Statisticǎ - curs 3. 1 Seria de distribuţie a statisticilor de eşantioane 2. 2 Teorema limitǎ centralǎ 5. 3 O aplicaţie a teoremei limitǎ centralǎ 7
|
|
- Ισίδωρος Ἰεφθάε Παπαφιλίππου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Statisticǎ - curs 3 Cuprins 1 Seria de distribuţie a statisticilor de eşantioane 2 2 Teorema limitǎ centralǎ 5 3 O aplicaţie a teoremei limitǎ centralǎ 7 4 Estimarea punctualǎ a unui parametru; intervalul de încredere 8 1
2 1 Seria de distribuţie a statisticilor de eşantioane Pentru a face inferenţǎ (predicţie asupra parametrilor populaţiei, este necesar sǎ analizǎm statisticile de eşantioane. Media x în cazul unui eşantion nu este neaparat egalǎ cu media µ a populaţiei. Suntem însǎ mulţumiţi dacǎ media x este apropiatǎ de µ. Dacǎ se considerǎ media x în cazul unui al doilea eşantion aceasta poate sǎ fie diferitǎ de x şi de µ. Ceea ce putem spera este ca aceasta sǎ fie apropiatǎ de valoarea µ şi de x. Valabilitatea acestui tip de comportament intereseazǎ pentru orice populaţie şi orice statisticǎ. Întrebarea care se naşte în mod natural este ce înseamnǎ aproape? Cum se mǎsoarǎ şi se determinǎ aceastǎ apropiere? Definiţia 1. Seria de distribuţie a statisticilor de eşantioane este seria de distribuţie a statisticilor de un anumit tip obţinute eşantioanele de aceeaşi mǎrime. Exemplul 1. Se considerǎ o populaţie de N elemente de la care se pot obţine urmǎtoarele date statistice distincte: {0, 2, 4, 6, 8}. În cazul acestei populaţii formǎm toate eşantioanele de mǎrime 2 de la care putem avea urmǎtoarele date statistice: Pentru aceste eşantioane mediile x sunt: (0, 0 (2, 0 (4, 0 (6, 0 (8, 0 (0, 2 (2, 2 (4, 2 (6, 2 (8, 2 (0, 4 (2, 4 (4, 4 (6, 4 (8, 4 (0, 6 (2, 6 (4, 6 (6, 6 (8, 6 (0, 8 (2, 8 (4, 8 (6, 8 (8, Probabilitatea de a alege un eşantion din cele 25 este 1/25 şi seria de distribuţie a mediilor acestor eşantioane este: x f (x unde f (x este frecvenţa relativǎ a mediei x. Diagrama coloanǎ a mediilor eşantioanelor este: 2
3 Pentru acelaşi set de 25 de eşantioane putem determina seria de distribuţie a plajelor R a acestor eşantioane. Plajele R ale eşantioanelor sunt date în tabelul urmǎtor: Seria de distribuţie a plajelor acestor eşantioane este: R f (R iar diagrama coloanǎ a plajei eşantioanelor este: 3
4 Exemplul 2. În cazul aruncǎrii zarului de un numǎr de N ori, setul de date statistice care se referǎ la numǎrul de pe faţǎ care apare este 1, 2, 3, 4, 5, 6. Formǎm eşantioane care constau din 5 aruncǎri. Fiecare din aceste eşantioane are media x. Considerǎm 30 de eşantioane de acest fel (înseamnǎ 30 5 = 150 aruncǎri şi într-un tabel reprezentǎm rezultatele precum şi mediile corespunzǎtoare: Încercare Eşantion x Încercare Eşantion x Histograma seriei de distribuţie a mediilor celor 30 de eşantioane este reprezentatǎ în figura urmǎtoare: Aceastǎ lege de repartiţie pare sǎ aibe caracteristicile unei legi de repartiţie normalǎ; este maxim şi este simetric faţǎ de media proprie
5 2 Teorema limitǎ centralǎ În secţiunea precedentǎ am prezentat seria de distribuţie a mediei şi plajei unui set de eşantioane. Media este statistica folositǎ cel mai frecvent în cazul eşantioanelor şi de aceea este foarte importantǎ. Teorema limitǎ centralǎ se referǎ la seria de distribuţie a mediei tuturor eşantioanelor aleatoare de aceeaşi mǎrime n. Sǎ formulǎm ce anume intereseazǎ în cazul acestei serii de distribuţie: 1 Unde este centrul datelor? 2 Cât de mare este dispersia datelor? 