Aplicaţii ale principiului I al termodinamicii la gazul ideal

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Aplicaţii ale principiului I al termodinamicii la gazul ideal"

Transcript

1 Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia energiei interne a sistemului termodinamic L-lucrul mecanic schimbat de sistem cu exteriorul Q-căldura schimbată de sistem cu exteriorul Relaţia de mai sus este valabilă cu convenţia de semn din schema următoare: Q>0 Q<0 Sistem termodinamic L<0 L>0 (Căldura primită de sistem este pozitivă, iar cea cedată este negativă; lucrul mecanic primit de sistem este negativ, iar cel cedat (efectuat) este pozitiv.) Energia internă a unui gaz ideal se datorează mişcării de agitaţie termică a moleculelor gazului şi este dată de relaţia: i U ν R (ecuaţia calorică de stare a gazului ideal), unde: i-numărul gradelor de libertate ale unei molecule 3, pentru gaze monoatomice i 5, pentru gaze diatomice 6, pentru gaze poliatomice m N ( ν, unde: µ N A µ m-masa gazului ideal µ-masa molară a gazului ideal N-numărul de molecule de gaz N A -numărul lui Avogadro (N A 6, kmol -1 ) -volumul gazului ideal µ -volumul molar al gazului) R-constanta gazului ideal (R8, J/(kmol K)) -temperatura absolută a gazului

2 Dependenţa presiunii gazului ideal de volumul acestuia şi temperatura sa absolută se numeşte ecuaţia termică de stare a gazului ideal şi este dată de relaţia: pνr, unde: p-presiunea -volumul R-constanta gazului ideal -temperatura absolută a gazului În cazul în care cantitatea de substanţă rămâne aceeaşi (νconst., mconst.), variaţia energiei interne a gazului ideal se poate pune sub forma: ΔUνC Δ, unde: ΔU- variaţia energiei interne a gazului i C R -căldura molară la volum constant a gazului Δ - 1 (variaţia temperaturii gazului) Căldura Q schimbată de un corp cu mediul exterior este direct proporţională cu variaţia temperaturii corpului Δ (când nu se schimbă starea de agregare a corpului): QmcΔνCΔ, unde: m-masa corpului c-căldura specifică (caracteristică substanţei din care este alcătuit corpul) ν-numărul de kilomoli C-căldura molară Căldura molară depinde de tipul respective a gazului. Căldura molară la volum constant a gazului se notează C, iar căldura molară la presiune constantă se notează C p ; relaţia dintre ele se numeşte relaţia lui Mayer: C p C +R. Exponentul adiabatic γ se defineşte C p astfel: γ. C Relaţia dintre C şi c este: C µc, unde µ este masa molară. Lucrul mecanic schimbat de un gaz ideal cu mediul exterior se poate calcula folosind o interpretare geometrică a lucrului mecanic: lucrul mecanic este egal cu aria figurii cuprinse între graficul presiunii ca funcţie de volum, axa volumelor şi cele două ordonate corespunzând volumului iniţial 1 şi volumului final :

3 p pf() L 1 p( ) d L 1 Când gazul îşi măreşte volumul (se destinde),el efectuează lucru mecanic, iar când gazul îşi micşorează volumul (este comprimat), acesta primeşte lucru mecanic. ransformările gazului ideal sunt procese termodinamice în care cantitatea de gaz rămâne constantă în timpul acesteia (νconst., mconst.). În tabelul de mai jos sunt prezentate sintetic transformările gazului ideal: ipul Definiţia Legea izocoră const. p1 p ln x log e x, unde e,718 1 izobară p const. 1 1 ΔU L Q U ν C 0 ν C U ν C p ν R ν C p izotermă const. p1 1 p 0 R ln ν R ln 1 adiabatică Q0 γ γ p p U ν C ν C 0 generală (oarecare) pf() 1 1 p p p f ( ) 1 1 p 1 p U ν C p( ) d ν 1 U + L 1

4 p 1 -presiunea iniţială a gazului p -presiunea finală a gazului 1 -volumul iniţial al gazului -volumul final al gazului 1 -temperatura absolută iniţială a gazului -temperatura absolută finală a gazului P νconst. P νconst.

5

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1.

Continue. Answer: a. Logout. e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1. 1 of 2 4/14/ :27 PM. Marks: 0/1. Concurs Phi: Setul 1 - Clasa a X-a 1 of 2 4/14/2008 12:27 PM Logout e-desc» Concurs Phi» Quizzes» Setul 1 - Clasa a X-a» Attempt 1 1 Un termometru cu lichid este gradat intr-o scara de temperatura liniara,

Διαβάστε περισσότερα

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ

CURS 5 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ CURS 5 ERMODINAMICĂ ŞI FIZICĂ SAISICĂ 5.. Noţiuni fundamentale. Corpurile macroscopice sunt formate din atomi şi molecule, constituenţi microscopici aflaţi într-o mişcare continuă, numită mişcare de agitaţie

Διαβάστε περισσότερα

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE

FIZICĂ. Elemente de termodinamica. ş.l. dr. Marius COSTACHE FIZICĂ Elemente de termodinamica ş.l. dr. Marius COSTACHE 1 ELEMENTE DE TERMODINAMICĂ 1) Noţiuni introductive sistem fizic = orice porţiune de materie, de la o microparticulă la întreg Universul, porţiune

Διαβάστε περισσότερα

Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice

Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice Aplicatii tehnice ale gazului perfect si ale transformarilor termodinamice 4.. Gaze perfecte 4... Definirea gazului perfect Conform teoriei cinetico-moleculare gazul perfect este definit prin următoarele

Διαβάστε περισσότερα

ENUNŢURI ŞI REZOLVĂRI 2013

ENUNŢURI ŞI REZOLVĂRI 2013 ENUNŢURI ŞI REZOLVĂRI 8. Un conductor de cupru ( ρ =,7 Ω m) are lungimea de m şi aria secţiunii transversale de mm. Rezistenţa conductorului este: a), Ω; b), Ω; c), 5Ω; d) 5, Ω; e) 7, 5 Ω; f) 4, 7 Ω. l

Διαβάστε περισσότερα

Noțiuni termodinamice de bază

Noțiuni termodinamice de bază Noțiuni termodinamice de bază Alexandra Balan Andra Nistor Prof. Costin-Ionuț Dobrotă COLEGIUL NAȚIONAL DIMITRIE CANTEMIR ONEȘTI Septembrie, 2015 http://fizicaliceu.wikispaces.com Noțiuni termodinamice

Διαβάστε περισσότερα

FC Termodinamica. November 24, 2013

FC Termodinamica. November 24, 2013 FC Termodinamica November 24, 2013 Cuprins 1 Noţiuni fundamentale (FC.01.) 2 1.1 Sistem termodinamic... 2 1.2 Stări termodinamice... 2 1.3 Procese termodinamice... 3 1.4 Parametri de stare... 3 1.5 Lucrul

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

1. NOŢIUNI TERMODINAMICE DE BAZĂ

1. NOŢIUNI TERMODINAMICE DE BAZĂ . NOŢIUNI TERMODINAMIE DE BAZĂ.. Noţiuni desre structura discretă a substanţei onceţia atomistă desre substanţă enunţată acum 5 ani de către Leuci şi Democrit, a fost confirmată în secolul al XIII-lea

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

2. MĂRIMI ȘI UNITĂȚI CARACTERISTICE STRUCTURII DISCRETE A SUBSTANȚEI

2. MĂRIMI ȘI UNITĂȚI CARACTERISTICE STRUCTURII DISCRETE A SUBSTANȚEI Prin fenomen termic înțelegem, în general, orice fenomen fizic legat de mișcarea haotică, complet dezordonată care se manifestă la nivel molecular. Variația proprietăților fizice ale substanței la încălzirea

Διαβάστε περισσότερα

2.PRIMUL PRINCIPIU AL TERMODINAMICII

2.PRIMUL PRINCIPIU AL TERMODINAMICII 0 Termotehnica.PRIMUL PRINCIPIU AL TERMODINAMICII Noţiunea de rinciiu defineşte o afirmaţie care nu se oate demonstra matematic. Princiiul rerezintă rezultatul studiilor exerimentale asura roceselor din

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

4.PRINCIPIUL AL II -LEA AL TERMODINAMICII

4.PRINCIPIUL AL II -LEA AL TERMODINAMICII 4.PRINCIPIUL AL II -LEA AL ERMODINAMICII Istoria acestui principiu este una dintre fascinantele aventuri ale ştiinţei, care a generat nenumărate paradoxuri, controverse şi predicţii tulburătoare (moartea

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Curs 2 DIODE. CIRCUITE DR

Curs 2 DIODE. CIRCUITE DR Curs 2 OE. CRCUTE R E CUPRN tructură. imbol Relația curent-tensiune Regimuri de funcționare Punct static de funcționare Parametrii diodei Modelul cu cădere de tensiune constantă Analiza circuitelor cu

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

1.10. Lucrul maxim. Ciclul Carnot. Randamentul motoarelor

1.10. Lucrul maxim. Ciclul Carnot. Randamentul motoarelor 2a temperatura de inversie este T i =, astfel încât λT i şi Rb λ>0 pentru T

Διαβάστε περισσότερα

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon

Unitatea atomică de masă (u.a.m.) = a 12-a parte din masa izotopului de carbon ursul.3. Mării şi unităţi de ăsură Unitatea atoică de asă (u.a..) = a -a parte din asa izotopului de carbon u. a.., 0 7 kg Masa atoică () = o ărie adiensională (un nuăr) care ne arată de câte ori este

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Lucrul mecanic şi energia mecanică.

Lucrul mecanic şi energia mecanică. ucrul mecanic şi energia mecanică. Valerica Baban UMC //05 Valerica Baban UMC ucrul mecanic Presupunem că avem o forţă care pune în mişcare un cărucior şi îl deplasează pe o distanţă d. ucrul mecanic al

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Forme de energie. Principiul I al termodinamicii

Forme de energie. Principiul I al termodinamicii Forme de energie. Principiul I al termodinamicii Există mai multe forme de energie, care se pot clasifica după natura modificărilor produse în sistemele termodinamice considerate şi după natura mişcărilor

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

Emil Petrescu Viorel Păun

Emil Petrescu Viorel Păun Probleme de fizică Emil Petrescu iorel Păun October 6, 2004 Curins 4 ERMODINAMICĂ 72 72 Caitolul 4 ERMODINAMICĂ PROBLEMA 4.1 a Să se demonstreze că în cazul unui roces adiabatic alicat unui gaz ideal este

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Termodinamica. UMF Carol Davila Catedra de Biofizica Medicala

Termodinamica. UMF Carol Davila Catedra de Biofizica Medicala Termodinamica Cuprins: Notiuni generale Principiul I al termodinamicii. Aplicatii Principiul II al termodinamicii Potentiale termodinamice Forte si fluxuri termodinamce Echilibru si stare stationara Stari

Διαβάστε περισσότερα

BAZELE TERMOENERGETICII

BAZELE TERMOENERGETICII Adrian BADEA Mihaela STAN Roxana PĂTRAŞCU Horia NECULA George DARIE Petre BLAGA Lucian MIHĂESCU Paul ULMEANU BAZELE TERMOENERGETICII Universitatea POLITEHNICA din Bucureşti Facultatea de Energetică Bucureşti,

Διαβάστε περισσότερα

2. Rezistența electrică (R) Ohm (Ω) 1Ω = 1kg A -2 m 2 s Rezistivitatea (ρ) Ohm metru (Ω m) 1Ω m = 1kg A -2 m 3 s -3

2. Rezistența electrică (R) Ohm (Ω) 1Ω = 1kg A -2 m 2 s Rezistivitatea (ρ) Ohm metru (Ω m) 1Ω m = 1kg A -2 m 3 s -3 SINTEZE DE BACALAUREAT - ELECTRICITATE 1. Lungimea (l) metrul (m) ELECTRICITATEA 2. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ DERIVATE, ÎN SISTEMUL INTERNAȚIONAL NR. DENUMIREA MĂRIMII FIZICE 1. Tensiunea electrică,

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

DETERMINAREA EXPONENTULUI ADIABATIC AL AERULUI FOLOSIND OSCILATORUL FLAMMERSFELD

DETERMINAREA EXPONENTULUI ADIABATIC AL AERULUI FOLOSIND OSCILATORUL FLAMMERSFELD DEERMINAREA EXPONENULUI ADIABAIC AL AERULUI FOLOSIND OSCILAORUL FLAMMERSFELD 1. Scopul lucrării Scopul acestei lucrări este determinarea exponentului adiabatic al aerului folosind oscilatorul Flammersfeld.

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

MĂRIMI ELECTRICE Voltul (V)

MĂRIMI ELECTRICE Voltul (V) SINTEZE DE BACALAUREAT ELECTRICITATE www.manualdefizica.ro NR. DENUMIREA MĂRIMII FIZICE UNITATEA DE MĂSURĂ 1. Lungimea (l) metrul (m). Masa (m) kilogramul (kg) ELECTRICITATEA. MĂRIMI ȘI UNITĂȚI DE MĂSURĂ

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

J. Neamţu E. Osiac P.G. Anoaica FIZICĂ TESTE GRILĂ PENTRU ADMITEREA ÎN ÎNVĂŢĂMÂNTUL SUPERIOR. Electricitate Termodinamică Optică Atomică Nucleară

J. Neamţu E. Osiac P.G. Anoaica FIZICĂ TESTE GRILĂ PENTRU ADMITEREA ÎN ÎNVĂŢĂMÂNTUL SUPERIOR. Electricitate Termodinamică Optică Atomică Nucleară J. Neamţu E. Osiac P.G. Anoaica FIZICĂ TESTE GRILĂ PENTRU ADMITEREA ÎN ÎNĂŢĂMÂNTUL SUPERIOR Electricitate Termodinamică Optică Atomică Nucleară UMF Craiova 009 Fizică Teste Grilă Fizică Teste Grilă 3 Fizică

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Termodinamica. Fizica moleculara

Termodinamica. Fizica moleculara ermodinamica Fizica moleculara Mărimi legate de structura discretă a substanţei Sisteme termodinamice emperatura empirică Principiul zero al termodinamicii scări de termperatură şi conversii între acestea

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Lucrul mecanic. Puterea mecanică.

Lucrul mecanic. Puterea mecanică. 1 Lucrul mecanic. Puterea mecanică. In acestă prezentare sunt discutate următoarele subiecte: Definitia lucrului mecanic al unei forţe constante Definiţia lucrului mecanic al unei forţe variabile Intepretarea

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Reactia de amfoterizare a aluminiului

Reactia de amfoterizare a aluminiului Problema 1 Reactia de amfoterizare a aluminiului Se da reactia: Al (s) + AlF 3(g) --> AlF (g), precum si presiunile partiale ale componentelor gazoase in functie de temperatura: a) considerand presiunea

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

V O. = v I v stabilizator

V O. = v I v stabilizator Stabilizatoare de tensiune continuă Un stabilizator de tensiune este un circuit electronic care păstrează (aproape) constantă tensiunea de ieșire la variaţia între anumite limite a tensiunii de intrare,

Διαβάστε περισσότερα

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25

Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 Capitolul ASAMBLAREA LAGĂRELOR LECŢIA 25 LAGĂRELE CU ALUNECARE!" 25.1.Caracteristici.Părţi componente.materiale.!" 25.2.Funcţionarea lagărelor cu alunecare.! 25.1.Caracteristici.Părţi componente.materiale.

Διαβάστε περισσότερα

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ

ALGEBRĂ ŞI ELEMENTE DE ANALIZĂ MATEMATICĂ FIZICĂ Sesiunea august 07 A ln x. Fie funcţia f : 0, R, f ( x). Aria suprafeţei plane delimitate de graficul funcţiei, x x axa Ox şi dreptele de ecuaţie x e şi x e este egală cu: a) e e b) e e c) d) e e e 5 e.

Διαβάστε περισσότερα

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede

2. STATICA FLUIDELOR. 2.A. Presa hidraulică. Legea lui Arhimede 2. STATICA FLUIDELOR 2.A. Presa hidraulică. Legea lui Arhimede Aplicația 2.1 Să se determine ce masă M poate fi ridicată cu o presă hidraulică având raportul razelor pistoanelor r 1 /r 2 = 1/20, ştiind

Διαβάστε περισσότερα

Examenul de bacalaureat la fizica, 18 iunie 2007 Profilul real

Examenul de bacalaureat la fizica, 18 iunie 2007 Profilul real Examenul de bacalaureat la fizica, 18 iunie 007, profilul real 1 Examenul de bacalaureat la fizica, 18 iunie 007 Profilul real I In itemii 1-3 raspundeti scurt la intrebari conform cerintelor inaintate

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE

Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE Capitolul 2 - HIDROCARBURI 2.4.ALCADIENE TEST 2.4.1 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. Rezolvare: 1. Alcadienele sunt hidrocarburi

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii în tehnică

Aplicaţii ale principiului I al termodinamicii în tehnică Aplicaţii ale principiului I al termodinamicii în tehnică Sisteme de încălzire a locuinţelor Scopul tuturor acestor sisteme, este de a compensa pierderile de căldură prin pereţii locuinţelor şi prin sistemul

Διαβάστε περισσότερα

Examenul de bacalaureat național 2013 Proba E. d) Fizică

Examenul de bacalaureat național 2013 Proba E. d) Fizică Examenul de bacalaureat național 03 Proba E. d) Fizică Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TEMODINAMICĂ,

Διαβάστε περισσότερα

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE)

REACŢII DE ADIŢIE NUCLEOFILĂ (AN-REACŢII) (ALDEHIDE ŞI CETONE) EAŢII DE ADIŢIE NULEFILĂ (AN-EAŢII) (ALDEIDE ŞI ETNE) ompușii organici care conțin grupa carbonil se numesc compuși carbonilici și se clasifică în: Aldehide etone ALDEIDE: Formula generală: 3 Metanal(formaldehida

Διαβάστε περισσότερα

Echilibrul termic. 1. Câteva elemente de termodinamică...

Echilibrul termic. 1. Câteva elemente de termodinamică... 1 2 1. Câteva elemente de termodinamică... Vom lucra în acest capitol cu sisteme termodinamice. Ele reprezintă sisteme fizice delimitate de mediul exterior printr-o suprafaţă reală sau imaginară, realizate

Διαβάστε περισσότερα

Unitatea de învăţare nr. 5

Unitatea de învăţare nr. 5 Unitatea de învăţare nr. 5 NOTIUNI DE BAZA IN TERMODINAMICA Cuprins Pagina Obiectivele unităţii de învăţare nr. 5 82 3.1 Agitatia termica 82 3.2 Temperatura si principiul zero al trmodinamicii 83 3.3 Termometre

Διαβάστε περισσότερα

10. STABILIZATOAE DE TENSIUNE 10.1 STABILIZATOAE DE TENSIUNE CU TANZISTOAE BIPOLAE Stabilizatorul de tensiune cu tranzistor compară în permanenţă valoare tensiunii de ieşire (stabilizate) cu tensiunea

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.5.ARENE

Capitolul 2 - HIDROCARBURI 2.5.ARENE Capitolul 2 - HIDROCARBURI 2.5.ARENE TEST 2.5.2 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Radicalul C 6 H 5 - se numeşte fenil. ( fenil/

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul

15. Se dă bara O 1 AB, îndoită în unghi drept care se roteşte faţă de O 1 cu viteza unghiulară ω=const, axa se rotaţie fiind perpendiculară pe planul INEMTI 1. Se consideră mecanismul plan din figură, compus din manivelele 1 şi 2, respectiv biela legate intre ele prin articulaţiile cilindrice şi. Manivela 1 se roteşte cu viteza unghiulară constantă

Διαβάστε περισσότερα

Pentru itemii 1 5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect.

Pentru itemii 1 5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect. A. MECANICĂ Se consideră accelerația gravitațională g = 10 m/s 2. SUBIECTUL I Pentru itemii 1 5 scrieți pe foaia de concurs litera corespunzătoare răspunsului considerat corect. 1. Trenul unui metrou dezvoltă

Διαβάστε περισσότερα

Tipul F2. m coboară cu frecare ( 0,5 ) pe prisma de. masă M 9 kg şi unghi 45. Dacă prisma se deplasează pe orizontală fără frecare şi

Tipul F2. m coboară cu frecare ( 0,5 ) pe prisma de. masă M 9 kg şi unghi 45. Dacă prisma se deplasează pe orizontală fără frecare şi Tiul F. În sistemul din figură, corul de masă 4 kg m coboară cu frecare ( 0, ) e risma de 0 masă M 9 kg şi unghi 4. Dacă risma se delasează e orizontală fără frecare şi g 0 m/s, modulul acceleraţiei rismei

Διαβάστε περισσότερα

5.1. Noţiuni introductive

5.1. Noţiuni introductive ursul 13 aitolul 5. Soluţii 5.1. oţiuni introductive Soluţiile = aestecuri oogene de două sau ai ulte substanţe / coonente, ale căror articule nu se ot seara rin filtrare sau centrifugare. oonente: - Mediul

Διαβάστε περισσότερα

Clasa a IX-a, Lucrul mecanic. Energia

Clasa a IX-a, Lucrul mecanic. Energia 1. LUCRUL MECANIC 1.1. Un resort având constanta elastică k = 50Nm -1 este întins cu x = 0,1m de o forță exterioară. Ce lucru mecanic produce forța pentru deformarea resortului? 1.2. De un resort având

Διαβάστε περισσότερα

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE

Capitolul 2 - HIDROCARBURI 2.3.ALCHINE Capitolul 2 - HIDROCARBURI 2.3.ALCHINE TEST 2.3.3 I. Scrie cuvântul / cuvintele dintre paranteze care completează corect fiecare dintre afirmaţiile următoare. 1. Acetilena poate participa la reacţii de

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului (15 puncte)

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului (15 puncte) A. MECANICĂ e consideră accelerația gravitațională g = 0 m/s. I. Pentru itemii -5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.. Un automobil se deplasează în lungul axei Ox. Dependența

Διαβάστε περισσότερα