Grecia. Ciorba Darius Oltean Steliana Precup Diana Profesori:Oprea Mihaela Botezan Claudia
|
|
- Υγίνος Κρεστενίτης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Grecia Ciorba Darius Oltean Steliana Precup Diana Profesori:Oprea Mihaela Botezan Claudia
2 Aceasta prezentare a fost facuta pentru optionalul Turism Virtual pentru semestrul al doilea al acestui an scolar.
3
4 Prezentarea fizico-geografica Grecia se află în sud-estul Europei, în Peninsula Balcanică. Se învecinează la nord cu Bulgaria, cu Republica Macedonia și Albania, la est cu Turcia și Marea Egee, la vest cu Marea Ionică iar la sud cu Marea Mediterană. Se află cuprinsă aproximativ între paralele N și N și între meridianele E și E. Grecia este formată dintr-o parte continentală cu numeroase golfuri și peninsule (Peloponezul, o peninsulă legată de continent prin istmul Corint) și o parte insulară (aproximativ de insule în Marea Egee, Marea Ionică și Marea Mediterană). Insulele cele mai importante sunt Creta, Rodos, Corfu și grupele Dodecaneze și Ciclade. Grecia are aproximativ km de coastă.
5 Aproximativ 80% din teritoriul ţării este muntos sau deluros, lucru care face Grecia una dintre cele mai muntoase ţări din Europa. În Grecia occidentală se găsesc lacuri și ţinuturi umede. Lanţul muntos central al ţării este reprezentat de Munţii Pindus, cu o înălţime medie de m. Lanţul se continuă cu insulele Kythera și Antikythera, până la Creta și Rodos. Insulele Mării Egee sunt piscuri ale munţilor subacvatici care reprezintă o extensie geologică a lanţului. Grecia ocidentală și centrală conţine zone abrupte, înalte, intersectate de numeroase defileuri și alte forme de relief carstic, cele mai cunoscute fiind Meteora și Defileul Vikos - ultimul fiind unul dintre cele mai mari din lume, al doilea ca adâncime după Marele Canion, cu de metri. În lanţul Olimp se află cel mai înalt punct din Grecia, vârful Mytikas, cu o altitudine de m. În nordul ţării se află un alt lanţ muntos, Munţii Rodopi, la graniţa cu Bulgaria. Zona este acoperită de păduri întinse, vechi de secole. Câmpiile ocupă suprafeţe mai mari în nord, în special în Tesalia de est, Macedonia centrală și Tracia
6 Muntii Pindus
7 Defileul Vikos Insulele Kythera
8 Varful Mytikas-Olimp
9 Muntii Rodopi
10 Clima Clima Greciei se împarte în trei categorii: 1.climă mediteraneană, cu ierni blânde, umede, și veri călduroase, secetoase. Temperaturile depășesc rareori extremele, deși uneori au loc ninsori chiar și în Atena sau Creta în timpul iernii. 2.climă alpină în special în Grecia occidentală (Epir, Grecia Centrală, Tesalia Macedonia occidentală precum și în părţile centrale ale Peloponezului, cum ar fi Ahaia, Arcadia și părţi din Lakonia pe unde trece lanţul muntos). 3.climă temperată în Macedonia centrală și estică, precum și în Tracia, în locuri precum Komotini, Xanthi și Evrosul de nord, cu ierni umede și geroase și veri secetoase și călduroase. Suburbiile sudice ale Atenei se află în zona mediteraneană, iar cele nordice în cea alpină. Grecia apartine zonei mediterane. Clima tarii este blanda. Pe an sunt 300 de zile insorite. Vara, ploile sunt foarte rare, iar iarna sunt frecvente furtunile. Cel mai potrivit timp pentru a vizita Grecia este perioada sfarsitul lui martie jumatatea lui iunie sau septembrie sfarsitul lui octombrie.
11 Relieful În general muntos, lanţurile muntoase se continuă în mare sub formă de peninsule sau lanţuri de insule Grecia este formată dintr-o parte continentală cu numeroase golfuri şi peninsule şi o parte insulară (aproximativ de insule în Marea Egee, Marea Ionică şi Marea Mediterană). Insulele cele mai importante sunt Creta, Rodos, Corfu şi grupele Dodecaneze şi Ciclade. Grecia are aproximativ km de coastă.
12 Insula Rodos Insula Creta
13 Localizare: Europa sudică, mărginindu-se cu Mare Ionică și Marea Mediterană, între Albania și Turcia Coordonate geografice: N E / 39, 22 Suprafaţă: Total: km² Pământ: km² continent-insule Apă: km² lacuri-râuri km² bazinul Egeei (atenţie, nu se referă la apele teritoriale, ci doar la regiunea egee inclusă) Graniţe terestre: Total: km Ţările vecine: Albania 282 km, Bulgaria 494 km, Turcia 931 km, Republica Macedonia 228 km Coastă: km Apele teritoriale: 12 mile marine Extremele altitudinii: cel mai jos punct: Marea Mediterană 0 m cel mai înalt punct: Muntele Olimp m
14 Harta Greciei si a vecinilor sai Imagine din satelit a Greciei
15 Frumusetile Greciei Grecia este o tara frumoasa cu toate ca a fost foarte afectata de criza economica mondiala. Frumusetile Greciei incep inca de la tarmurile acestei tari pana in adancul insulelor pe care le cuprinde. In continuare vom viziona cateva imagini care cuprind cateva dintre aceste frumuseti(plaje, ruine, orase).
16 Plajele
17 Hora Orasele Santorini
18 Ruinele Ruinele sunt ramasitele Greciei antice si demostraza maretia si vasta cultura a stramosilo grecilor de astazi Printre ruinele grecesti se numara pantheonuri, locuri de inchinare si slavire a zeilor si acropole, echivalentul pietelor contemporane, unde oamenii se intalneau,discutau si desfasurau cea mai frecvent intalnita ocupatie in Grecia antica: negotul.
19 Acropolis urile Atenei
20 Pantheonuri Alte ruine Acropolisul din Delphi Fortareata Bourtzi
21 Grecia are un farmec aparte si o atmosfera care te cuprinde din momentul in care pu piciorul pe tarmurile elene. Numeroasele legende si aproprierea fata de divinitatea greceasca, precum si datinile si obiceiurile poporului te duc intr o lume in care te simti bine primit si foarte rasfatat Τέλος(sfarsit)
22 Vacanta in Grecia Grecia este taramul binecuvantat de zei; vacantele aici vor fi cu siguranta de neuitat, fie ca le petreceti la Mediterana, la Egee sau la Ionica, in insule, in golfuri sau peninsule, in orase ce inca respira maretia trecutului sau in buzuki, dansand ca Zorba sirtaki si, de ce nu, spargand farfurii. Sentimentul simtit este acela de libertate totala (elefteria).
23 Oferte sejururi Ro-Travel in Grecia: Impreuna cu familia Vacanta in doi Luna de miere Cu gasca in Spania Aproape de plaja Distractie sportiva
24 Agentia noastra de turism Ro-Travel va va prezenta in cele ce urmeaza traseul unei excursii in Grecia,obiectivele turistice dar si hotelurile la care veti fi cazati.
25 Traseul Targu Mures-Sibiu-Pitesti-Alexandria- Sofia-Grecia-Bitola-Nis-Timisoara- Targu Mures
26
27 In cele ce urmeaza vom prezenta mai detaliat excursia in Grecia,dar si popasurile care le vom face si locurile in care ne vom caza
28 Ziua 1 Vom porni la ora 9:00 am din Targu Mures,dupa un drum de 2 ore vom ajunge in Sibiu,vom face o mica oprire si vom vizita Muzeul Brukental,Podul Mincinosilor,Turnul gros si Piata mare
29 Muzeul Brukental
30 Turnul Gros
31 Ziua a 2-a Dupa ce vizitam orasul Sibiu pornim spre Pitesti la ora 15:00 pm.ajungem la ora 19:00 pm.vom face un scurt tur al orasului dupa care ne vom caza in Pitesti la hotelul Lacetate.
32 Situat la doar 2 km de Pitesti, Complexul hotelier Lacetate cuprinde: O unitate de cazare alcatuita din 16 camere dispuse in felul urmator: -8 camere duble (matrimoniale si twin); -6 camere triple; -2 apartamente; Capacitatea totala de cazare este de 40 de locuri. Facilitati cazare: frigider in unitate, internet wireless, discoteca, parcare, terasa, plata cu cardul, gratar/barbeque, seif la receptie, bar, restaurant Facilitati camere: internet in camera, incalzire centrala, baie in camera, camera cu TV Capacitate: 40 locuri in 16 camere Pret:80 lei
33
34
35 Ziua 3 Dimineata,dupa ce servim micul dejun la hotelul Lacetate,pornim la ora 9:30 am spre Alexandria.Ajungem la ora 11:00 am.dupa cateva popasuri vom merge la Hanul cu Noroc pentru a lua pranzul,iar la ora 14:00 pm vom porni la drum pentru a ajunge in Sofia.
36
37 Dupa un drum de sase ore,ajungem la Sofia la ora 20:00 pm.ne vom caza la Sofia Plaza pentru a lua cina,dar si pentru a ne odihni pentru a ne recapata fortele.
38 Sofia, Bulgaria, 154 Hristo Botev blvd., 1202 Sofia Hotelul dispune de 50 de camere dotate modern, restaurant, bar, sauna, sala de fitness si solar. Se ofera servicii de room service, curatare a hainelor, fax si acces la internet.
39 Ziua 4 Dupa ce luam micul dejun,pornim catre Grecia la ora 10:00 am,iar dupa un drum lung vom ajunge aproximativ pe la ora 17:00 am.ne vom caza la hotelul New Hotel,iar dupa ce ne instalm vom face un mini-tur,urmand ca mai tarziu sa luam cina.
40
41 Ziua 5 In cea de-a 5-a zi a excursiei vom vizita Tempul lui Zeus,Farul,Castelul venetian,colina lui Monte Smith,Valea Fluturilor si Castelul Neratzia.
42 Templul lui Zeus Farul
43 Colina lui Monte Smith Castelul venetian
44 Valea Fluturilor Castelul Neratzia
45 Ziua 6 Aceasta zi va fi una de vis deoarece vom vizita cateva din plajele Greciei,vom sta la soare,ne vom bronza,ne vom relaxa,si o sa incercam sa profitam din plin de timpul ramas in aceasta magnifica tara.
46 Plaja Skiathos Plaja Zakynthos
47 Myrtos Corfu-Grecia
48 Ziua 7 Ultima zi petrecuta in Grecia va fi la libera alegere.fie ca doriti sa faceti poze,fie ca doriti sa cumparati suveniruri pentru cei dragi,fie ca vreti sa va bronzati, sau de ce nu sa va relaxati in camera de hotel,noi va vom garanta ca veti avea o zi magnifica,indiferent de ceea ce veti alege sa faceti.
49 Ziua 8 Dis-de-dimineata vom porni la ora 8:00 am catre Bitola.Vom ajunge pe la ora 11:00 am.vom face o mica oprire la o cafenea pentru a lua pranzul dar si pentru a ne odihni,urmand ca la ora 13:00 pm sa pornim catre Nis,urmand sa ajungem aproximativ pe la ora 18:00 pm.
50 Bitola este un oraș în partea de sud-vest a Macedoniei. Orașul este un centru administrativ, cultural, industrial, comercial, și educațional. Orașul este dispersat de-a lungul malurilor râului Dragor la o altitudine de 615 m deasupra nivelului mării. Se intinde pe o suprafață de 1798 km ² și are o populație de 122,173 (1991).Acesta este situat în partea de sud a văii "Pelagonia", înconjurat de munții "Baba" și "Nidže", la 14 km nord de granița "Medžitlija-Niki" de trecere cu Grecia. Este un important nod de legătură care leagă sudul "Mării Adriatice", cu Marea Egee și Europa Centrală. Conform unor surse, Bitola este doilea oraș ca mărime din țară, și pentru alții al treilea. ] Bitola este, de asemenea, centrul municipiului Bitola.
51 Niș este un oraș în partea de sud a Serbiei în districtul Nišava.
52 Hotelul Best Western My Place
53 Ziua 9 Ziua in care ne intoarcem cu pasi repezi in Romania;ajungem in Timisoara la ora 16:00 pm,dupa care ne vom opri putin pentru a ne odihni si pentru a ne recapata fortele apoi la ora 18:00 pm vom porni catre Targu Mures urmand sa ajungem la ora 14:00 in cea de-a 10-a zi.
54 Timisoara
55 Transportul va va fi garantat de firma Happy Serv.
56 Agentia noastra de turism Ro-Travel spera ca v-a trezit interesul de a face o excursie in Grecia,dar si pentru a vizita o parte din Romania.Speram sa va placa aceasta mini-prezentare si de ce nu sa ne contactati pentru a va planifica excursia.
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
Athos Sea Cruises. Mount Athos Cruises. Rodokalakis George (+30) (+30)
Athos Sea Cruises Mount Athos Cruises George Rodokalakis Ammouliani, 63075 Halkidiki, Greece Rodokalaki Ioanna (+30) 2377071606 E-mail: contact@athos-cruises.gr Rodokalakis George (+30) 2377071071 (+30)
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
Εμπορική αλληλογραφία Ηλεκτρονική Αλληλογραφία
- Εισαγωγή Stimate Domnule Preşedinte, Stimate Domnule Preşedinte, Εξαιρετικά επίσημη επιστολή, ο παραλήπτης έχει ένα ειδικό τίτλο ο οποίος πρέπει να χρησιμοποιηθεί αντί του ονόματος του Stimate Domnule,
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)
BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25
Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui
- Introducere Αξιότιμε κύριε Πρόεδρε, Αξιότιμε κύριε Πρόεδρε, Foarte formal, destinatarul ocupă o funcţie care trebuie folosită în locul numelui Αγαπητέ κύριε, Αγαπητέ κύριε, Formal, destinatar de sex
Plecari: Iunie Iulie August Septembrie
Plecari: Iunie Iulie August Septembrie 29 06 13 20 27 03 10 17 24 31 07 14 ORAR DE ZBOR: OTOPENI 09:15 BARCELONA 11:30 // BARCELONA 12:20 - OTOPENI 16:25 SERVICII INCLUSE : 7 nopti cazare si masa in hoteluri
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
ΟΔΗΓΟΣ ΓΛΩΣΣΙΚΗΣ ΚΑΙ ΠΟΛΙΤΙΣΤΙΚΗΣ
ΟΔΗΓΟΣ ΓΛΩΣΣΙΚΗΣ ΚΑΙ ΠΟΛΙΤΙΣΤΙΚΗΣ ÑÏÕÌÁÍÉÁ ΠΡΟΕΤΟΙΜΑΣΙΑΣ Εισαγωγή Η Δημοκρατία της Ρουμανίας έχει έκταση 238.000 χλμ² και πληθυσμό ο οποίος ξεπερνά τα 21 εκατομμύρια κατοίκους. Το επίσημο νόμισμά της
2CP Electropompe centrifugale cu turbina dubla
2CP Electropompe centrifugale cu turbina dubla DOMENIUL DE UTILIZARE Capacitate de până la 450 l/min (27 m³/h) Inaltimea de pompare până la 112 m LIMITELE DE UTILIZARE Inaltimea de aspiratie manometrică
Ακαδημαϊκός Λόγος Κύριο Μέρος
- Επίδειξη Συμφωνίας În linii mari sunt de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου Cineva este de acord cu...deoarece... Επίδειξη γενικής συμφωνίας με άποψη άλλου D'une façon générale,
页面
订单 - 配售 Εξετάζουμε την αγορά...luăm în considerare posibi 正式, 试探性 Είμαστε στην ευχάριστη Suntem θέση να încântați δώσουμε την să plasăm παραγγελία μας στην εταιρεία comandă σας pentru... για... Θα θέλαμε
FLUXURI MAXIME ÎN REŢELE DE TRANSPORT. x 4
FLUXURI MAXIME ÎN REŢELE DE TRANSPORT Se numeşte reţea de transport un graf în care fiecărui arc îi este asociat capacitatea arcului şi în care eistă un singur punct de intrare şi un singur punct de ieşire.
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri
Limassol.
Limassol Limassol sau Lemesos (greaca: Λεμεσός, Lemesos; turca: Limasol, alt. Leymosun) este al doilea oras ca marime din Cipru, cu o populatie de 176.900 (2005). Orasul se afla in Golful Akrotiri, pe
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează
TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Ταξίδι Γενικά. Γενικά - Τα απαραίτητα. Γενικά - Συνομιλία. Παράκληση για βοήθεια. Ερώτηση σε πρόσωπο αν μιλά αγγλικά
- Τα απαραίτητα Mă puteți ajuta, vă rog? Παράκληση για βοήθεια Vorbiți în engleză? Ερώτηση σε πρόσωπο αν μιλά αγγλικά Vorbiți _(limba)_? Ερώτηση σε πρόσωπο αν μιλά ορισμένη γλώσσα Nu vorbesc _(limba)_.
Valori limită privind SO2, NOx şi emisiile de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili
Anexa 2.6.2-1 SO2, NOx şi de praf rezultate din operarea LPC în funcţie de diferite tipuri de combustibili de bioxid de sulf combustibil solid (mg/nm 3 ), conţinut de O 2 de 6% în gazele de ardere, pentru
1.7. AMPLIFICATOARE DE PUTERE ÎN CLASA A ŞI AB
1.7. AMLFCATOARE DE UTERE ÎN CLASA A Ş AB 1.7.1 Amplificatoare în clasa A La amplificatoarele din clasa A, forma de undă a tensiunii de ieşire este aceeaşi ca a tensiunii de intrare, deci întreg semnalul
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7
Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Site-ul AstroInfo &
Site-ul AstroInfo www.astro-info.ro & prezintă 200 Hotea Sorin Toate drepturile rezervate. HărŃile pot fi folosite sau transmise doar cu precizarea sursei şi a autorului. Altfel se încalcă legea privind
Să se arate că n este număr par. Dan Nedeianu
Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)
T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.
Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
Personal Scrisori. Scrisori - Adresa. Κυρ. Ιωάννου Οδ. Δωριέων 34 Τ.Κ 8068, Λάρνακα
- Adresa Κυρ. Ιωάννου Οδ. Δωριέων 34 Τ.Κ 8068, Λάρνακα Κυρ. Ιωάννου Οδ. Δωριέων 34 Τ.Κ 8068, Λάρνακα Formatul românesc de adresă: Strada, numărul străzii, eventual blocul, scara şi numărul apartamentului
Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Exerciţii şi probleme E.P.2.4. 1. Scrie formulele de structură ale următoarele hidrocarburi şi precizează care dintre ele sunt izomeri: Rezolvare: a) 1,2-butadiena;
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Algebra si Geometrie Seminar 9
Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni
Capitolul 30. Transmisii prin lant
Capitolul 30 Transmisii prin lant T.30.1. Sa se precizeze domeniile de utilizare a transmisiilor prin lant. T.30.2. Sa se precizeze avantajele si dezavantajele transmisiilor prin lant. T.30.3. Realizati
3. Locuri geometrice Locuri geometrice uzuale
3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile
Teorema Rezidurilor şi Bucuria Integralelor Reale
Torma Ridurilor şi Bucuria Intgrallor Ral Prntar d Alandru Ngrscu Intgral cu funcţii raţional c dpind d sin t şi cos t u notaţia it, avm: cos t ( + sin t ( i dt d i, iar intgrara s va fac d-a lungul crcului
Conice - Câteva proprietǎţi elementare
Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii
Capitolul 14. Asamblari prin pene
Capitolul 14 Asamblari prin pene T.14.1. Momentul de torsiune este transmis de la arbore la butuc prin intermediul unei pene paralele (figura 14.1). De care din cotele indicate depinde tensiunea superficiala
I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare.
Capitolul 3 COMPUŞI ORGANICI MONOFUNCŢIONALI 3.2.ACIZI CARBOXILICI TEST 3.2.3. I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Reacţia dintre
I X A B e ic rm te e m te is S
Sisteme termice BAXI Modele: De ce? Deoarece reprezinta o solutie completa care usureaza realizarea instalatiei si ofera garantia utilizarii unor echipamente de top. Adaptabilitate la nevoile clientilor
2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3
SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE
Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de
Tranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
Site-ul AstroInfo &
Site-ul AstroInfo www.astro-info.ro & prezintă 20 Hotea Sorin Toate drepturile rezervate. HărŃile pot fi folosite sau transmise doar cu precizarea sursei şi a autorului. Altfel se încalcă legea privind
OLIMPIADA NAłIONALĂ DE FIZICĂ Râmnicu Vâlcea, 1-6 februarie Pagina 1 din 5 Subiect 1 ParŃial Punctaj Total subiect 10 a) S 2.
Rânicu Vâlcea, -6 febuaie 9 Pagina din 5 Subiect PaŃial Punctaj Total subiect a T T S S G G,75 G + S S T ( G+ S S T (,75 T T 5,5 S S G G G + S S T (,75 G + S S T (4,75 Cobinând cele atu elații ezultă:
MULTIMEA NUMERELOR REALE
www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Sulfonarea benzenului este o reacţie ireversibilă.
Cum folosim cazuri particulare în rezolvarea unor probleme
Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.
Subiecte Clasa a V-a
(40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii
II. 5. Probleme. 20 c 100 c = 10,52 % Câte grame sodă caustică se găsesc în 300 g soluţie de concentraţie 10%? Rezolvare m g.
II. 5. Problee. Care ete concentraţia procentuală a unei oluţii obţinute prin izolvarea a: a) 0 g zahăr în 70 g apă; b) 0 g oă cautică în 70 g apă; c) 50 g are e bucătărie în 50 g apă; ) 5 g aci citric
Reflexia şi refracţia luminii.
Reflexia şi refracţia luminii. 1. Cu cat se deplaseaza o raza care cade sub unghiul i =30 pe o placa plan-paralela de grosime e = 8,0 mm si indicele de refractie n = 1,50, pe care o traverseaza? Caz particular
Corectură. Motoare cu curent alternativ cu protecție contra exploziei EDR * _0616*
Tehnică de acționare \ Automatizări pentru acționări \ Integrare de sisteme \ Servicii *22509356_0616* Corectură Motoare cu curent alternativ cu protecție contra exploziei EDR..71 315 Ediția 06/2016 22509356/RO
Site-ul AstroInfo &
Site-ul AstroInfo www.astro-info.ro & prezintă 2011 Hotea Sorin Toate drepturile rezervate. HărŃile pot fi folosite sau transmise doar cu precizarea sursei şi a autorului. Altfel se încalcă legea privind
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
a. Caracteristicile mecanice a motorului de c.c. cu excitaţie independentă (sau derivaţie)
Caracteristica mecanică defineşte dependenţa n=f(m) în condiţiile I e =ct., U=ct. Pentru determinarea ei vom defini, mai întâi caracteristicile: 1. de sarcină, numită şi caracteristica externă a motorului
Lira Vega. Nume: Nebuloasa Inel (M 57) Tipul obiectului: NP Ascensie dreaptã: 18 53,6 Declinaţie: Magnitudine: 9.
La inceputul lunii, Soarele este in constelatia Gemeni (23 iunie 20 iulie), urmând ca la sfârşit, el sã se gãseascã în constelaţia Rac (21 iulie 11 august). Este o lunã prielnicã pentru observaţii dartoritã
Muchia îndoită: se află în vârful muchiei verticale pentru ranforsare şi pentru protecţia cablurilor.
TRASEU DE CABLURI METALIC Tip H60 Lungimea unitară livrată: 3000 mm Perforaţia: pentru a uşura montarea şi ventilarea cablurilor, găuri de 7 30 mm în platbandă, iar distanţa dintre centrele găurilor consecutive
Anexa nr. 3 la Certificatul de Acreditare nr. LI 648 din
Valabilă de la 14.04.2008 până la 14.04.2012 Laboratorul de Încercări şi Verificări Punct lucru CÂMPINA Câmpina, str. Nicolae Bălcescu nr. 35, cod poştal 105600 judeţul Prahova aparţinând de ELECTRICA