G) σε τέσσερις

Διαβάστε περισσότερα

Τυχαίες Μεταβλητές. Ορισμός

Τυχαίες Μεταβλητές. Ορισμός Τυχαίες Μεταβλητές Ορισμός Μία τυχαία μεταβλητή (τ.μ.) είναι μία συνάρτηση (ή μία μεταβλητή) η οποία καθορίζει αριθμητικές τιμές σε μία ποσότητα που σχετίζεται με το αποτέλεσμα ενός πειράματος, όπου μία

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018

ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 Διδάσκουσα: Β. Πιπερίγκου Σε μια ενδονοσοκομειακή έρευνα, καταγράφηκε ο χρόνος ύπνου, μετά τη χορήγηση ενός συγκεκριμένου αναισθητικού, σε 33 ασθενείς και πήραμε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 8 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasil

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ

ΚΑΤΑΝΟΜΈΣ. 8.1 Εισαγωγή. 8.2 Κατανομές Συχνοτήτων (Frequency Distributions) ΚΕΦΑΛΑΙΟ ΚΑΤΑΝΟΜΈΣ ΚΕΦΑΛΑΙΟ 8 81 Εισαγωγή Οι κατανομές διακρίνονται σε κατανομές συχνοτήτων, κατανομές πιθανοτήτων και σε δειγματοληπτικές κατανομές Στη συνέχεια θα γίνει αναλυτική περιγραφή αυτών 82 Κατανομές

Διαβάστε περισσότερα

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ιδιαιτεραμαθηματα.gr ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ [Δεν είναι σκόπιμο να αποκαλύψεις στο παιδί σου ότι οι μεγάλοι άντρες δεν είχαν ιδέα από άλγεβρα] ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ Μ. ΕΠΙΜΕΛΕΙΑ ΣΗΜΕΙΩΣΕΩΝ: ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Ιανουάριος 2014 Επώνυμο... Όνομα... A.E.M.... Εξάμηνο... Σειρά Θέμα Ι (ΟΛΑ) Θέμα ΙΙ (2 από τα 3) Βαθμός /1 /1 /1 /1 /1 /2,5 /2,5 /2,5 /10 ΘΕΜΑ Ι: Ασχοληθείτε και με τα πέντε ερωτήματα.

Διαβάστε περισσότερα

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας

Α ΕΝΟΤΗΤΑ. Πιθανότητες. Α.1 (1.1 παρ/φος σχολικού βιβλίου) Α.2 (1.2 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα. Η έννοια της πιθανότητας Α ΕΝΟΤΗΤΑ Πιθανότητες Α.1 (1.1 παρ/φος σχολικού βιβλίου) Δειγματικός χώρος - Ενδεχόμενα Α.2 (1.2 παρ/φος σχολικού βιβλίου) Η έννοια της πιθανότητας Α.1 Δειγματικός Χώρος. Ενδεχόμενα. Απαραίτητες γνώσεις

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2015 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 12: Ασυνεχείς Κατανομές Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ

Διαβάστε περισσότερα

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5. 3 ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΜΕΡΟΣ Α. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ 77. ΕΟΙΑ ΤΗΣ ΠΙΘΑΟΤΗΤΑΣ Κλασικός ορισμός πιθανότητας Αν ένα στοιχείο του συνόλου του δειγματικού χώρου επιλέγεται στην τύχη και δεν έχει κανένα πλεονέκτημα έναντι των άλλων,

Διαβάστε περισσότερα

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την

Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες

Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω

Διαβάστε περισσότερα

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m

Διαβάστε περισσότερα

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p).

Διωνυμική Κατανομή. x Αποδεικνύεται ότι για την διωνυμική κατανομή ισχύει: Ε(Χ)=np και V(X)=np(1-p). Διωνυμική Κατανομή Ορισμός: Μια τυχαία μεταβλητή Χ λέγεται ότι ακολουθεί την διωνυμική κατανομή αν πληρούνται οι ακόλουθες τρεις συνθήκες: α) Υπάρχουν n επαναλαμβανόμενες δοκιμές οι οποίες είναι στατιστικώς

Διαβάστε περισσότερα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Τρίτη, 17/04/2018 Το υλικό των Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 1 Συνδυαστική 2 Πείραμα Πείραμα: Οποιαδήποτε διαδικασία που μπορεί να οδηγήσει σε ένα αριθμό παρατηρήσιμων

Διαβάστε περισσότερα

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)

P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B) Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Δοκιμές Bernoulli Ας θεωρήσουμε μία ακολουθία (σειρά) πειραμάτων στην οποία ισχύουν τα επόμενα

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)

ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια) (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ.

Στατιστική. Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία. Γεώργιος Ζιούτας Τμήμα Χημικών Μηχανικών Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1 η : Δεσμευμένη Πιθανότητα, Ολική Πιθανότητα, Ανεξαρτησία Γεώργιος Ζιούτας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q

pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q 7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ

ΠΙΘΑΝΟΤΗΤΕΣ Α ΛΥΚΕΙΟΥ Ανδρεσάκης Δ. ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΙΘΑΝΟΤΗΤΕΣ ΛΓΕΡ ΛΥΚΕΙΟΥ ΠΙΘΝΟΤΗΤΕΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙ 1 Tα πειράματα των οποίων δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνονται (φαινομενικά τουλάχιστον) κάτω από τις ίδιες συνθήκες

Διαβάστε περισσότερα

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή

Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Ασκήσεις στις κατανομές και ειδικά στην διωνυμική κατανομή και κανονική κατανομή Όπου χρειάζεται να γίνει χρήση του μικροϋπολογιστή 3xi -2 1) Για την τυχαία διακριτή μεταβλητή Χ ισχύει Ρ(Χ=x i )= 5, x