3 Care este caracterul seriei de distribuţie? Teorema limitǎ centralǎ oferǎ rǎspuns la aceste trei întrebǎri. Teorema limitǎ centralǎ Fie µ media şi deviaţia standard a unei variabile în cazul unei populaţii. Dacǎ se considerǎ toate eşantioanele aleatoare de mǎrime n din aceastǎ populaţie, atunci seria de distribuţie a mediilor acestor eşantioane are urmǎtoarele proprietǎţi: a media µ x a acestei serii de distribuţie este egalǎ cu µ; b deviaţia standard x a acestei serii de distribuţie este n. c dacǎ seria de distribuţie a variabilei în cazul populaţiei este normalǎ, atunci seria de distribuţie a mediilor eşantioanelor este normalǎ; dacǎ seria de distribuţiei a variabilei în cazul populaţiei nu este normalǎ, atunci seria de distribuţie a mediilor eşantioanelor este aproximativ normalǎ pentru eşantioane de mǎrime mai mare ca 30. Tendinţa cǎtre o serie de distribuţie normalǎ creşte dacǎ mǎrimea eşantionului creşte. Pe scurt, teorema limitǎ centralǎ stabileşte urmǎtoarele: 1 µ x = µ, unde x este media eşantionului x; 2 Deviaţia standard x a seriei de distribuţie a mediilor eşantioanelor (deviaţia standard a mediilor eşantioanelor faţǎ de media seriei de distribuţie a eşantioanelor este x = / n. 3 seria de distribuţiei a mediei eşantioanelor este aproximativ normalǎ indiferent de seria de distribuţiei a variabilei în cazul populaţiei. Nu vom face demonstraţie teoremei limitǎ centralǎ. examinând un caz ilustrativ. Vom ilustra însǎ validitatea ei 5
6 Considerǎm o populaţie pentru care seria de distribuţie de date statistice cu frecvenţe relative în cazul variabilei X este: ( X : 1/3 1/3 1/3 Media µ şi deviaţia standard pentru aceastǎ variabilǎ sunt: 3 µ = x j f x j = 12 ( 3 = 4 = x 2 j f x j x j f x j = 1, 63 În cazul acestei populaţii oricare eşantion de mǎrime doi are urmǎtoarele date posibile: Eşantioanele au urmǎtoarele medii: (2, 2 (2, 4 (2, 6 (4, 2 (4, 4 (4, 6 (6, 2 (6, 4 (6, Probabilitatea de a alege un eşantion este eşantioanelor este: X ( /9 2/9 3/9 2/9 1/9 1, iar seria de distribuţie a mediilor 9 Media seriei de distribuţie a mediilor eşantioanelor µ x este µ x = 36/9 = 4, 0. Prin urmare µ = µ x, iar deviaţia standard a repartiţiilor mediilor eşantioanelor este: ( x = ( 2 x 2 j f x j x j f x j = 9 = 1, 15 9 n = 1, 63 2 = 1, 63 1, 44 = 1, 15 = x Reprezentând seria de distribuţie a mediilor eşantioanelor obţinem: Aceastǎ diagramǎ aratǎ cǎ seria de distribuţie a mediilor eşantioanelor este normalǎ. 6
7 3 O aplicaţie a teoremei limitǎ centralǎ Teorema limitǎ centralǎ oferǎ informaţii asupra seriei de distribuţie a mediilor eşantioanelor descriind forma repartiţiei mediilor tuturor eşantioanelor (aproape normalǎ. Ea stabileşte relaţia dintre media µ a populaţiei şi media µ x a seriei de distribuţie a mediilor tuturor eşantioanelor şi relaţia dintre deviaţia standard a populaţiei şi deviaţia standard x a seriei de distribuţie a mediilor eşantioanelor. Deoarece seria de distribuţie a mediilor eşantioanelor este aproape normalǎ putem stabili legǎturi probabiliste dintre media populaţiei şi media unui eşantion. Exemplul 3. Considerǎm o populaţie normalǎ cu µ = 100 şi = 20. Dacǎ se alege un eşantion aleator de mǎrime n = 16 care este probabilitatea ca valoarea medie a acestui eşantion sǎ fie între 90 şi 110? Altfel spus, cât este P (90 < x < 110? Soluţie: Conform teoremei limitǎ centralǎ repartiţia valorilor medii ale eşantioanelor este normalǎ. Prin urmare va trebui sǎ transformǎm condiţia P (90 < x < 110 într-o condiţie care sǎ permitǎ folosirea tabelului de distribuţie normalǎ standard. Aceasta se face scriind: ( 10 P (90 < x < 110 = 2 F = Efectul creşterii dimensiunii n a eşantionului nu afecteazǎ µ x = µ şi micşoreazǎ x. Prin urmare P (90 < x < 110 creşte, dacǎ n creşte. Exemplul 4. Înǎlţimea copiilor la o grǎdiniţǎ are o distribuţie normalǎ având o medie µ = 100 cm cu o deviaţie standard de 12, 5 cm. Pentru un eşantion aleator de 25 de copii se determinǎ media x. Care este probabilitatea ca aceastǎ medie sǎ fie între 90 cm şi 110 cm? x Soluţie: P (90 < x < 110 = 2 F (4 =
