ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
|
|
- Ξενοκράτης Ζαχαρίου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΑΛΓΟΡΙΘΜΟΙ Άνοιξη 07 - I. ΜΗΛΗΣ ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Divide ad Coquer (D&C) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II
2 Divide & Coquer Αναδρομικά (μέχρι υπο-προβλήματα μεγέθους ): () Διαίρεσε το πρόβλημα σε υπο-προβλήματα μεγέθους /b () Λύσε α τέτοια υπο-προβλήματα (3) Συνδύασε τις λύσεις τους () + (3) : πολυπλοκότητα f() d (b m ) (): πολυπλοκότητα αt(/b) b d T ( ) at ( ) +, a > 0, b >, d ³ 0, b m ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II
3 Recursio Tree ad Complexity α 0 α b m Þ mlog b Level k : a Work for levelk : k a k k b α subproblems, each of d ö ø Total work for all levels: T( ) æ ç è d size / b æ ç è a d b d m k 0 k ö ø å æ ç è k a d b k ö ø a m ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 3
4 Master* Theorem If T ( ) at ( b ) + d, a > 0, b >, d ³ 0, the : ad b m ( m log b ), T ( ) ìo( ï ío( ï îo( d d log ), log b a b ), ), if if if d d d > < log log log b b b a a a ( b ( b ( b d d d > < a) a) a) Compare d ~ logb a ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 4
5 Maximum Sub-array (MSA) ΕΙΣΟΔΟΣ: Πίνακας αριθμών Α[..] ΕΞΟΔΟΣ: Υπο-πίνακας Α[p..q] με το μέγιστο άθροισμα στοιχείων Θέλουμε να βρούμε δείκτες p,q, p q, τέτοιους ώστε το V ( p, q) å A( i) να είναι μέγιστο i p δηλαδή, V ( p, q) ³ V ( p', q'), " p' q' Παράδειγμα: Ιστορία κερδών Year Profit q Να βρεθεί η περίοδος ετών με το μεγαλύτερο κέρδος: V(5,8)9 ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 5
6 Maximum Sub-array: D&C A[] S m ê + ú ê ë ú û S A[] S3 A[ m] A[ m + ] MCS είναι το μέγιστο από: S : MSA στον υπο-πίνακα A( m) S : MSA στον υπο-πίνκα A(m+,) S 3 : MSA που περιέχει ΚΑΙ το A(m) ΚΑΙ το A(m+) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 6
7 Maximum Sub-array: D&C R L S! 3 L R A[p] A[q] j q m q m V q m V q R m p i m p V m p V p L + " + ³ + " ³ ' '),, ( ), ( such that :fid ' ), ', ( ), ( such that :fid A[j] A[i] A[m] A[m+]
8 Maximum Sub-array: D&C Διαδικάσία fid_s 3 (A[i..j],m) Είσοδος: (υπο)πίνακας Α[i..j], µεσαία θέση m Έξοδος: Max sub-array που περιέχει τα στοιχεία Α[m] και Α[m+] (άθροισµα στοιχείων και θέσεις) LA[m], pm, LmaxA[m] for km- dow to i: LL+A[k] if L>Lmax: Lmax L, pk RA[m+], qm+, RmaxA[m+] for km+ to j: RR+A(k) if R>Rmax: Rmax R, qk S 3 Lmax+Rmax COMPLEXITY: O() ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 8
9 Maximum Sub-array: D&C διαδικασία MSA (A[i..j]) Είσοδος: (υπο)πίνακας Α[i..j] Έξοδος: Max sub-array του Α (άθροισµα στοιχείων και θέσεις) if ij: retur Vmax A[i], pi, qi else: ê i + j ú Divide: O() m ê ú ë û MSΑ (A[i,.m]) T(/) MSΑ (A[m+.. j]) T(/) fid_s 3 (A[i..j],m) O() Coquer: O() retur the maximum of these three MSA s (ad the correspodig p ad q) O() Αρχική κλήση: MSA(A[..]) MasterTheorem T( ) T ( ) + O( ), T() Þ T( ) O( log ) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 9
10 Maximum Sub-array: D&C ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 0
11 Merge Sort ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II
12 Merge Sort Divide: O() Coquer: O() ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II
13 Merge Sort O() T(/) T(/) Εύκολη διαίρεση του προβλήματος Εύρεση του ë/ û : Ο() Δύσκολη σύνθεση λύσεων υποπροβλημάτων merge : O() ì, if MasterTheorem T( ) í Þ T( ) O( log) ît ( / ) + O( ), if ³ Χώρος-Μνήμη : (θυμηθείτε την merge) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 3
14 Quick Sort QuickSort (A, p, r) if p < r: select pivot x; Partitio (A,p,r) //split A ito A[p,q-],A[q+,r]; // A[i] x, p i q- // x A[i], q+ i r // q is the fial positio of x QuickSort (A[p,q-]); QuickSort (A[q+,r]); T. Hoare, 960 p q r R. Sedgewick Ph.D. thesis, 975 ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 4
15 Quick Sort Partitio (A, p, r) xa[r] ip- for j p to r-: if A[j] x: ii+ swap(a[i],a[j]) swap(a[i+],a[r]) qi+ retur q Complexity O() (- iteratios/comparisos) Elemets are compared oly with the pivot ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 5
16 Quick Sort Elemets are compared oly with the pivot(s) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 6
17 Quick Sort QuickSort (A, p, r) if p < r: select pivot x; Partitio (A,p,r) O() //split A ito A[p,q-],A[q+,r]; // A[i] x, p i q- // x A[i], q+ i r // q is the fial positio of x QuickSort (A[p,q-]); QuickSort (A[q+,r]); T(q-) T(-q) Divide: O() No Coquer Δύσκολη διαίρεση του προβλήματος Partitio (A,q,r) : Ο() Εύκολη σύνθεση λύσεων υποπροβλημάτων Δεν χρειάζεται να κάνουμε τίποτα! ΠΟΛΥΠΛΟΚΟΤΗΤΑ: T ( ) T( q -) + T( - q) + O( )??? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 7
18 Quick Sort - Worst Case q Partitio ito - ΣΕ ΚΑΘΕ ΒΗΜΑ Pivot is the mi (or the max) T() T(-) + å k k (+ ) O( ) Αν x A[r], πότε συμβαίνει η χειρότερη περίπτωση? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 8
19 Quick Sort - Best Case Partitio ito q ë / û é / ù- ΣΕ ΚΑΘΕ ΒΗΜΑ Pivot is the media (what s the cost to fid it?) T() æ ö Tç + O() è ø / O(log) / /4 /4 /4 / log (depth of recursio) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 9
20 Quick Sort - Best Case k - Partitio ito ³ ΣΕ ΚΑΘΕ ΒΗΜΑ k k για όποια σταθερά k æ k - ö æ ö T() Tç + Tç + O() è k ø è k ø q k a k - Depth of recursio log log a log α O( log ) T() O(log) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 0
21 Quick Sort - Best Case k0 ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II
22 Quick Sort - Average Case Ισοπίθανες μεταθέσεις Διαφορετικές τιμές των στοιχείων του πίνακα A[..] Κάθε pivot x (διαίρεση q) είναι ισοπίθανη Αverage case complexity average # of comparisos E(X) Έστω i: to i-στο μεγαλύτερο στοιχείο του πίνακα Α[..] E[X ij ij ] Pr[i is compared to j],, 3,.,i,, j,, -, ì, if i is compared to j Xij í î0, otherwise E[X ] Pr[i is compared to j] + 0 Pr[i ot NOTcompared to j] Expected # of comparisos E[X]? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II
23 Quick Sort - Average Case i: to i-στο μεγαλύτερο στοιχείο του πίνακα Α[..] E[X ij ] Pr[i iscompared to j] Expected # of comparisos E[X] E[X] é Eê ë - å i - å i å j i+ å j i+ X ij ù ú û - å i å j i+ E[X Pr[i iscompared to j] ij ] Þ Pr[i iscompared to j]? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 3
24 Quick Sort - Average Case Elemets are compared oly with the pivot(s) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 4
25 Quick Sort - Average Case ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 5
26 Quick Sort - Average Case ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 6
27 Quick Sort - Average Case ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 7
28 Quick Sort - Average Case ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 8 ) log ( ) ( j] iscompared to Pr[i E[X] comparisos Expected # of O H k k i j k i i k i i j k i j i i j i - ø ö ç è æ < å å å å å å å å