Διαβάστε περισσότερα

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ

5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ 1 5.3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΙΘΑΝΟΤΗΤΑΣ ΘΕΩΡΙΑ 1. Ισοπίθανα απλά ενδεχόµενα Είναι τα απλά ενδεχόµενα για τα οποία κάποιο εξ αυτών δεν έχει πλεονέκτηµα έναντι των άλλων όσον αφορά την επιλογή του. Με άλλα λόγια

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)

ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 15 Οκτωβρίου 2009 ΚΛΑΣΙΚΗ ΠΙΘΑΝΟΤΗΤΑ De Moivre Ο κλασικός ορισµός της πιθανότητας αφορά πεπερασµένους δειγµατικούς χώρους και

Διαβάστε περισσότερα

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί

Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Μάθημα 3 ο a Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Στο μάθημα αυτό θα ορίσουμε την έννοια της τυχαίας μεταβλητής και θα αναφερθούμε σε σχετικές βασικές έννοιες και συμβολισμούς. Ross, σσ 135-151 Μπερτσεκάς-Τσιτσικλής,

Διαβάστε περισσότερα

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12)

ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη12) ΠΙΘΑΝΟΤΗΤΕΣ -ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ(τελικές εξετάσεις πλη) Για διακριτή τυχαία μεταβλητή ισχύει μία συνάρτηση πιθανότητας ικανοποιεί τις ακόλουθες δύο ιδιότητες: (α) ( ) 0, για κάθε i,, i (β) ( i ) i S Παράδειγμα

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά

Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά Εισαγωγή Οι μελέτες φυσικών φαινομένων ή πραγματικών προβλημάτων καταλήγουν είτε σεπροσδιοριστικά μοντέλα, είτε σε στοχαστικά ή αλλοιώς πιθανοτικά μοντέλα. προσδιοριστικά μοντέλα : επιτρέπουν προσδιορισμό

Διαβάστε περισσότερα

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται δύναμη α ν με βάση τον πραγματικό αριθμό α και εκθέτη το φυσικό αριθμό >1; H δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα φυσικό αριθμό ν, συμβολίζεται

Διαβάστε περισσότερα

Κεφάλαιο 9 Κατανομές Δειγματοληψίας

Κεφάλαιο 9 Κατανομές Δειγματοληψίας Κεφάλαιο 9 Κατανομές Δειγματοληψίας Copyright 2009 Cengage Learning 9.1 Κατανομές Δειγματοληψίας Μια κατανομή δειγματοληψίας δημιουργείται, εξ ορισμού, από δειγματοληψία. Η μέθοδος που θα χρησιμοποιήσουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΑΣ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 18 Νοεµβρίου 2009 ΑΣΚΗΣΕΙΣ 2.16. Εστω ότι το ετήσιο εισόδηµα X ενός µισθωτού µπορεί να ϑεωρηθεί ως µία συνεχής τυχαία µεταβλητή

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Το κύριο αντικείμενο της Συνδυαστικής Οι τεχνικές υπολογισμού του πλήθους των στοιχείων πεπερασμένων συνόλων ή υποσυνό-

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ

ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΚΑΙ ΚΑΤΑΝΟΜΕΣ Τµ. Επιστήµης των Υλικών Είδη τυχαίων µεταβλητών 1. ιακριτού τύπου X ονοµάζεται διακριτή τ.µ. αν το πεδίο τιµών της είναι της µορφής, {x 1, x 2,...,x n,...}. f(x) = P(X = x) ονοµάζεται συνάρτηση πυκνότητας

Διαβάστε περισσότερα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα

Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα

Διαβάστε περισσότερα

(365)(364)(363)...(365 n + 1) (365) k

(365)(364)(363)...(365 n + 1) (365) k ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης : 21//2016 Ηµεροµηνία Παράδοσης :

Διαβάστε περισσότερα

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ

ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΣΤΟΡΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΓΕΡΓΙΟΣ Ε. ΚΑΡΑΦΕΡΗΣ ΠΕ03 ΜΑΘΗΜΑΤΙΚΟΣ [] ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΡΙΑ: Πείραμα Τύχης Κάθε πείραμα κατά στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως

Διαβάστε περισσότερα

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους

Πιθανότητες. Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους Πιθανότητες Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους «Πείραμα» Tύχης Οτιδήποτε συμβαίνει και δεν γνωρίζουμε από πριν το ακριβές αποτέλεσμά του. Απασχόλησαν

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 9. Κατανομές Δειγματοληψίας ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων & Στατιστική

Θεωρία Πιθανοτήτων & Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 1 η : Βασικές Έννοιες Πιθανότητας Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ. Άδειες

Διαβάστε περισσότερα

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας

Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ. M. Kούτρας Επισκόπηση ύλης Πιθανοτήτων: Μέρος ΙΙ M. Kούτρας Πειραιάς, 2014 1 Από κοινού συνάρτηση πιθανότητας μιας δισδιάστατης διακριτής τυχαίας μεταβλητής Με λόγια, η f ( x, y) δίνει την πιθανότητα να εμφανισθεί

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Τυχαίο Δείγμα

Διαβάστε περισσότερα

II. Τυχαίες Μεταβλητές

II. Τυχαίες Μεταβλητές II. Τυχαίες Μεταβλητές τυχαία μεταβλητή (τ.μ.) Χ : Αναφέρεται πάνω σε μία μετρούμενη ποσότητα του τυχαίου πειράματος Εκφράζει μία συνάρτηση (απεικόνιση) από τον δειγματικό χώρο (Ω) σε έναν αριθμητικό χώρο

Διαβάστε περισσότερα