8 4 Estimarea punctualǎ a unui parametru; intervalul de încredere Considerǎm o populaţie a cǎrei medie µ nu o cunoaştem şi ne punem problema s-o gǎsim. Pentru acest scop considerǎm un eşantion aleator de dimensiune n pentru care determinǎm media x. Media x a eşantionului este o estimare punctualǎ a mediei µ a populaţiei. Definiţia 2. O estimare punctualǎ a parametrului γ a unei populaţii este o valoare g a unei statistici corespunzǎtoare. Dacǎ x este media eşantioanului cu care estimǎm media necunoscutǎ µ a populaţiei, aceasta nu înseamnǎ cǎ x = µ. În general, x µ şi la ceea ce ne putem aştepta este ca x sǎ fie aproape de µ. Aceastǎ apropiere poate fi fixatǎ prin specificarea unui interval (centrat în µ numit interval de estimare. Definiţia 3. Un interval mǎrginit (a, b folosit pentru a estima valoarea unui anumit parametru γ a populaţiei se numeşte interval de estimare. Valorile a, b (capetele intervalului sunt calculate din eşantion care este folosit pentru estimare. Cum anume se poate specifica un interval centrat în µ care este necunoscut folosind doar date furnizate de un eşantion va fi lǎmurit în continuare. Considerǎm o populaţie având o deviaţie standard cunoscutǎ, o medie µ necunoscutǎ şi un eşantion aleator simplu de mǎrime n şi medie x cunoscute. Condiţia x (µ 1, µ + 1 înseamnǎ cǎ scorul standard z (pentru mediile eşantioanelor dat de: sǎ verifice: z = x µ x = x µ x z ( 1 n, n 1 n n = ( n, Astfel în termenii scorului standard intervalul de estimare este intervalul (a, b cu a = n n şi b =. Mai general condiţia x (µ δ, µ + δ, înseamnǎ cǎ scorul standard z dat de: z = x µ x = x µ x sǎ verifice: z ( δ n Intervalul de estimare este ( δ n, δ n. n, δ n Definiţia 4. Nivelul de neîncredere α este probabilitatea ca statistica eşantionului sǎ aibe valoarea în afara intervalului de estimare. Conform teoremei de limitǎ centralǎ, repartiţia lui x este normalǎ sau aproape normalǎ şi avem: ( n n P (µ 1 < x < µ + 1 = P < z < = 8
9 unde F (z = 1 2 π z ( 2 P 0 < z < e 1 2 t2 dt. 0 ( n Deci nivelul de neîncredere α este 1 2 F ( n n = 2 F Definiţia 5. Nivelul de încredere (coeficient de încredere 1 α este probabilitatea ca statistica eşantionului sǎ se afle în intervalul de estimare ales. Definiţia 6. Intervalul de încredere este un interval de estimare cu un nivel de încredere 1 α specificat. ( n n Intervalul de estimare, este un interval de încredere cu coeficientul de ( n încredere 1 α = 2 F. Definiţia 7. Eroarea maximǎ de estimare este jumǎtatea lungimii intervalului de încredere cu nivelul de încredere 1 α. În termen de scor standard aceastǎ eroare se exprimǎ cu formula: E = z 2 n unde z este soluţia ecuaţiei F (z = 1 α, iar intervalul de încredere 1 α pentru µ 2 2 este: ( x z, x + z 2 n 2 n x z este limita inferioarǎ de încredere, iar x+z este limita superioarǎ 2 n 2 n de încredere.. 9
8 Intervale de încredere
8 Intervale de încredere În cursul anterior am determinat diverse estimări ˆ ale parametrului necunoscut al densităţii unei populaţii, folosind o selecţie 1 a acestei populaţii. În practică, valoarea calculată
Curs 4 Serii de numere reale
Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.
Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele
Metode iterative pentru probleme neliniare - contractii
Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii
NOTIUNI DE BAZA IN STATISTICA
NOTIUNI DE BAZA IN STATISTICA INTRODUCERE SI DEFINITII A. PARAMETRI SI STATISTICI Parametru valoare sau caracteristica asociata unei populatii constante fixe notatie - litere grecesti: media populatiei
Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare
1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe
(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.
Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă
Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"
Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia
a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea
Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,
5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.
5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este
III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.
III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar
Curs 1 Şiruri de numere reale
Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,
Asupra unei inegalităţi date la barajul OBMJ 2006
Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale
ESTIMAREA PARAMETRILOR STATISTICI. Călinici Tudor
ESTIMAREA PARAMETRILOR STATISTICI Călinici Tudor 1 Obiective educaţionale Înţelegerea procesului de estimare Însuşirea limbajului specific pentru inferenţa statistică Enumerarea estimatorilor fără bias
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor
Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.
V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile
Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
Statisticǎ - notiţe de curs
Statisticǎ - notiţe de curs Ştefan Balint, Loredana Tǎnasie Cuprins 1 Ce este statistica? 3 2 Noţiuni de bazǎ 5 3 Colectarea datelor 7 4 Determinarea frecvenţei şi gruparea datelor 11 5 Prezentarea datelor
SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0
SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro
Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,
MARCAREA REZISTOARELOR
1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea
Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice
1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1
Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui
Subiecte Clasa a VIII-a
Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor
Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element
9 Testarea ipotezelor statistice
9 Testarea ipotezelor statistice Un test statistic constă în obţinerea unei deducţii bazată pe o selecţie din populaţie prin testarea unei anumite ipoteze (rezultată din experienţa anterioară, din observaţii,
Integrala nedefinită (primitive)
nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei
Statisticǎ - curs 4. 1 Generalitǎţi privind ipotezele statistice şi problema verificǎrii ipotezelor statistice 2
Statisticǎ - curs 4 Cuprins 1 Generalitǎţi privind ipotezele statistice şi problema verificǎrii ipotezelor statistice 2 2 Inferenţǎ statisticǎ privind media populaţiei dacǎ se cunoaşte abaterea standard
Seminar 5 Analiza stabilității sistemelor liniare
Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare
SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0
Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,
7 Distribuţia normală
7 Distribuţia normală Distribuţia normală este cea mai importantă distribuţie continuă, deoarece în practică multe variabile aleatoare sunt variabile aleatoare normale, sunt aproximativ variabile aleatoare
POPULAŢIE NDIVID DATE ORDINALE EŞANTION DATE NOMINALE
DATE NUMERICE POPULAŢIE DATE ALFANUMERICE NDIVID DATE ORDINALE EŞANTION DATE NOMINALE Cursul I Indicatori statistici Minim, maxim Media Deviaţia standard Mediana Cuartile Centile, decile Tabel de date
riptografie şi Securitate
riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare
Subiecte Clasa a VII-a
lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate
5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE
5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.
Problema a II - a (10 puncte) Diferite circuite electrice
Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Curs 2 Şiruri de numere reale
Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un
Statistică descriptivă Distribuția normală Estimare. Călinici Tudor 2015
Statistică descriptivă Distribuția normală Estimare Călinici Tudor 2015 Obiective educaționale Enumerarea caracteristicilor distribuției normale Enumerarea principiilor inferenței statistice Calculul intervalului
Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite
Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval
2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2
.1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,
z a + c 0 + c 1 (z a)
1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei
CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii
Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1
5.4. MULTIPLEXOARE A 0 A 1 A 2
5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării
RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,
REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii
SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a
Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii
Aplicaţii ale principiului I al termodinamicii la gazul ideal
Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia
prin egalizarea histogramei
Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o
6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă
Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi
Metode de interpolare bazate pe diferenţe divizate
Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare
1. Distribuţiile teoretice 2. Intervalul de încredere pentru caracteristicile cantitative (medii) Histograma Nr. valori Nr. de clase de valori
1. Distribuţiile teoretice (diagramă de distribuţie, distribuţia normală sau gaussiană) 2. Intervalul de încredere pentru caracteristicile cantitative (medii) 1. Distribuţia constituie ansamblul tuturor
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare
Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba
3 Distribuţii discrete clasice
3 Distribuţii discrete clasice 3.1 Distribuţia Bernoulli Probabil cel mai simplu tip de variabilă aleatoare discretă, variabila aleatoare Bernoulli modelează efectuareaunui experiment în care poate apare
10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea
Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice
Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională
Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent
Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului
DistributiiContinue de Probabilitate Distributia Normala
8.03.011 STATISTICA -distributia normala -distributii de esantionare lectia 7 30 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/index.asp?item=fisiere&id=88 DistributiiContinue
4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica
Laborator 11. Mulţimi Julia. Temă
Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.