29 Lower boud for sortig ΟΛΟΙ ΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙΟΥΝ ΣΥΓΚΡΙΣΕΙΣ Συγκρίσεις στοιχείων ανά Δυαδικό δέντρο αποφάσεων συγκρίσεων # φύλλων # πιθανών διατάξεων! Δεν μπορεί να λείπει καμία διάταξη: τι θα απαντούσε ο αλγόριθμος αν η είσοδος του ταξινομείται σύμφωνα με αυτή τη διάταξη? ΠΟΛΥΠΛΟΚΟΤΗΤΑ μεγαλύτερο μονοπάτι ύψος του δέντρουd ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 9
30 Lower boud for sortig Πλήρες δυαδικό δένδρο ύψους d: # φύλλων d Κάθε δυαδικό δένδρο ύψους d (και το δικό μας): # φύλλων d # φύλλων # πιθανών διατάξεων! Άρα d! Þ d ³ log(!) dω(?) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 30
31 Lower boud for sortig ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 3 ) log ( ) (log log log... log... log log!) log( d W - ø ö ç è æ ø ö ç ç ç è æ ø ö ç è æ ø ö ç è æ ø ö ç è æ ø ö ç è æ ø ö ç è æ ³ ø ö ç è æ ø ö ç è æ + ø ö ç è æ + ³ ø ö ç è æ ø ö ç è æ + ø ö ç è æ + ³ ) log (!) log( ΠΟΛΥΠΛΟΚΟΤΗΤΑ Άρα d W ³
32 Media ad Selectio SELECTION (ΕΠΙΛΟΓΗ) ΕΙΣΟΔΟΣ: (διαφορετικοί μεταξύ) τους στοιχεία αριθμοί αριθμός k, k ΕΡΩΤΗΣΗ: το k-οστό μεγαλύτερο στοιχείο k: miimum, k: maximum k ë(+)/û à MEDIAN (ΔΙΑΜΕΣΟΣ) k odd: x x x M x x x (7, k 4) k eve: x x x M x x x x (8, k 4 - lower media) To στοιχείο από το οποίο οι μισοί αριθμοί είναι μικρότεροι και οι άλλοι μισοί μεγαλύτεροι Προφανής αλγόριθμος: Ο( log ) γιατί? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 3
33 Selectio Divide ad Coquer Select (A, p, r, k) if p r: retur A[p] select pivot x; Partitio (A,p,r) //split A ito A[p,q-],A[q+,r]; // A[i] x, p i q- // x A[i], q+ i r // q is the fial positio of x mq-p+ if km: retur A[q] else: if k < m: Select(A, p, q-, k) else: Select(A, q+,r, k-m) p q r k,,3 k4 MEDIAN k5,6,7,8 m4 ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 33
34 Selectio Divide ad Coquer Selectio vs. Quicksort Quicksort: διαιρώ και αναδρομικά εξετάζω και τα τμήματα Selectio: διαιρώ και αναδρομικά εξετάζω μόνο το ένα τμήμα Selectio: Πολυπλοκότητα Χειρότερη περίπτωση: πάντα πάμε στο μεγαλύτερο τμήμα Complexity : T() T(max{ q -, - q}) + ( -) Best case: T() T(/) + O(): O() (ακόμα και αν kq στην πρώτη κλήση: Ο() ) Worst case: T() T(-) + O(): O( ) Average case:? ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 34
35 Selectio - D&C Average Case Equiprobable permutatios Each pivot x (partitio q) is equiprobable Distict values of elemets of A[..] q: fial positio of the pivot Pr[ partitio q] Expected complexity T ( ) å q..., T() T(max{ q -, - q}) + ( -) [ T (max{ q -, O(log) - q}) + ( -)] [Απόδειξη CLRS 9.] ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 35
36 Selectio Radomized D&C Select (A, p, r, k) if p r: retur A[p] repeat irandom(p,r) swap (A[i], A[r]) Partitio (A,p,r) Τυχαία επιλογή ενός αριθμού i: p i r util q³(r-p)/4 ad (r-q)³(r-p)/4 mq-p+ Μέχρι να βρεθεί ένα καλό pivot if km: retur A[q] else: if k < m: Select(A,p,q-,k) else: Select(A,q+,r,k-m) p() q r() Κακή επιλογή Καλή επιλογή Καλή επιλογή Κακή επιλογή /4 /4 3/4 ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 36
37 Selectio Radomized D&C Πόσες επαναλήψεις Z χρειάζονται μέχρι να βρεθεί ένα καλό pivot? Αναμονή μέχρι την πρώτη επιτυχία (Waitig for the first success) Z # επαναλήψεων µέχρι την πρώτη επιτυχία (radom variable) p Pr [ένα τυχαίο pivot είναι καλό] Pr[Zj] : πιθανότητα επιτυχίας στην j-οστή επανάληψη Pr[Zj] (-p) j- p : (,,, j-: αποτυχηµένες επαναλήψεις j: επιτυχηµένη επανάληψη) E[ Z] j p å j Pr[ Z j] å - j( - p) p å - p j p - p ( - p p) p j j Θυµηθείτε: å j j( - j( - p) p) j p j - p ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 37
38 Selectio Radomized D&C Πόσες επαναλήψεις Z χρειάζονται μέχρι να βρεθεί ένα καλό pivot? E [ Z] p, όπου p Pr [ένα τυχαίο pivot είναι καλό]? Κακή επιλογή Καλή επιλογή Καλή επιλογή Κακή επιλογή /4 /4 3/4 Τα μισά στοιχεία είναι καλές επιλογές! Άρα p Pr [ένα τυχαίο pivot είναι καλό] / και Ε[Z]! Με µόνο αναµενόµενες επαναλήψεις Αναµενόµενη πολυπλοκότητα: Τ() T(3/4) + Ο() O()! ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 38
39 Selectio O() worst case χώρισε τον πίνακα σε πεντάδες βρες τον μέσο κάθε πεντάδας βρες τον μέσο των μέσων Βρίσκουμε καλό pivot Worst case T()T(7/0)+T(/5)+Ο() Ο()! [ Blum, Floyd, Pratt, Rivest, Tarja ] ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 39
40 Selectio O() worst case χώρισε τον Α σε ë/5û ομάδες με 5 στοιχεία κάθε μία 54 ë/5û πεντάδες ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 40
41 Selectio O() worst case βρες τον μέσο κάθε πεντάδας: χρόνος O() γιατί? για όλες τις πεντάδες: χρόνος O() medias ë/5û πεντάδες ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 4
42 Selectio O() worst case βρες τον μέσο x των μέσων των πεντάδων: χρόνος Τ(ë/5û) x media οf medias ë/5û πεντάδες ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 4
43 Selectio O() worst case τουλάχιστον ë ë/5û / û ë/0û μέσοι x x media οf medias ë/5û πεντάδες ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 43
44 Selectio O() worst case τουλάχιστον ë ë/5û / û ë/0û μέσοι x τουλάχιστον 3 στοιχεία σε κάθε πεντάδα x τουλάχιστον 3 ë/0û στοιχεία x x media οf medias ë/5û πεντάδες ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 44
45 Selectio O() worst case τουλάχιστον ë ë/5û / û ë/0û μέσοι ³ x τουλάχιστον 3 στοιχεία σε κάθε πεντάδα ³ x τουλάχιστον 3 ë/0û στοιχεία ³ x x media οf medias ë/5û πεντάδες ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 45
46 Selectio O() worst case χώρισε τον πίνακα Α σε πεντάδες: O() πεντάδες βρες τον μέσο κάθε πεντάδας: O() βρες τον μέσο των μέσων : Τ(/5) O() για όλες τις πεντάδες x x x ³ x 3/0 7/0 κάλεσε αναδρομικά για το πολύ ~ 7/0 στοιχεία Τ() T(7/0) + T(/5) + O() O() (γιατί 7/0+/5 ) ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 07 - Ι. ΜΗΛΗΣ DIVIDE & CONQUER II 46
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclss.ue.gr/courses/inf6/ Άνοιξη 207 - I. ΜΗΛΗΣ ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Divie Coquer D&C ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 207 - Ι. ΜΗΛΗΣ - 04 - DIVIDE & CONQUER I Divie & Coquer Διαίρεσε αναδρομικά το
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ 08 DP I 1 Dynamic Programming Richard Bellman (1953) Etymology (at
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1
Ο αλγόριθμος Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 6/14/2007 3:42 AM Quick-Sort 1 Κύρια σημεία για μελέτη Quick-sort ( 4.3) Αλγόριθμος Partition step Δέντρο Quick-sort Παράδειγμα εκτέλεσης
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort
Ταξινόμηση κάδου και ταξινόμηση Ρίζας Bucket-Sort και Radix-Sort 1, c 3, a 3, b 7, d 7, g 7, e B 0 1 3 4 5 6 7 8 9 1 BucketSort (Ταξινόμηση Κάδου) - Αρχικά θεωρείται ένα κριτήριο κατανομής με βάση το οποίο
Ταχεία Ταξινόμηση Quick-Sort
Ταχεία Ταξινόμηση Quc-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 Δομές Δεδομένων και Αλγόριθμοι Εργαστήριο Γνώσης και Ευφυούς Πληροφορικής 1 Outlne Quc-sort Αλγόριθμος Βήμα διαχωρισμού Δένδρο Quc-sort
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη 2017
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/if161/ Άνοιξη 2017 I. ΜΗΛΗΣ Ώρες Γραφείου: Δευτέρα, Παρασκευή 11:00-13:00 Κοδριγκτώνος 12, 3 ος οροφος (Κωδικός Εισόδου 4267) E-mail: milis@aueb.gr Αλγόριθμοι Τους
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Quicksort Κεφάλαιο 7. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Quicksort Κεφάλαιο 7 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Quicksort Ο βασικός αλγόριθµος Χαρακτηριστικά επιδόσεων Μικροί υποπίνακες Μη αναδροµική υλοποίηση Δοµές Δεδοµένων
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Στατιστικά Διάταξης. Στατιστικά σε Μέσο Γραμμικό Χρόνο Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Στατιστικά Διάταξης Με τον όρο στατιστικά διάταξης (order statistics) εννοούμε την περίπτωση
Αλγόριθμοι ταξινόμησης
Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης BuubleSort, SelectionSort, InsertionSort, Merger Sort, Quick Soft ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1
Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση
ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort
Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1
Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 9: Στατιστικά Διάταξης- Στατιστικά σε Μέσο Γραμμικό Χρόνο Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Ταχυταξινόμηση (Quick-Sort) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Ταχυταξινόμηση (Quick-Sort) 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7
Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1,
Κεφάλαιο 4 Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1, 2015-01-19 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Διαίρει και Βασίλευε (Divide-and-Conquer) Διαίρει-και-βασίλευε
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 8 Quick Sort 1 / 11 Ο αλγόριθμος QuickSort 1 Προτάθηκε από τον CAR (Tony) Hoare το 1961 2 Ο αλγόριθμος
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΑΠΛΗΣΤΟΙ ΑΛΓΟΡΙΘΜΟΙ Greedy Algorithms 1 Greedy algorithms H βασική ιδέα: Άρχισε από ένα υπο-πρόβλημα μικρού μεγέθους Επαναληπτικά,
Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[ ] με n στοιχεία (όχι ταξινομημένος). Αριθμός k,
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3.0 Σταύρος Δ. Νικολόπουλος 0-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Διαίρει και Βασίλευε Quick-sort και Merge-sort
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι
Πρόβλημα Ταξινόμησης Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Είσοδος : ακολουθία n αριθμών (α 1, α 2,..., α n
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης: Α. SelectoSort Ταξινόμηση με Επιλογή Β. IsertoSort Ταξινόμηση με Εισαγωγή Γ. MergeSort
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1
Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο του προβλήματος
Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1
Πρόβληµα Επιλογής Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1 Πρόβληµα Επιλογής Πίνακας Α[ Αριθµός k, 1 k n. ] µε n στοιχεία (όχι ταξινοµηµένος). Υπολογισµός του k-οστού µικρότερου στοιχείου (στοιχείο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 9: Ταξινόμηση Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 9: Ταξινόμηση Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 9 Ταξινόμηση ΗΥ240 - Παναγιώτα Φατούρου 2 Ταξινόμηση Θεωρούμε έναν πίνακα
Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός
Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός
Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 6] Στοιχείο διαχωρισμού (pivot),
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Σχεδίαση Αλγορίθμων Διαίρει και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad 1 Διαίρει και Βασίλευε Η γνωστότερη ρημέθοδος σχεδιασμού αλγορίθμων: 1. Διαιρούμε το στιγμιότυπο
Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 4 Διαίρει και Βασίλευε (Divide and Conquer) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Διαίρει και Βασίλευε (Divide-and-Conquer) Διαίρει-και-βασίλευε (γενικά) Χωρίζουµε
Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Quicksort ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Quicksort [Hoare, 62] Στοιχείο διαχωρισμού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση
ΗΥ240 - Παναγιώτα Φατούρου 2
Ενότητα 8 Ταξινόµηση ΗΥ0 - Παναγιώτα Φατούρου Ταξινόµηση Θεωρούµε έναν πίνακα Α[0..n-] µε n στοιχεία στα οποία έχει ορισθεί µια γραµµική διάταξη, δηλαδή ζεύγος στοιχείων x,y του Α, είτε x < y, ή x > y
Tυχαιοποιηµένοι Αλγόριθµοι (CLR, κεφάλαιo 8.3 και 10)
Tυχαιοποιηµένοι Αλγόριθµοι (CLR, κεφάλαιo 8.3 και 10) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Ο τυχαιοποιµένος αλγόριθµος QuickSort Αλγόριθµοι Επιλογής Τυχαιποιηµένος Αλγόριθµος Ο αλγόριθµος των
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Ουρές Προτεραιότητας: Υπενθύμιση. Σωροί / Αναδρομή / Ταξινόμηση. Υλοποίηση Σωρού. Σωρός (Εισαγωγή) Ορέστης Τελέλης
Ουρές Προτεραιότητας: Υπενθύμιση Σωροί / Αναδρομή / Ταξινόμηση Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς (Abstract Data Type) με μεθόδους: Μπορεί να υλοποιηθεί με
8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Επιλογή ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Quicksort ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. (α) Αλγόριθµος: ηµιούργησε το σύνολο P που αποτελείται από τα άκρα όλων των ευθυγράµµων τµηµάτων. Βρες το κυρτό περίβληµα του P µε τον αλγόριθµο του Graham. Ορθότητα:
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου
Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 10: Αλγόριθμοι Ταξινόμησης II Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Δ. QuickSort Γρήγορη Ταξινόμηση Ε. BucketSort
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 216 - I. ΜΗΛΗΣ ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 216 - Ι. ΜΗΛΗΣ 9 DP II 1 Dynamic Programming ΓΕΝΙΚΗ ΙΔΕΑ 1. Ορισμός υπο-προβλήματος/ων
Χαρακτηριστικά της ανάλυσης διασποράς. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (One-way analysis of variance)
ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (Oe-way aalysis of variace) Να γίνει µια εισαγωγή στη µεθοδολογία της ανάλυσης > δειγµάτων Να εφαρµοσθεί και να κατανοηθεί η ανάλυση διασποράς µε ένα παράγοντα. Να κατανοηθεί η χρήση των
ΗΥ-150. Ταξινόµηση και Αναζήτηση
ΗΥ-150 Ταξινόµηση και Αναζήτηση To πρόβληµα της Αναζήτησης οθέντος δεδοµένων, λ.χ. σε Πίνακα (P) Ψάχνω να βρω κάποιο συγκεκριµένο στοιχείο (key) Αν ο πίνακας δεν είναι ταξινοµηµένος Γραµµική Αναζήτηση
Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 23 Μαρτίου 2017 1 / 170 Αναδροµή ιαίρει
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 2 ιαίρει και Βασίλευε Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 2 1 / 140 ιαίρει και Βασίλευε
Αλγόριθμοι Ταξινόμησης Μέρος 3
Αλγόριθμοι Ταξινόμησης Μέρος 3 Μανόλης Κουμπαράκης 1 Ταξινόμηση με Ουρά Προτεραιότητας Θα παρουσιάσουμε τώρα δύο αλγόριθμους ταξινόμησης που χρησιμοποιούν μια ουρά προτεραιότητας για την υλοποίηση τους.
Ταξινόμηση. 1. Γρήγορη ταξινόμηση 2. Ταξινόμηση με Συγχώνευση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Γρήγορη ταξινόμηση. Ταξινόμηση με Συγχώνευση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γρήγορη Ταξινόμηση Η γρήγορη ταξινόμηση qucksort), που αλλιώς ονομάζεται και ταξινόμηση µε διαμερισμό
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 4: Διαίρει και Βασίλευε. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 4: Διαίρει και Βασίλευε Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν
Εργαστηριακή Άσκηση 1
Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε
p
ΑΝΑ ΡΟΜΙΚΗ ΤΑΞΙΝΟΜΗΣΗ- ΑΣΚΗΣΕΙΣ Οι μέθοδοι ταξινόμησης QUICK SORT και MERGE SORT κωδικοποιούνται εύκολα αναδρομικά Oι δυο αναδροµικοί µέθοδοι δέχονται 1ο όρισµα τον πίνακα, και δεν επιστρέφουν τίποτα.
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)
Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Διαίρει-και-Βασίλευε Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Η Μέθοδος «Διαίρει & Βασίλευε» Η Μέθοδος
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Εισαγωγή στην Ανάλυση Αλγορίθμων (1) Διαφάνειες του Γ. Χ. Στεφανίδη
Εισαγωγή στην Ανάλυση Αλγορίθμων (1) Διαφάνειες του Γ. Χ. Στεφανίδη 0. Εισαγωγή Αντικείμενο μαθήματος: Η θεωρητική μελέτη ανάλυσης των αλγορίθμων. Στόχος: επιδόσεις των επαναληπτικών και αναδρομικών αλγορίθμων.
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
2η Σειρά Γραπτών Ασκήσεων
2η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1/23 1 Κλειδιά και κλειδαριές 2 Puzzle 3 Διαστημικές Μάχες 4 Κεραίες 5 Εργοστάσιο Ποτηριών 2/23 Κλειδιά και κλειδαριές
ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ
ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν
Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue
Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Αλγόριθμοι. Μάρθα Σιδέρη. ιαδικαστικά: ύο πρόοδοι 31 Μαρτίου, 18 Μαΐου 7-9μμ 20% η μία, ύο Προγραμματιστικές 1 προσθετικό βαθμό η μία.
Αλγόριθμοι Μάρθα Σιδέρη epl333 lect 011 1 ιαδικαστικά: ύο πρόοδοι 31 Μαρτίου, 18 Μαΐου 7-9μμ 0% η μία, ύο Προγραμματιστικές 1 προσθετικό βαθμό η μία. Οι πρόοδοι είναι προαιρετικές και το ποσοστό μετράει
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, σελ. 55-62 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 5) Δυαδική αναζήτηση
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Δοµές Δεδοµένων. 10η Διάλεξη Ταξινόµηση. E. Μαρκάκης
Δοµές Δεδοµένων 10η Διάλεξη Ταξινόµηση E. Μαρκάκης Περίληψη Ταξινόµηση µε αριθµοδείκτη κλειδιού Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429
Ταξινόµηση. Παύλος Εφραιµίδης. οµές εδοµένων και
Παύλος Εφραιµίδης 1 Το πρόβληµα της ταξινόµησης 2 3 ίνεται πολυ-σύνολο Σ µε στοιχεία από κάποιο σύµπαν U (πχ. U = το σύνολο των ακεραίων αριθµών). του Σ είναι η επιβολή µιας διάταξης στα στοιχεία του συνόλου
επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S
Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών,, τα οποίo είναι υποσύνολο του. Υποστηριζόμενες λειτουργίες αναζήτηση(s,x): εισαγωγή(s,x): διαγραφή(s,x): διάδοχος(s,x): προκάτοχος(s,x):
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα
Ταξινόμηση. Σαλτογιάννη Αθανασία
Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 1: Εισαγωγή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό