Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κατ οίκον Εργασία 1 Σκελετοί Λύσεων"

Transcript

1 EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων. Ο αλγόριθµος διαίρει και βασίλευε για το πρόβληµα έχει ως εξής: Μοίρασε τον πίνακα σε δύο µισά. Υπολόγισε αναδροµικά τα µέγιστα και ελάχιστα στοιχεία των δύο υποπινάκων. Επέστρεψε ως ελάχιστο του πίνακα το ελάχιστο των ελαχίστων στοιχείων των δύο υποπινάκων και ως µέγιστο του πίνακα το µέγιστο των µέγιστων στοιχείων των δύο υποπινάκων. H διαδικασία mmax επιστρέφει στοιχεία (m, max) τύπου (t, t), όπου το m είναι το ελάχιστο και max το µέγιστο στοιχείο στοιχείο του πίνακα αντίστοιχα. (t, t) mmax( t X[], t l, t r){ } f (r-l ) f (X[l] > X[r]) retur(x[r], X[l]); else retur (X[l], X[r]); m=(l+r)/; (m, max) = mmax(x,l,m); (m, max) = mmax(x,m+,r); retur (m(m, m), max(max, max)) Βασική Περίπτωση Φάση διαίρει Φάση συνδύασε Υποθέτοντας ότι το πλήθος των στοιχείων του πίνακα είναι δύναµη του, ο αριθµός συγκρίσεων της διαδικασίας δίνεται από την αναδροµική εξίσωση Τ() = Τ() = T(/) + Θα δείξουµε ότι Τ() = /- µε τη µέθοδο της αντικατάστασης. Τ() = T(/) + = T( / ) + =... = T( / ) + = = = lg lg lg T( / + ( = / lg T( ) + ( lg ) + lg lg ) ) = / + +

2 EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00 Πως µπορούµε να επεκτείνουµε τον αλγόριθµο έτσι ώστε να δουλεύει για κάθε (όχι µόνο για δυνάµεις του ); Με δεδοµένο ένα πίνακα µεγέθους προσδιορίζουµε ποια είναι η µεγαλύτερη δύναµη του, m, µικρότερη του. Τρέχουµε στα πρώτα m στοιχεία του πίνακα τον αλγόριθµο mmax και επαναλαµβάνουµε, αναδροµικά, την ίδια διαδικασία για τον υπόλοιπο πίνακα (µεγέθους -m). Αν (x,y) είναι το αποτέλεσµα της κλήσης της mmax και (x,y ) το αποτέλεσµα της αναδροµικής κλήσης, επιστρέφουµε (m(x,x ), max(y,y )). Σε ψευδοκώδικα έχουµε: (t, t) mmax( t X[], t l, t r){ f (l==r) retur(x[r], X[l]); Βασική Περίπτωση } f (r-l+) s a power of retur mmax(x,l,r) else p = log(r-l+) ; m = l + ^p ; (m, max) = mmax(x,l,m); (m, max) = mmax(x,m+,r); retur (m(m, m), max(max, max)) Φάση διαίρει Φάση συνδύασε O αριθµός συγκρίσεων της διαδικασίας δίνεται από την αναδροµική εξίσωση Τ() = 0 Τ() = /- αν = p για κάποιο p T(-m) + m/ + αν m= p < < p+ για κάποιο p Θα δείξουµε ότι Τ() = / - µε τη µέθοδο της µαθηµατικής επαγωγής. Βάση της επαγωγής Για =, Τ() = 0 = - = / -. Υποθέτουµε ότι η πρόταση ισχύει για κάθε k<. Βήµα της επαγωγής Αν = p για κάποιο p, τότε το ζητούµενο έπεται. Υποθέτουµε ότι για κάποιο p, m = p < < p+. Τότε Τ() = T(-m) + m/ (εξ ορισµού) = (-m)/ - + m/ (από την υπόθεση της επαγωγής) = (-m)/ m/ - = / - όπως χρειάζεται. Αυτό ολοκληρώνει την απόδειξη.

3 EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00. (α) Ο αλγόριθµος έχει ως εξής: (ι) Ξεκίνα µε το πρώτο ράφι. (ιι) Εφόσον υπάρχει χώρος στο ράφι για το επόµενο στη σειρά βιβλίο τότε τοποθέτησε το βιβλίο στο ράφι. Επανάλαβε το βήµα. (ιιι) Αν δεν υπάρχει χώρος για το επόµενο βιβλίο, τότε δηµιούργησε ένα καινούριο ράφι και επέστρεψε στο βήµα (ιι). Χρονική πολυπλοκότητα: Θ() όπου είναι το πλήθος των βιβλίων. Ορθότητα: Ο αλγόριθµος αυτός δηµιουργεί τοποθέτηση των βιβλίων που ελαχιστοποιεί τον αριθµό χρησιµοποιούµενων ραφιών. Ας υποθέσουµε πως η τοποθέτηση του αλγόριθµου χρησιµοποιεί k ράφια µε την κατανοµή βιβλίων σε ράφια,b,...,b,..., b,b,..., b b r k k και η βέλτιστη τοποθέτηση b,b,...,b p,..., bm,bm,..., b mpm χρησιµοποιεί m ράφια. Θεωρήστε το r. Προφανώς, αφού ο αλγόριθµος δεν σταµατά να γεµίζει κάθε ράφι εκτός και αν αυτό γεµίσει, συµπεραίνουµε ότι r > p και επίσης ότι η τοποθέτηση b,b,...,b r,..., bm,bm,..., bmp είναι επίσης βέλτιστη ως προς m τον αριθµό ραφιών που χρησιµοποιεί. Επαγωγικά τα ίδια επιχειρήµατα ισχύουν για κάθε ράφι της τοποθέτησης που δηµιουργεί ο αλγόριθµος. Εποµένως k=m και ο αλγόριθµος πράγµατι δίνει τη βέλτιστη λύση. (β) Όχι, ο άπληστος αλγόριθµος δεν λύνει το νέο πρόβληµα. Αντιπαράδειγµα φαίνεται στο πιο κάτω σχήµα. kr k Το τελευταίο βιβλίο στο ψηλότερο ράφι της πρώτης τοποθέτησης µπορεί να τοποθετηθεί στο δεύτερο ράφι µειώνοντας έτσι το ύψος του ψηλότερου ραφιού. (γ) Ας θεωρήσουµε τοποθέτηση των βιβλίων b m,, b, σε ράφια. Τότε, παρατηρούµε ότι για το πρώτο ράφι έχουµε αρκετές επιλογές: µπορούµε να τοποθετήσουµε από µέχρι και k βιβλία, όπου k είναι ο µέγιστος ακέραιος για τον οποίο ισχύει ότι t m + + t m+k- L (δηλαδή το µήκος του ραφιού δεν χωρεί περισσότερα από τα k πρώτα βιβλία). Αφού αποφασίσουµε πόσα βιβλία θα τοποθετήσουµε στο πρώτο ράφι, αποµένει να τοποθετήσουµε τα υπόλοιπα βιβλία,

4 EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00 b m+k,, b, σε ράφια. Ανάµεσα σε αυτές τις επιλογές εµείς θέλουµε να διαλέξουµε αυτή που ελαχιστοποιεί το ύψος των ραφιών που χρησιµοποιεί. Εποµένως το H[m] δίνεται ως εξής: h f m = H [ m] = mm k l ( H [ k + ] + max( hm,...,hk )) f m όπου το l είναι τέτοιο ώστε h h L και h... + h L. m l m + l+ > Από αυτή την αναδροµική σχέση παρατηρούµε ότι για υπολογισµό κάθε Η[m] απαιτείται γνώση κάποιων Η[k], k>m. Η βασική περίπτωση δίνεται από το H[] και το ζητούµενο είναι το Η[]. Εποµένως χρησιµοποιούµε ένα πίνακα Η µήκους και γεµίζουµε τις θέσεις του ξεκινώντας από την H[] και προχωρώντας προς τα αριστερά. Σε ψευδοκώδικα ο αλγόριθµος έχει ως εξής: lbrary(t H[], t h[], t b[]) H[..] = ; H[]= h[]; for (m = -; m > 0; m--) k=m; t=t[m]; h = h[m]; whle ( k <= && t <= L ) f H[m] > h + H[m+k] H[m] = h + H[m+k]; k++; t = t+t[k]; h = max(h, h[k]); retur h[]; Ο χρόνος εκτέλεσης του αλγόριθµου είναι Ο( ). (δ) Για υπολογισµό όχι µόνο τoυ συνολικού ύψους της βέλτιστης τοποθέτησης αλλά και των στοιχείων της συγκεκριµένης τοποθέτησης, πρέπει να επεκτείνουµε τον αλγόριθµό µας έτσι ώστε όταν συναντά µια καλύτερη τοποθέτηση των βιβλίων να σηµειώνει τον διαµερισµό των βιβλίων που πετυγχαίνει αυτή την τοποθέτηση. Ουσιαστικά στον αλγόριθµο µας ενδιαφέρει για κάθε Η[m] το k για το οποίο τελικά Η[m]= max(h[m],, h[k]) + H[k+], που απεικονίζει στον αριθµό του τελευταίου βιβλίου που τοποθετείται στο πρώτο ράφι της βέλτιστης τοποθέτησης. Φυλάγουµε αυτές τις πληροφορίες σε ένα νέο πίνακα B[] και επεκτείνουµε τον αλγόριθµο ως εξής: lbrary(t H[], t h[], t b[]) H[..] = ; H[] = h[]; B[] = ; for (m = -; m > 0; m--) k=m; t=t[m]; 4

5 EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00 h = h[m]; whle ( k <= && t <= L ) f H[m] > h + H[m+k] H[m] = h + H[m+k]; B[m] = k; k++; t = t+t[k]; h = max(h, h[k]); retur h[]; Για επιστροφή της βέλτιστης τοποθέτησης χρησιµοποιούµε την πιο κάτω διαδικασία: k=; whle (B[k]!= ) prtf B[k]; k=b[k+]; Ο χρόνος εκτέλεσης της διαδικασίας παραµένει στην τάξη Ο( ).. (α) Η ζητούµενη αναδροµική εξίσωσης είναι η Τ() = 6T(/) + 6(/), T() = Με τη µέθοδο της επανάληψης έχουµε Τ() = 6T(/) + = 6 T( / ) + = 6 T( / = 6 T( / = 6 T( / = 6 T( / = 6 T( / = 6 = 6 = 6 ) + T( / + ( + ( ) + 6 ( / ) + ) ) + 6 ) + ( / ) ) ) ) + Τώρα αφού log =, 6 = =, και log T( ) ( + 6 = + ) Θ( ) = Θ( ). lg (β) Ο αλγόριθµος του φροντιστηρίου έχει χρόνο εκτέλεσης Θ( ). Ο προτεινόµενος αλγόριθµος έχει χρόνο εκτέλεσης που δίνεται από την πιο κάτω αναδροµική εξίσωση: Τ() = m T(/) + c Τ() = Χρησιµοποιώντας το θεώρηµα γενικής χρήσης συµπεραίνουµε ότι Aν O( lοg m ε ), δηλαδή m>, T() O( lοg m ). 5

6 EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00 Aν Θ( lοg m ), δηλαδή m=, T() O( lοg m lg ) = O( lg ). Aν Ω( lοg m + ε ), δηλαδή m<, T() O() Εποµένως, για m o αλγόριθµου είναι πιο αποδοτικός από τον γνωστό αλγόριθµο. Επίσης το ζητούµενο ισχύει όταν m> και ηλαδή lg log m < lg m < m < 5. 9 Aρα m=5 είναι ο µεγαλύτερος ακέραιος που ικανοποιεί το ζητούµενο. 4. (α) BAD[X-, Y] = BAD[X,Y-]= TRUE. m lg < (β) Ο αλγόριθµος έχει ως εξής: () Ξεκίνα από τη θέση (,) και µάρκαρε τη θέση ως θέση την οποία έχεις επισκεφθεί. () Προχώρησε προς µια από τις κατευθύνσεις εξιά, Αριστερά, Πάνω, Κάτω, προς την οποία δεν έχεις µέχρι στιγµής κινηθεί δεδοµένου ότι (α) η διασταύρωση στην οποία φθάνεις υπάρχει στη σχάρα (β) δεν είναι κακόφηµη και (γ) δεν την έχεις επισκεφθεί µέχρι τώρα. () Αν µια τέτοια κατεύθυνση υπάρχει τότε µάρκαρε τη θέση αυτή ως θέση την οποία έχεις επισκεφθεί και, αν η θέση αυτή είναι η (Χ,Υ) τότε τερµάτισε την εκτέλεση. ιαφορετικά επανάλαβε από το βήµα (). (v) Αν µια τέτοια θέση δεν υπάρχει οπισθοδρόµησε µια θέση προς τα πίσω. Αν έχεις φθάσει στη θέση (,), απάντησε πως δεν υπάρχει µονοπάτι που να ικανοποιεί τις προδιαγραφές του προβλήµατος. ιαφορετικά, επανάλαβε από το βήµα (). Παρατηρούµε ότι όταν επισκεφθούµε για πρώτη φορά κάποια διασταύρωση επιστρέφουµε πίσω σε αυτή µόνο αν η προσπάθεια εύρεσης µονοπατιού από τη διασταύρωση προς κάποια κατεύθυνση πάνω στη σχάρα αποτύχει. Εποµένως, αφού από κάθε διασταύρωση µπορούν να γίνουν το πολύ 4 αναζητήσεις, κάθε διασταύρωση συναντιέται το πολύ σταθερό αριθµό φορών. Εποµένως, ο χρόνος εκτέλεσης του αλγόριθµου είναι της τάξης Ο(XY). (γ) Ας γράψουµε K[] για το σύνολο των κόµβων της σχάρας που βρίσκονται σε ελάχιστη απόσταση από τον προορισµό (Χ,Υ). Τότε έχουµε ότι K[0] = {(Χ,Υ)} K[] = {(,j) BAD[,j]=FALSE, (,j) K[0],, K[-] και {(-,j), (+,j), (,j-), (,j+)} K[-] } Ζητούµενο του προβλήµατος µας είναι το m για το οποίο ισχύει (,) Κ[m].. Χρησιµοποιώντας αυτή την ιδέα µπορούµε να κτίσουµε το συντοµότερο µονοπάτι που ικανοποιεί τις προδιαγραδές του προβλήµατος, ξεκινώντας από το τέλος και 6

7 EΠΛ Αλγόριθµοι και Πολυπλοκότητα Φεβρουάριος 00 προχωρώντας προς τα πίσω, δηλαδή από τον προορισµό µας προχωρούµε στις ασφαλείς διασταυρώσεις που βρίσκονται ένα βήµα πιο πίσω (σύνολο Κ[]), από τις διασταυρώσεις Κ[], στις διασταυρώσεις Κ[] που βρίσκονται ένα βήµα πιο πίσω από αυτές, και κατά συνέπεια δύο βήµατα πιο πίσω από το (Χ,Υ) και ούτω καθεξής. Χρησιµοποιούµε τους πίνακες Vsted, Next, και Dstace, για να φυλάγουµε για κάθε διασταύρωση πληροφορίες για το αν έχουµε ήδη επισκεφθεί τη και, αν ναι, τον επόµενο κόµβο στο συντοµότερο µονοπάτι από τη προς το (Χ,Υ) και την απόσταση του µονοπατιού, αντίστοιχα. labyrth(t X, t Y, t BAD[x,y]) queue K; Dstace[..X,..Y]= ; Vsted[..X,..Y]= False; Dstace[X,Y]=0; Vsted[X,Y]= True; K = [(X,Y)]; whle (!IsEmpty(K)) p = Dequeue(K); f (p!= (,)) for all eghbors q of p f (BAD[q] == False) f (Vsted[q] == False) Νext[q]= p; Dstace[q] = Dstace[p] +; Equeue(q,K); f (p==(,)) prt p; whle (p!= (X,Y)) prt ext(p); p = ext(p); Παρατηρούµε ότι επισκεπτόµαστε κάθε κόµβο ακριβώς µια φορά. Εποµένως ο χρόνος εκτέλεσης του αλγόριθµου είναι Ο(ΧΥ). 7

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:

Διαβάστε περισσότερα

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ 22: Αλγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία Σκελετοί Λύσεων. (α) Έστω δροµολόγηση e, e 2,, e των εργασιών, 2,,. Τότε οι χρόνοι συµπλήρωσης των εργασιών είναι e d e e 2 d e + d e 2 e d e + d

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232

Διαβάστε περισσότερα

ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 2-1

ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 2-1 ιαίρει και Βασίλευε Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Η Μέθοδος Σχεδιασµού Αλγορίθµων ιαίρει και Βασίλευε Επίλυση Αναδροµικών Εξισώσεων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα - ιαίρει και Βασίλευε

Διαβάστε περισσότερα

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:

Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ 1 Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 009 Κατ οίκον Εργασία 1 Σκελετοί Λύσεων Άσκηση 1 Αρχικά θα πρέπει να υπολογίσουμε τον αριθμό των πράξεων που μπορεί να εκτελέσει ο υπολογιστής σε μια ώρα,

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 23 Μαρτίου 2017 1 / 20 Επιλογή Το πρόβληµα

Διαβάστε περισσότερα

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. Ο αλγόριθµος κτίζει όλες τις δυνατές αναθέσεις εργασιών στους φοιτητές (υπάρχουν n! διαφορετικές αναθέσεις) και επιστρέφει εκείνη µε το µέγιστο βαθµό καταλληλότητας.

Διαβάστε περισσότερα

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier

(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k

Διαβάστε περισσότερα

ΕΠΛ 232 Φροντιστήριο 2

ΕΠΛ 232 Φροντιστήριο 2 Πρόβληµα ΕΠΛ Φροντιστήριο Έχετε 0 και θέλετε να τις επενδύσετε για n µήνες. Tην πρώτη µέρα κάθε µήνα έχετε µόνο µια από τις παρακάτω τρεις επιλογές:. Να αγοράσετε ένα πιστοποιητικό αποταµίευσης από την

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης

Διάλεξη 04: Παραδείγματα Ανάλυσης Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα

Διαβάστε περισσότερα

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Αλγόριθµοι Οπισθοδρόµησης

Αλγόριθµοι Οπισθοδρόµησης Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 2 ιαίρει και Βασίλευε Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 2 1 / 24 Επιλογή Το πρόβληµα

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική

Διαβάστε περισσότερα

Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Στατιστικά Διάταξης. Στατιστικά σε Μέσο Γραμμικό Χρόνο Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Στατιστικά Διάταξης Με τον όρο στατιστικά διάταξης (order statistics) εννοούμε την περίπτωση

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 5) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Βραχύτερα Μονοπάτια για όλα τα Ζεύγη Λύση υναµικού Προγραµµατισµού Ο αλγόριθµος των Floyd-Warshal ΕΠΛ 3

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις

Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική και τη συµµετρική ιδιότητα του Θ. Λύση Μεταβατική Ιδιότητα (ορισµός): Αν f(n) = Θ(g(n)) και g(n) = Θ(h(n)) τότε f(n)=θ(h(n)). Για

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 45 Εισαγωγή Ο δυναµικός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 9: Στατιστικά Διάταξης- Στατιστικά σε Μέσο Γραμμικό Χρόνο Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

3 Αναδροµή και Επαγωγή

3 Αναδροµή και Επαγωγή 3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων

Αλγόριθµοι. Παράδειγµα. ιαίρει και Βασίλευε. Παράδειγµα MergeSort. Τεχνικές Σχεδιασµού Αλγορίθµων Τεχνικές Σχεδιασµού Αλγορίθµων Αλγόριθµοι Παύλος Εφραιµίδης pefraimi@ee.duth.gr Ορισµένες γενικές αρχές για τον σχεδιασµό αλγορίθµων είναι: ιαίρει και Βασίλευε (Divide and Conquer) υναµικός Προγραµµατισµός

Διαβάστε περισσότερα

Heapsort Using Multiple Heaps

Heapsort Using Multiple Heaps sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους

Διαβάστε περισσότερα

Κατ οίκον Εργασία 5 Σκελετοί Λύσεων

Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 (α) Ο αλγόριθµος χρησιµοποιεί τη διαδικασία DFS(v) η οποία, ως γνωστό, επισκέπτεται όλους τους κόµβους που είναι συνδεδεµένοι µε τον κόµβο v. Για να µετρήσουµε

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429

Διαβάστε περισσότερα

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 2A Σκελετοί Λύσεων

ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 2A Σκελετοί Λύσεων ΕΠΛ 232: λγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία 2A Σκελετοί Λύσεων 1. ια τη σαφή διατύπωση του αλγόριθµου απαιτούνται τα εξής: ιατήρηση της ροής που κτίζεται από τον αλγόριθµο. ιατήρηση της περίσσειας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 3 Νοεµβρίου 2016 Ασκηση 1. Αφού ϐρείτε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή

HY118- ιακριτά Μαθηµατικά. Μαθηµατική επαγωγή. 11 Επαγωγή Επαγωγή HY8- ιακριτά Μαθηµατικά Τρίτη, /03/06 Μαθηµατική Επαγωγή Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University

Διαβάστε περισσότερα

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα. Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n

Διαβάστε περισσότερα

Outline. 6 Edit Distance

Outline. 6 Edit Distance Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι και Δυναμικός Προγραμματισμός Ασκήσεις CoReLab ΣΗΜΜΥ - Ε.Μ.Π. 16 Νοεμβρίου 216 (CoReLab - NTUA) Αλγόριθμοι - Ασκήσεις 16 Νοεμβρίου 216 1 / 52 Outline 1

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων

Σχεδίαση και Ανάλυση Αλγορίθμων Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros

Διαβάστε περισσότερα

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata Σύνοψη Προηγούµενου Γλώσσες χωρίς Συµφραζόµενα (2) Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Αυτόµατα Στοίβας Pushdown utomata Ισοδυναµία µε τις Γλώσσες χωρίς Συµφραζόµενα:

Διαβάστε περισσότερα

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Αφού ξέρουμε με ακρίβεια τον αριθμό των βασικών πράξεων που εκτελεί ο κάθε αλγόριθμος σε δεδομένα μεγέθους, θα

Διαβάστε περισσότερα

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε: Συµβολισµός Ω( ) Τάξη των Συναρτήσεων () Εκτίµηση Πολυπλοκότητας Αλγορίθµων Ορέστης Τελέλης telelis@unipi.gr Ορισµός. Εστω συναρτήσεις: f : N R και g : N R η f(n) είναι Ω( g(n) ) αν υπάρχουν σταθερές C

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση

Διαβάστε περισσότερα

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή 3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα

Διαβάστε περισσότερα

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA

Αριθµοθεωρητικοί Αλγόριθµοι και το. To Κρυπτοσύστηµα RSA Αριθµοθεωρητικοί Αλγόριθµοι και το Κρυπτοσύστηµα RSA Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Υπολογισµός Μέγιστου Κοινού ιαιρέτη Αλγόριθµος του Ευκλείδη Κλάσεις Ισοδυναµίας και Αριθµητική modulo

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηµατικά για Πληροφορική

Μαθηµατικά για Πληροφορική Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής

Διαβάστε περισσότερα

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.

Διαβάστε περισσότερα

Κρυπτογραφία και Πολυπλοκότητα

Κρυπτογραφία και Πολυπλοκότητα Απόδειξη του Αλγορίθµου Tonelli - Shanks Σχολή Εφαρµοσµένων και Φυσικών Επιστηµών ευτέρα 13 Φεβρουαρίου 2011 Το Πρόβληµα Να ϐρούµε x 1, x 2 Z p τέτοια ώστε: για κάποιο a Z p. x 2 i a (mod p) i 1, 2 (1)

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(), Ω(), Θ( ) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G,k η G είναι μια ασυμφραστική γραμματική η οποία παράγει κάποια λέξη 1 n όπου n k } (β) { Μ,k η Μ είναι

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή

Διαβάστε περισσότερα

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Κατ οίκον Εργασία 3 Σκελετοί Λύσεων Άσκηση 1 (α) Έστω Α(n) και Κ(n) ο αριθμός των ακμών και ο αριθμός των κόμβων ενός αυστηρά δυαδικού δένδρου με n φύλλα. Θέλουμε να αποδείξουμε για κάθε n 1 την πρόταση

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ. Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα

Διαβάστε περισσότερα

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11

I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 Αλγόριθμοι και Πολυπλοκότητα 2η Σειρά Γραπτών και Προγραμματιστικών Ασκήσεων CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Δεκέμβριος 2016 (CoReLab - NTUA) Αλγόριθμοι - 2η σειρά ασκήσεων Δεκέμβριος 2016 1 / 65 Outline 1 Άσκηση

Διαβάστε περισσότερα

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση

Διαβάστε περισσότερα

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9 R 0 0 Ερώτηση 1 Να εκτελεστούν όλα τα βήµατα του παρακάτω αλγορίθµου στον µονοδιάστατο πίνακα: "!$ Στην κάθε κλήση της procedure εισάγεται ο %&') Ο συµϐολισµός υπονοεί τον υποπίνακα από την ϑέση % έως

Διαβάστε περισσότερα

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Στοιχεία Αλγορίθµων και Πολυπλοκότητας Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 1 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 1: Εισαγωγή Ασκήσεις και Λύσεις Άσκηση 1 Αποδείξτε τη µεταβατική

Διαβάστε περισσότερα

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax

Διαβάστε περισσότερα

Γ. Κορίλη Αλγόριθµοι ροµολόγησης

Γ. Κορίλη Αλγόριθµοι ροµολόγησης - Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Θεωρία Γραφηµάτων Α π α ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµα. Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ ΜΗ ΓΡΑΜΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Η αδυναµία επίλυσης της πλειοψηφίας των µη γραµµικών εξισώσεων µε αναλυτικές µεθόδους, ώθησε στην ανάπτυξη αριθµητικών µεθόδων για την προσεγγιστική επίλυσή τους, π.χ. συν()

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.

Διαβάστε περισσότερα

Μέγιστη Ροή Ελάχιστη Τομή

Μέγιστη Ροή Ελάχιστη Τομή Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια)

ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια) ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια) Πολλαπλασιασμός: μπορούμε καλύτερα; Διαισθητικά, επειδή ο πολλαπλασιασμός φαίνεται να απαιτεί άθροιση περίπου n πολλαπλασίων μιας από τις εισόδους, και δεδομένου ότι κάθε πρόσθεση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο 1 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Λυσεις Ασκησεων - Φυλλαδιο ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 7 Φεβρουαρίου 03 Ασκηση. είξτε ότι

Διαβάστε περισσότερα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου

Διαβάστε περισσότερα

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή

Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Δοµές Δεδοµένων και Αλγόριθµοι - Εισαγωγή Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Εισαγωγή στις έννοιες Αλγόριθµοι και Πολυπλοκότητα, Οργάνωση Δεδοµένων και Δοµές Δεδοµένων Χρήσιµοι µαθηµατικοί

Διαβάστε περισσότερα

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort

Διαβάστε περισσότερα

Διδάσκων: Κωνσταντίνος Κώστα

Διδάσκων: Κωνσταντίνος Κώστα Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος

Διαβάστε περισσότερα

Αλγόριθμοι Ταξινόμησης Μέρος 2

Αλγόριθμοι Ταξινόμησης Μέρος 2 Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2

Διαβάστε περισσότερα

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας.

Επιπλέον Ασκήσεις. Μαθηµατική Επαγωγή. ιαιρετότητα. Προβλήµατα ιαιρετότητας. Επιπλέον Ασκήσεις Μαθηµατική Επαγωγή Για κάθε n 1: 2 = n(n + 1(2n + 1 6 Ορέστης Τελέλης telels@unpgr Για κάθε n 1: 3 = n2 (n + 1 2 4 Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Για κάθε n 10: 2 n

Διαβάστε περισσότερα

Δυναμικός προγραμματισμός για δέντρα

Δυναμικός προγραμματισμός για δέντρα ΘΕ5 Ιδιότητες Δέντρων και Αναδρομή για Δέντρα Δυναμικός προγραμματισμός για δέντρα Έστω ότι, για k=1,..., m, το γράφημα Γ k = (V k, E k ) είναι δέντρο. Έστω w V 1... V m, z k V k, για k=1,..., m. Συμβολίζουμε

Διαβάστε περισσότερα

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς

Μαθηµατική Επαγωγή. Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Μαθηµατική Επαγωγή Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Επαγωγή 1 / 20 Επιπλέον Ασκήσεις Για κάθε n 1: n i 2 = n(n + 1)(2n

Διαβάστε περισσότερα

Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης

Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης Γ7.5 Αλγόριθμοι Αναζήτησης Γ Λυκείου Κατεύθυνσης Εισαγωγή Αλγόριθμος αναζήτησης θεωρείται ένας αλγόριθμος, ο οποίος προσπαθεί να εντοπίσει ένα στοιχείο με συγκεκριμένες ιδιότητες, μέσα σε μία συλλογή από

Διαβάστε περισσότερα

Υπολογιστικό Πρόβληµα

Υπολογιστικό Πρόβληµα Υπολογιστικό Πρόβληµα Μετασχηµατισµός δεδοµένων εισόδου σε δεδοµένα εξόδου. Δοµή δεδοµένων εισόδου (έγκυρο στιγµιότυπο). Δοµή και ιδιότητες δεδοµένων εξόδου (απάντηση ή λύση). Τυπικά: διµελής σχέση στις

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 10 Νοεµβρίου 2016 Ασκηση 1. Να ϐρεθούν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 6 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt204/nt204.html htts://sites.google.com/site/maths4eu/home/4

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 6 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Τµηµα Β Λυσεις Ασκησεων - Φυλλαδιο 6 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : htt://users.uoi.gr/abeligia/numbertheory/nt2016/nt2016.html Πέµπτη 23 Νεµβρίου 2016 Ασκηση 1. Αν N, να

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά

HY118- ιακριτά Μαθηµατικά HY118- ιακριτά Μαθηµατικά Παρασκευή, 10/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 1 1

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 17 Μέγιστη Κοινή Υπακολουθία

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Γρήγορη ταξινόμηση. Ταξινόμηση με Συγχώνευση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γρήγορη Ταξινόμηση Η γρήγορη ταξινόμηση qucksort), που αλλιώς ονομάζεται και ταξινόμηση µε διαμερισμό

Διαβάστε περισσότερα

Μη γράφετε στο πίσω μέρος της σελίδας

Μη γράφετε στο πίσω μέρος της σελίδας Εισαγωγή στο Σχεδιασμό & την Ανάλυση Αλγορίθμων Εξέταση Σεπτεμβρίου 2015 Σελ. 1 από 8 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)

Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β) Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε

Διαβάστε περισσότερα

Αυτοματοποιημένη Επαλήθευση

Αυτοματοποιημένη Επαλήθευση Αυτοματοποιημένη Επαλήθευση Στην ενότητα αυτή θα μελετηθούν τα εξής θέματα: Έλεγχος Μοντέλου Αλγόριθμοι γράφων Αλγόριθμοι αυτομάτων Αυτόματα ως προδιαγραφές ΕΠΛ 664 Ανάλυση και Επαλήθευση Συστημάτων 4-1

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ

οµές εδοµένων 3 ο Εξάµηνο Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ Τµήµα Πανεπιστήµιο Πληροφορικής Ιωαννίνων ΟΜΕΣ Ε ΟΜΕΝΩΝ ΕΝΟΤΗΤΑ 1 ΕΙΣΑΓΩΓΗ 1 εδοµένα Σύνολο από πληροφορίες που πρέπει να αποθηκευτούν σε έναν υπολογιστή Υπολογιστικό Μοντέλο ένας επεξεργαστής και µεγάλος

Διαβάστε περισσότερα