V O. = v I v stabilizator
Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,
Seminar Algebra. det(a λi 3 ) = 0
Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:
I3: PROBABILITǍŢI - notiţe de curs
I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.
Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].
Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie
Scoruri standard Curba normală (Gauss) M. Popa
Scoruri standard Curba normală (Gauss) M. Popa Scoruri standard cunoaştere evaluare, măsurare evaluare comparare (Gh. Zapan) comparare raportare la un sistem de referință Povestea Scufiței Roşii... 70
a. 11 % b. 12 % c. 13 % d. 14 %
1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul
5.1. Noţiuni introductive
ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul
TESTAREA IPOTEZELOR STATISTICE
Capitolul 9 TESTAREA IPOTEZELOR STATISTICE D acă în capitolul anterior au fost epuse principalele aspecte ale teoriei selecţiei, în acest capitol vom trata modalitatea de aplicare a teoriei în testarea
I3: PROBABILITǍŢI - notiţe de curs
I3: PROBABILITǍŢI - notiţe de curs Ştefan Balint, Eva Kaslik, Simina Mariş Cuprins Experienţǎ şi evenimente aleatoare 3 2 Eveniment sigur. Eveniment imposibil 3 3 Evenimente contrare 4 4 Evenimente compatibile.
STATISTICĂ DESCRIPTIVĂ
STATISTICĂ DESCRIPTIVĂ » Reprezentarea şi sumarizarea datelor» Parametrii statistici descriptivi Centralitate Dispersie Asimetrie Localizare Cuprins Măsuri de centralitate Măsuri de împrăştiere Media Amplitudine
Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca
Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este
Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15
MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()
Progresii aritmetice si geometrice. Progresia aritmetica.
Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a
GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii
GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
1. PROPRIETĂȚILE FLUIDELOR
1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea
Statisticǎ - exerciţii
Statisticǎ - exerciţii Ştefan Balint, Tǎnasie Loredana 1 Noţiuni de bazǎ Exerciţiu 1.1. Presupuneţi cǎ lucraţi pentru o firmǎ de sondare a opiniei publice şi doriţi sǎ estimaţi proporţia cetǎţenilor care,
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:
TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi
* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1
FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile
Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5
Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei
5 Statistica matematică
5 Statistica matematică Cuvântul statistică afostiniţial folosit pentru a desemna o colecţiededatedesprepopulaţie şi situaţia economică, date vitale pentru conducerea unui stat. Cu timpul, Statistica a
Esalonul Redus pe Linii (ERL). Subspatii.
Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste
Profesor Blaga Mirela-Gabriela DREAPTA
DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)
EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă
Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a
Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 5 16 martie 2 011
1.0.011 STATISTICA Masurarea variabilitatii Indicatorii variaţiei(împrăştierii) lectia 16 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/inde.asp?itemfisiere&id Observati doua
Tranzistoare bipolare şi cu efect de câmp
apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/
Capitolul 2 - HIDROCARBURI 2.5.ARENE
Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Sulfonarea benzenului este o reacţie ireversibilă.
Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane
Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii
1.3 Baza a unui spaţiu vectorial. Dimensiune
.3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este
Noţiuni introductive
Metode Numerice Noţiuni introductive Erori. Condiţionare numerică. Stabilitatea algoritmilor. Complexitatea algoritmilor. Metodele numerice reprezintă tehnici prin care problemele matematice sunt reformulate
Recapitulare - Tipuri de date
Recapitulare - Tipuri de date Date numerice vârsta, greutatea, talia, hemoglobina, tensiunea arterială, calcemia, glicemia, colesterolul, transaminazele etc. valori continue sau discrete numere întregi
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE
Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi
Capitolul 3. Serii Fourier. a unei funcţii periodice de perioadă Dezvoltarea în serie Fourier
Capitolul Serii Fourier 7-8. Dezvoltarea în serie Fourier a unei funcţii periodice de perioadă Pornind de la discuţia asupra coardei vibrante începută în anii 75 între Euler şi d Alembert, se ajunge la
I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare.
Capitolul 3 COMPUŞI ORGANICI MONOFUNCŢIONALI 3.2.ACIZI CARBOXILICI TEST 3.2.3. I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Reacţia dintre
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
Criptosisteme cu cheie publică III
Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.
Functii Breviar teoretic 8 ianuarie ianuarie 2011
Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)
2 Transformări liniare între spaţii finit dimensionale
Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei
Proiectarea filtrelor prin metoda pierderilor de inserţie
FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri