Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών
|
|
- Ζώσιμος Αλαφούζος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών Δυνάμεις κοπής στο φρεζάρισμα Απόκριση εκτός συντονισμού Απόκριση σε συντονισμό Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών
2 Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών Ακαδημαϊκών Μαθημάτων από την Μονάδα Υλοποίησης του ΕΜΠ. Για υλικό που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
3 Συνάρτηση διαπόκρισης Ιούλιος Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ 15 Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 2
4 Δυνάμεις στο φρεζάρισμα ίσια δόντια-1 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 3
5 Προβολή δυνάμεων σε x, y F x = m i=1 (F t i cosφ i F n i sinφ i) = k s bc m i=1 (sin φ i cosφ i 0.3sin 2 φ i ) = m (sin 2φ i cos 2φ i ) k s bc 2 i=1 F y = m i=1 (F t i sinφ i F n i cosφ i) = k s bc m i=1 (sin 2 φ i 0.3sinφ i cosφ i ) = k s bc 2 i=1 m (1 cos 2φ i 0.3 sin 2φ i ) κάθε όρος i των παραπάνω αθροισμάτων συμμετέχει μόνο εφόσον φ s <φ i <φ e Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 4
6 Φρεζάρισμα με ίσια δόντια: m=1 & 3 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 5
7 Συνισταμένη στο φρεζάρισμα εγκοπών με ίσια δόντια: m=4 & 3 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 6
8 Φρεζάρισμα αυλακιού με m=4 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 7
9 Σταθερότητα δύναμης φρεζαρίσματος αυλακιού με m=4 Τόξο επαφής: π, πρόωση ανά δόντι: c Πάντοτε 2 δόντια σε επαφή σε γωνία φ 1 και φ 2 =φ 1 +π/2, άρα sinφ 2 =cosφ 1 και cosφ 2 =-sinφ 1 ΔF t1 = k s Δb h 1 ΔF r1 =0.3 ΔF t1 με h=c sinφ 1 ΔF t2 = k s Δb h 2 ΔF r2 =0.3 ΔF t2 με h=c sinφ 2 ΔFx= k s Δb c (sinφ 1 cosφ 1 + sinφ 2 cosφ sin 2 φ sin 2 φ 2 )=k s Δb c (0+0.3) ΔFy= k s Δb c Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 8
10 Συνισταμένη στο φρεζάρισμα εγκοπών με 4 ίσια δόντια Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 9
11 φρεζάρισμα αυλακιού με 2 δόντια Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 10
12 Απόκριση σε συνθήκες συντονισμού κονδύλι δύο δοντιών για φρεζάρισμα αυλακιού k s =1000 N/mm 2 αξονικό βάθος κοπής b=10mm, πρόωση ανά δόντι c=0.1 mm, ταχύτητα ατράκτου n=7200rpm= 120 rev/sec. φυσική συχνότητα f n =240 Hz, δυσκαμψία k=1000 N/mm λόγος απόσβεσης ζ=0.04. Συχνότητα της δύναμης-διέγερσης ισούται με f n Η ακρίβεια των δύο επιφανειών του αυλακιού εξαρτάται από την απόκριση του εργαλείου κατά τη διεύθυνση y Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 11
13 F y = ½ k s b c (1 cos2φ 0.3 sin2φ)= 500 (1 cos2φ 0.3 sin2φ) δηλ. ένας σταθερός και δύο αρμονικοί όροι: F DC = 500 Ν F 1 = -500 cos2φ F 2 =-150 sin2φ Απόκριση: υπέρθεση των δύο ταλαντώσεων ίδιας συχνότητας Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 12
14 φρεζάρισμα αυλακιού με συντονισμό Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 13
15 Συνθήκες συντονισμού η μετατόπιση έπεται της διέγερσης κατά π/2 το cos(2φ) της F 1 δίνει cos(2φ-π/2)=cos(π/2-2φ)=sin(2φ) για την y 1 το sin(2φ) της F 2 δίνει sin(2φ-π/2)=-sin(π/2-2φ)=-cos(2φ) για την y 2 μέτρο συνάρτησης απόκρισης: 1/2kζ Α1= F1 /2kζ=500/( )= 6.25mm Α2=1.875mm αντίστοιχα Συχνότητα f=2 * 120= 240 Ηz Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 14
16 Σφάλμα θέσης αυλακιού y 1 =-6.25 sin2φ y 2 =1.875 cos2φ y DC =F DC /k=500/1000=0.5 mm Το σφάλμα θέσης μετράται στα Α και Β δηλ. για φ=0 και π. Για φ=0 το σφάλμα θέσης του αυλακιού είναι: δ= =2.375mm Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 15
17 Απόκριση σε συνθήκες μη συντονισμού δεν υπάρχουν συνθήκες συντονισμού f n =310 Hz ταχύτητα ατράκτου: 8400 rpm = 140 rev/sec συχνότητα διέλευσης δοντιού f=2 140=280 Hz F y = 500 (1 cos2πft 0.3 sin2πft) F DC = 500 Ν F 1 = -500 cos(2π 280 t) F 2 =-150 sin(2π 280 t) Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 16
18 Υπολογισμός απόκρισης εκτός συντονισμού Διαφορά φάσης απόκρισης ως προς διέγερση: φ=atan(-2ζr/(1-r 2 )) r=280/310= => φ=-38.11⁰ Λόγος πλατών απόκρισης-διέγερσης είναι: 1 Φ = k (1 r 2 ) 2 +4ζ 2 r 2 αντικαθιστώντας τις τιμές των k, ζ, r : Φ = Α 1 = =2.135mm Α 2 = =0.64mm Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 17
19 φρεζάρισμα εγκοπών με 2 δόντια εκτός συντονισμού Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 18
20 Επεξήγηση σχήματος Οι δυνάμεις και οι αποκρίσεις φαίνονται στο Σχήμα ως περιστρεφόμενα διανύσματα οι προβολές στον πραγματικό άξονα δίνουν τις στιγμιαίες τιμές. Για t=0 συναρτήσεις με θετικά συνημίτονα είναι στα θετικά του πραγματικού άξονα και αυτές με θετικά ημίτονα είναι στα αρνητικά του φανταστικού άξονα. Συνεπώς η F 1 (αρνητικά cos) είναι στα αρνητικά του πραγματικού άξονα και η απόκριση Y 1 ακολουθεί κατά 38.11⁰. η F 2 (αρνητικά sin) είναι στα θετικά του φανταστικού άξονα και η απόκριση Y 2 ακολουθεί κατά 38.11⁰. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 19
21 Για t=0 Προβολές Υ1, Υ2 στον πραγματικό άξονα y 1 = cos(38.11⁰)=-1.68mm y 1 =0.64 cos(38.11⁰)=0.395mm. Συνολική μετατόπιση του κονδυλιού κατά y: δ= = mm Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 20
22 Δυνάμεις Ένα κονδύλι με ελικοειδή δόντια μπορεί να θεωρηθεί ως μια σειρά στοιχειωδών κονδυλιών δίσκων - το καθένα από τα οποία έχει ίσια δόντια. Η ανάλυση δυνάμεων που εφαρμόστηκε για κονδύλια με ίσια δόντια για αξονικό βάθος κοπής b εφαρμόζεται και σε κάθε στοιχειώδη κυκλικό δίσκο. Περιφερειακό φρεζάρισμα με γωνία εισόδου φ s γωνία εξόδου φ e πλάτος κοπής a και πρόωση ανά δόντι c. Πάχος αποβλήτου σε οποιαδήποτε θέση κατά μήκος του τόξου επαφής, h=c sinφ. Η γωνία έλικας των δοντιών είναι β. Το ανάπτυγμα κάθε δοντιού του εργαλείου είναι ευθύγραμμο τμήμα κλίσης β. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 21
23 Φρεζάρισμα με ελικοειδές κονδύλι Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 22
24 Φρεζάρισμα με ελικοειδές κονδύλι-2 r Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 23
25 Ανάλυση στο επίπεδο ανάπτυγμα Κάθε ευθύγραμμο ανάπτυγμα δοντιού τμήμα κινείται με ταχύτητα v (περιφερειακή ταχύτητα κοπής του εργαλείου) Η θέση κάθε σημείου κοπής αποτυπώνεται βάσει της γωνίας φ, η οποία πολλαπλασιαζόμενη με την ακτίνα του εργαλείου r δίνει την αντίστοιχη απόσταση rφ. Η επαφή κάθε δοντιού εκτείνεται δυνητικά κατά μήκος γωνίας τύλιξης ψ, η οποία υπολογίζεται ως: ψ=b tanβ /r. Στην πραγματικότητα όμως, η επαφή του κάθε δοντιού περιορίζεται στο τμήμα της γωνίας ψ που βρίσκεται μεταξύ των γωνιών εισόδου και εξόδου φ s και φ e συμβολίζεται με συνεχή γραμμή σε αντίθεση με το υπόλοιπο που συμβολίζεται με διακεκομμένη Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 24
26 Κώδικας υπολογισμού δυνάμεων Γωνία βήματος φ p.=2π/m, όπου m ο αριθμός δοντιών. Για m=3 έστω ότι το 1 ο σημείο του δοντιού T 1 στο επίπεδο Α μόλις εισέρχεται στο υλικό, δηλ. φ a =φ s Κίνηση του T 1 έως γωνία φ a =φ s +φ p, δηλαδή μεταξύ γραμμών T 1s και T 1e Τα δόντια Τ 2 και Τ 3 κινούνται αντίστοιχα, είναι όμως μπροστά από το Τ 1 κατά φ p και 2φ p αντίστοιχα. Η κίνηση διακριτοποιείται σε κ στοιχειώδη γωνιακά βήματα Δφ Κάθε δόντι διακριτοποιείται σε ν γραμμικά τμήματα υποτείνουσα ορθογωνίου τριγώνου ύψους Δb και βάσης Δψ. ΔF t και ΔF n κάθε τμήματος δοντιού: όπως για τα ίσια δόντια Οι προβολές κατά x και y αθροίζονται για όλα τα βήματα Δφ. Max αριθμός δοντιών που κόβουν ταυτόχρονα : int((φ c +ψ)/φ p )+1. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 25
27 Φρεζάρισμα με ελικοειδές κονδύλι Λόγος μετωπικής βύθισης Αξονική βύθιση b=10,25,50 mm Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 26
28 Σταθερότητα δύναμης σε φρεζάρισμα με ελικοειδές κονδύλι περιφερειακό φρεζάρισμα υπάρχει συγκεκριμένο αξονικό βάθος κοπής b για το οποίο (και για ακέραια πολλαπλάσια του) η δύναμη κοπής είναι σταθερή Συνθήκη: φ p = ψ φ p =2π/m ψ=b tanβ /r Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 27
29 Αποτύπωση ταλάντωσης εργαλείου στην κατεργασμένη επιφάνεια Στην ιδανική περίπτωση κοπτικού εργαλείου απλής σημειακής επαφής η κυματομορφή της διέγερσης αναπαράγεται στην επιφάνεια του κατεργασμένου τεμαχίου. Όταν όμως το εργαλείο δεν καταλήγει σε κορυφή αλλά υπάρχει ακτίνα καμπυλότητας ή αντίστοιχα υπάρχει πεδίο φθοράς τότε υπάρχει διαφορά στο πλάτος των δύο κυματομορφών συνήθως το πλάτος της ταλάντωσης στο τεμάχιο είναι πολύ μικρότερο από αυτό του εργαλείου Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 28
30 Αποτύπωση ταλάντωσης εργαλείου απλής σημειακής επαφής Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 29
31 Αποτύπωση ταλάντωσης λειαντικού τροχού Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 30
32 Εξαναγκασμένη ταλάντωση λειαντικού τροχού κυλινδρικός τροχός διαμέτρου D ταλαντώνεται με πλάτος 2Α το κέντρο του τροχού βρίσκεται στην κατώτατη θέση δύο φορές σε κάθε περίοδο ορίζοντας έτσι ένα μήκος κύματος w η περιφέρεια του τροχού σε κάθε θέση αφήνει παραμένον υλικό στο τεμάχιο που έχει προφίλ κυκλικού τόξου. τα σχετικά τόξα στις δύο κατώτερες θέσεις τέμνονται σε σημείο με ύψος h (<2Α) πάνω από αυτές υπολογίζεται με χρήση του Πυθαγόρειου θεωρήματος Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 31
33 υπολογισμός (w/2) 2 + (D/2- h) 2 = (D/2) 2 επειδή το h είναι πολύ μικρό, h 2 =0, συνεπώς: h=w 2 /4/D Αν V είναι η ταχύτητα κίνησης του τροχού και f η συχνότητα της ταλάντωσης, τότε: w=v/f Συνδυασμός των δύο τελευταίων σχέσεων δίνει h=v 2 /f 2 /4/D Το ύψος της κυμάτωσης στο τεμάχιο είναι το ελάχιστο των 2A και h δηλ. min(2a,h). Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών 32
34 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Δυναμική εργαλειομηχανών
Δυναμική εργαλειομηχανών Θεωρία μηχανικών ταλαντώσεων Εξαναγκασμένες ταλαντώσεις Παραδείγματα στο φρεζάρισμα Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Δυναμική Εργαλειομηχανών Άδεια Χρήσης Το παρόν υλικό υπόκειται σε
Διαβάστε περισσότεραHigh-Speed Milling. Παρουσίαση σχεδιασμού εργαλειομηχανής - HSM. High-Speed Milling. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
High-Speed Milling Παρουσίαση σχεδιασμού εργαλειομηχανής - HSM Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ High-Speed Milling Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο
Διαβάστε περισσότεραΣερβοκινητήρες πρόωσης σε συστήματα CNC
Σερβοκινητήρες πρόωσης σε συστήματα CNC τύπος DC μόνιμου μαγνήτη επίδραση ανάδρασης ταχογεννήτρια Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Σερβοκινητήρες πρόωσης σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται
Διαβάστε περισσότεραΠρέσσες κοχλία. Κινηματική Δυνάμεις Έργο. Πρέσσες κοχλία. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες κοχλία Κινηματική Δυνάμεις Έργο Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες κοχλία Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών
Διαβάστε περισσότεραΣυμβατικός προγραμματισμός κέντρων κατεργασιών CNC
Συμβατικός προγραμματισμός κέντρων κατεργασιών CNC Αρχές προγραμματισμού Τυποποιημένες εντολές Μη τυποποιημένες εντολές Φασεολόγια Εργαλεία Γ.Βοσνιάκος-2014 Προγραμματισμός κέντρων κατεργασιών Άδεια Χρήσης
Διαβάστε περισσότεραΠαρεμβολή πραγματικού χρόνου σε συστήματα CNC
Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Γραμμική Κυκλική Spline Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΠρέσσες εκκέντρου. Κινηματική Δυνάμεις Έργο Εφαρμογές. Πρέσσες εκκέντρου. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες εκκέντρου Κινηματική Δυνάμεις Έργο Εφαρμογές Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες εκκέντρου Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
Διαβάστε περισσότεραΕπισκόπηση εργαλειομηχανών κοπής. Τόρνος Φρέζα Δράπανο Λειαντικό Συγκρότηση Λειτουργία Εργαλεία
Επισκόπηση εργαλειομηχανών κοπής Τόρνος Φρέζα Δράπανο Λειαντικό Συγκρότηση Λειτουργία Εργαλεία Δεκ-09 Γ.Βοσνιάκος Εργαλειομηχανές κοπής - ΕΜΤ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΤίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.05.3: Μέγιστα και Ελάχιστα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Ενότητα Β.05.3: Μέγιστα
Διαβάστε περισσότεραΕντολές κίνησης σε συστήματα CNC
Εντολές κίνησης σε συστήματα CNC Τραπεζοειδές προφίλ ταχύτητας Τραπεζοειδές προφίλ επιτάχυνσης Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραα. φ Α < φ Β, u A < 0 και u Β < 0. β. φ Α > φ Β, u A > 0 και u Β > 0. γ. φ Α < φ Β, u A > 0 και u Β < 0. δ. φ Α > φ Β, u A < 0 και u Β > 0.
ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΛΥΥΚΚΕΕΙΙΟΥΥ ΚΚυυρρι ιιαακκήή 1133 ΙΙααννοουυααρρί ίίοουυ 001133 Θέμα 1 ο (Μονάδες 5) 1. Στο σχήμα φαίνεται το στιγμιότυπο ενός εγκάρσιου αρμονικού κύματος
Διαβάστε περισσότεραΑριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης. Λογισμός 3 Ασκήσεις. Μιχάλης Μαριάς Τμήμα Α.Π.Θ.
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Λογισμός 3 Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΦρεζάρισμα. Με το φρεζάρισμα μπορούμε να κατεργαστούμε επίπεδες ή καμπύλες επιφάνειες, εσοχές, αυλάκια ακόμα και οδοντωτούς τροχούς.
ΦΡΕΖΕΣ ΦΡΕΖΕΣ Είναι εργαλειομηχανές αφαίρεσης υλικού από διάφορες εργασίες με μηχανική κοπή. Η κατεργασία διαμόρφωσης των μεταλλικών υλικών στη φρέζα, ονομάζεται φρεζάρισμα. Φρεζάρισμα Με το φρεζάρισμα
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Διαβάστε περισσότεραΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 5: ΤΑΛΑΝΤΩΣΗ ΣΕ ΔΙΕΓΕΡΣΗ ΠΛΗΓΜΑΤΟΣ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΠοιότητα κατεργασμένης επιφάνειας. Αποκλίσεις 1ης, 2ης, 3ης, 4ης τάξης Τραχύτητα επιφάνειας Σκληρότητα Μικροσκληρότητα Παραμένουσες τάσεις
Ποιότητα κατεργασμένης επιφάνειας Αποκλίσεις 1ης, 2ης, 3ης, 4ης τάξης Τραχύτητα επιφάνειας Σκληρότητα Μικροσκληρότητα Παραμένουσες τάσεις Δεκ-09 Γ.Βοσνιάκος Μηχανουργικές επιφάνειες - ΕΜΤ Άδεια Χρήσης
Διαβάστε περισσότεραΣυμβατικός προγραμματισμός CNC. κέντρα τόρνευσης
Συμβατικός προγραμματισμός CNC κέντρα τόρνευσης Κέντρα τόρνευσης Δομή προγράμματος Αρχές προγραμματισμού Τυποποιημένες εντολές Παραδείγματα Γ.Βοσνιάκος-2013 Συμβατικός προγραμματισμός CNC Άδεια Χρήσης
Διαβάστε περισσότεραΦυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του
Διαβάστε περισσότεραΕισαγωγή στις σύγχρονες Εργαλειομηχανές CNC
Εισαγωγή στις σύγχρονες Εργαλειομηχανές CNC Ιστορία Κύρια μέρη Εργαλειομηχανών Αρχές CNC Γ.Βοσνιάκος- ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εισαγωγή στις εργαλειομηχανές CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΔιάλεξη #10. Διδάσκων: Φοίβος Μυλωνάς. Γραφικά με υπολογιστές. Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο.
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Χειμερινό εξάμηνο Γραφικά με υπολογιστές Διδάσκων: Φοίβος Μυλωνάς fmlonas@ionio.gr Διάλεξη # Δ Μετασχηματισμοί (γενικά) Γραμμικοί Μετασχηματισμοί Απλοί Συσχετισμένοι
Διαβάστε περισσότεραΔιδάσκων: Κολιόπουλος Παναγιώτης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 10: ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ (-ΒΕ) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΣτοιχεία Μηχανών ΙΙ. Α. Ασκήσεις άλυτες. Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση
Στοιχεία Μηχανών ΙΙ Α. Ασκήσεις άλυτες Άσκηση Α.1: Πλήρης υπολογισμός οδοντοτροχών με ευθεία οδόντωση Περιγραφή της κατασκευής: Σε μία αποθήκη υλικών σιδήρου χρησιμοποιείται μία γερανογέφυρα ανυψωτικής
Διαβάστε περισσότεραΚλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του
Διαβάστε περισσότεραΦΥΣΙΚΗ. Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
ΦΥΣΙΚΗ Ενότητα 2: ΔΙΑΝΥΣΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΜαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία
Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ
1. Σημασίες δεικτών και σύμβολα ΤΥΠΟΛΟΓΙΟ ΟΔΟΝΤΟΤΡΟΧΩΝ - Σημασίες δεικτών: 1 Μικρός οδοντοτροχός («πινιόν») ενός ζεύγους Μεγάλος οδοντοτροχός (ή σκέτα «τροχός») ούτε 1 ούτε : Εξετάζεται ο οδοντοτροχός
Διαβάστε περισσότεραΈλικες Θεωρία γραμμής άνωσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΕΡΟΔΥΝΑΜΙΚΗ Διδάσκων: Δρ. Ριζιώτης Βασίλης Έλικες Θεωρία γραμμής άνωσης Άδεια Χρήσης Το
Διαβάστε περισσότεραΜηχανουργική Τεχνολογία & Εργαστήριο I
Μηχανουργική Τεχνολογία & Εργαστήριο I Orthogonal Cutting - Ορθογωνική Kοπή Καθηγητής Χρυσολούρης Γεώργιος Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ.
Τίτλος Μαθήματος ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΜΗΧΑΝΙΚΗ Ι ΕΡΓΑΣΤΗΡΙΟ Καθηγητής Δρ. Μοσχίδης Νικόλαος ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ
Διαβάστε περισσότεραΜετρολογία εργαλειομηχανών
Μετρολογία εργαλειομηχανών Συμβολομετρία Σφάλματα θέσης Ευθύτητα επιπεδότητα Γωνιακά σφάλματα Κινηματικά σφάλματα Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Μετρολογία εργαλειομηχανών Άδεια Χρήσης Το παρόν υλικό υπόκειται
Διαβάστε περισσότεραΟδοντωτοί τροχοί. Εισαγωγή. Είδη οδοντωτών τροχών. Σκοπός : Μετωπικοί τροχοί με ευθύγραμμους οδόντες
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Διδάσκοντες : X. Παπαδόπουλος Λ. Καικτσής Οδοντωτοί τροχοί Εισαγωγή Σκοπός : Μετάδοση περιστροφικής κίνησης, ισχύος και ροπής από έναν άξονα
Διαβάστε περισσότεραΠροτεινόμενα θέματα Πανελλαδικών εξετάσεων. Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ
Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Φυσική Θετικής και Τεχνολογικής Κατεύθυνσης 3o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Διαβάστε περισσότεραΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ
ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για
Διαβάστε περισσότεραΤίτλος Μαθήματος: Εργαστήριο Φυσικής Ι
Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΜηχανική - Ρευστομηχανική
Μηχανική - Ρευστομηχανική Ενότητα 2: Εισαγωγικές έννοιες Διδάσκων: Πομόνη Αικατερίνη, Αναπλ. Καθηγήτρια Επιμέλεια: Γεωργακόπουλος Τηλέμαχος, Υπ. Διδάκτωρ Φυσικής 2015 Θετικών Επιστημών Φυσικής Άδειες Χρήσης
Διαβάστε περισσότεραΒασικές έννοιες Ανοχές κατά ISO Συναρμογές κατά ISO. Ανοχές-συναρμογές - ΕΜΤ
Ανοχές - συναρμογές Βασικές έννοιες Ανοχές κατά ISO Συναρμογές κατά ISO Δεκ-09 Γ.Βοσνιάκος Ανοχές-συναρμογές - ΕΜΤ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τριγωνομετρικές, Εκθετικές και Σύνθετες Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;
ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: B ΘΕΩΡΙΑ ΘΕΜΑ 1 ο A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ; B. Να αντιγράψετε και να συμπληρώσετε τις παρακάτω σχέσεις: i. Αν α 0,
Διαβάστε περισσότεραΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 6: Εναλλασσόμενο Ρεύμα Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΑκτομηχανική και λιμενικά έργα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 7 η. Περίθλαση, θραύση κυματισμών Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότερα1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ
1ο ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1: Α. Στις ερωτήσεις 1-3 να σημειώσετε το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα σώμα μάζας m
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΚΥΡΙΑΚΗ 10 ΙΑΝΟΥΑΡΙΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Να επιλέξετε την σωστή απάντηση στις παρακάτω προτάσεις: 1. Σε μια φθίνουσα ταλάντωση,
Διαβάστε περισσότερα8. ΜΑΓΝΗΤΙΣΜΟΣ. Φυσική ΙΙ Δ. Κουζούδης. Πρόβλημα 8.6.
1 8. ΜΑΓΝΗΤΙΣΜΟΣ Πρόβλημα 8.6. Το σύρμα του παρακάτω σχήματος έχει άπειρο μήκος και διαρρέεται από ρεύμα I. Υπολογίστε με τη βοήθεια του νόμου του Biot-Savart με ολοκλήρωση το μέτρο και την κατεύθυνση
Διαβάστε περισσότερα1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).
1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.
Διαβάστε περισσότεραΒ3. ΣΣωσσττήή ααππάάννττηησσηη εεί ίίννααι ιι ηη ββ.. Το πλάτος του (Σ) µετά τη συµβολή των κυµάτων ισούται µε: r 1 - r u t 1 - u t Α Σ = Α συνπ = Α σ
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥΓ ΛΥΚΕΙΟΥ Κυριακή 13 Νοεµβρίου 016 Θέµα Α Α1. δ Α. γ Α3. γ Α4. δ Α5. α) Σ β) Λ γ) Λ δ) Σ ε) Λ Θέµα Β Β1. Σωστή είναι η απάντηση (β). Εφόσον παρατηρούνται
Διαβάστε περισσότεραπάχος 0 πλάτος 2a μήκος
B1) Δεδομένου του τύπου E = 2kλ/ρ που έχει αποδειχθεί στο μάθημα και περιγράφει το ηλεκτρικό πεδίο Ε μιας άπειρης γραμμής φορτίου με γραμμική πυκνότητα φορτίου λ σε σημείο Α που βρίσκεται σε απόσταση ρ
Διαβάστε περισσότεραΦυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου. Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική (Ε) Ενότητα 4: Προσδιορισμός της σταθεράς ενός ελατηρίου Αικατερίνη Σκουρολιάκου Τμήμα Ενεργειακής Τεχνολογίας Το περιεχόμενο του
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου
Διαγώνισμα Φυσικής Κατεύθυνσης Γ Λυκείου Ζήτημα 1 ον 1.. Ένα σημειακό αντικείμενο εκτελεί απλή αρμονική ταλάντωση. Τις χρονικές στιγμές που το μέτρο της ταχύτητας του αντικειμένου είναι μέγιστο, το μέτρο
Διαβάστε περισσότεραΔυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΜετροτεχνικός προσδιορισµός των δυναµικών ταλαντωτικών χαρακτηριστικών της εργαλειοµηχανής και του κοπτικού εργαλείου στη θέση κοπής
Μετροτεχνικός προσδιορισµός των δυναµικών ταλαντωτικών χαρακτηριστικών της εργαλειοµηχανής και του κοπτικού εργαλείου στη θέση κοπής Στα πλαίσια του παρόντος ερευνητικού έργου έγινε προσδιορισµός της συνάρτησης
Διαβάστε περισσότεραΓενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013
1. Τί ονομάζουμε απόλυτη τιμή ενός αριθμού α ; Ονομάζουμε απόλυτη τιμή ενός αριθμού α την απόστασή του από το 0 (μηδέν). ή Απόλυτη τιμή λέμε τον αριθμό χωρίς πρόσημο. 2.Πότε δύο αριθμοί λέγονται αντίθετοι;
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 019 Κινηματική ΑΣΚΗΣΗ Κ.1 Η επιτάχυνση ενός σώματος που κινείται ευθύγραμμα δίνεται από τη σχέση a = (4 t ) m s. Υπολογίστε την ταχύτητα και το διάστημα που διανύει το σώμα
Διαβάστε περισσότεραΘΕΜΑ Β Β1. Ένας ταλαντωτής εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται εκθετικά με το
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2015-2016 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 08/11/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Α1 δ Α2 γ Α3 δ Α4 α Α5 β ΘΕΜΑ Β Β1 Ένας ταλαντωτής
Διαβάστε περισσότερα1. [Απ.: [Απ.: 3. [Απ.: [Απ.:
1. Η εξίσωση ενός αρμονικού κύματος, το οποίο διαδίδεται κατά μήκος ενός γραμμικού ελαστικού μέσου, που έχει τη διεύθυνση του άξονα x'x, είναι: γ=0,04ημπ(200t - 8x) (τα x και y είναι σε m και το t σε s).
Διαβάστε περισσότεραΑσκήσεις κοπής σε τόρνο
Ασκήσεις κοπής σε τόρνο. Σε τόρνο γίνεται κατεργασία άξονα από χάλυβα St 60. µε δύο παράλληλα εργαλειοφορεία ταυτόχρονα, όπως φαίνεται στο Σχ.. ίνονται: ιάµετροι κατεργασίας: d = 300 mm, d = 00 mm. Κοινή
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ
ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών
Διαβάστε περισσότεραΚριτήρια Μορφή - Ποσότητα Κόστος. Γενικές αρχές επιλογής κατεργασιών - ΕΜΤ
Γενικές αρχές επιλογής κατεργασιών Κριτήρια Μορφή - Ποσότητα Κόστος Οκτ-15 Γ. Βοσνιάκος Γενικές αρχές επιλογής κατεργασιών - ΕΜΤ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons
Διαβάστε περισσότεραΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 8: Συντονισμός Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας ΣΧΕΔΙΑΣΜΟΣ ΚΑΤΑΣΚΕΥΩΝ Κώστας Κιτσάκης Μηχανολόγος Μηχανικός ΤΕ MSc Διασφάλιση ποιότητας Επιστημονικός Συνεργάτης Άσκηση 1 Στο κιβώτιο ταχυτήτων
Διαβάστε περισσότεραΔΙΑΙΡΕΤΗΣ. Το ΤΕ είναι συνήθως κυλινδρικό, μπορεί όμως να είναι και κωνικό ή πρισματικό.
ΔΙΑΙΡΕΤΗΣ ΓΕΝΙΚΑ O διαιρέτης είναι μηχανουργική συσκευή, με την οποία μπορούμε να εκτελέσουμε στην επιφάνεια τεμαχίου (TE) κατεργασίες υπό ίσες ακριβώς γωνίες ή σε ίσες αποστάσεις. Το ΤΕ είναι συνήθως
Διαβάστε περισσότεραΗμερομηνία: Παρασκευή 27 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ /0/07 ΕΩΣ //07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 7 Οκτωβρίου 07 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις
Διαβάστε περισσότεραΘΕΜΑ 1ο Στις ερωτήσεις 1 4 να επιλέξετε τη σωστή απάντηση
ΜΑΘΗΜΑ - ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΕΠΑΝΑΛ. ΔΙΑΓΩΝΙΣΜΑ 2018 ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΠΑΡΑΡΤΗΜΑ ΔΙΑΡΚΕΙΑ 3 ΩΡΕΣ ΘΕΜΑ 1ο Στις ερωτήσεις 1 4 να επιλέξετε τη σωστή απάντηση Α1 Περιπολικό ακολουθεί αυτοκίνητο
Διαβάστε περισσότεραΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑTA Β
1 ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑTA Β 1) Tο σώμα Β του σχήματος είναι ακίνητο πάνω σε λείο οριζόντιο δάπεδο και δεμένο στην άκρη ιδανικού ελατηρίου. Το σώμα Α, μάζας ma, κινούμενο με ταχύτητα υα=3 m/s κατά
Διαβάστε περισσότεραΚΑΤΕΡΓΑΣΙΕΣ ΑΠΟΒΟΛΗΣ ΥΛΙΚΟΥ
1. Τεχνολογικά χαρακτηριστικά ΚΑΤΕΡΓΑΣΙΕΣ ΑΠΟΒΟΛΗΣ ΥΛΙΚΟΥ Βασικοί συντελεστές της κοπής (Σχ. 1) Κατεργαζόμενο τεμάχιο (ΤΕ) Κοπτικό εργαλείο (ΚΕ) Απόβλιττο (το αφαιρούμενο υλικό) Το ΚΕ κινείται σε σχέση
Διαβάστε περισσότεραΤΟ ΜΑΥΡΟ ΚΟΥΤΙ. 1. Το περιεχόμενο του μαύρου κουτιού. 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση. (απλά ηλεκτρικά στοιχεία)
ΤΟ ΜΑΥΡΟ ΚΟΥΤΙ Είσοδος ΜΑΥΡΟ ΚΟΥΤΙ Έξοδος 1. Το περιεχόμενο του μαύρου κουτιού (απλά ηλεκτρικά στοιχεία) 2. Είσοδος: σήματα (κυματομορφές) διέγερσης 3. Έξοδος: απόκριση 2019Κ1-1 ΚΥΜΑΤΟΜΟΡΦΕΣ 2019Κ1-2 ΤΙ
Διαβάστε περισσότεραΠεριβαλλοντική Γεωτεχνική Θεματική Ενότητα 4 Υπόγεια Ροή
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 4 Υπόγεια Ροή Λυμένες ασκήσεις Χρόνος παραμονής ρύπου σε περατό διάφραγμα Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες Χρήσης Το
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Ι Φυσικής Γ Λυκείου
Επαναληπτικό Διαγώνισμα Ι Φυσικής Γ Λυκείου Διάρκεια: 3 ώρες Θέμα Α 1) Ένα στερεό σώμα περιστρέφεται γύρω από ακλόνητο άξονα. Αν διπλασιαστεί η στροφορμή του, χωρίς να αλλάξει ο άξονας περιστροφής γύρω
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 111 - Διαλ. 38 Εκκρεµή - Απλό εκκρεµές θ T mg r F τ = r F = mgsinθ τ = I M d θ α, Ι = M dt = Mgsinθ d θ dt = g sinθ θ = g sinθ Διαφορική εξίσωση Αυτή η εξίσωση είναι δύσκολο να
Διαβάστε περισσότεραΕργαστήριο Ηλεκτροτεχνικών Εφαρμογών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εργαστήριο Ηλεκτροτεχνικών Εφαρμογών Ενότητα: Παράρτημα Γεώργιος Χ. Ιωαννίδης Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΑρµονικοί ταλαντωτές
Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ. 31 Εκκρεµή - Απλό εκκρεµές θ l T mg r F Αυτή η εξίσωση είναι δύσκολο να λυθεί. Δεν µοιάζει µε τη γνωστή εξίσωση Για µικρές γωνίες θ µπορούµε όµως να γράψουµε Εποµένως
Διαβάστε περισσότεραΦΥΣΙΚΗ. Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.
ΦΥΣΙΚΗ Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 1ο σετ - Μέρος Β ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 1 Ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.1: ΠΕΡΙΟΔΙΚΟ ΦΑΙΝΟΜΕΝΟ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΚΙΝΗΜΑΤΙΚΗ ΚΑΙ ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) 1ο σετ - Μέρος Β Ερώτηση 1. ΘΕΜΑ Β Σώμα εκτελεί Α.Α.Τ. με εξίσωση απομάκρυνσης
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ Τμήμα Μηχανολόγων Μηχανικών ΤΕ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Ι ΚΑΘΗΓΗΤΗΣ κ. ΜΟΣΧΙΔΗΣ ΣΕΡΡΕΣ, ΣΕΠΤΕΜΒΡΙΟΣ 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΑνάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 11: Η ημιτονοειδής διέγερση Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177
Διαβάστε περισσότεραβ. Το πλάτος της σύνθετης ταλάντωσης είναι : Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν φ) (φ = π rad) Α = (Α 1 ² + Α 2 ² + 2 Α 1 Α 2 συν π) Α = [Α 1 ² + Α 2
1) Ένα κινητό εκτελεί συγχρόνως δύο απλές αρμονικές ταλαντώσεις που γίνονται στην ίδια διεύθυνση και γύρω από την θέση ισορροπίας με εξισώσεις : x 1 = 3 ημ [(2 π) t] και x 2 = 4 ημ [(2 π) t + φ], (S.I.).
Διαβάστε περισσότεραΓκύζη 14-Αθήνα Τηλ :
Γκύζη 14-Αθήνα Τηλ : 10.64.5.777 ΘΕΜΑ Α ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΡΙΤΗ 10 ΙΟΥΝΙΟΥ 014 ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ)
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKΤΩΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7
ΑΡΧΗ ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKΤΩΒΡΙΟΣ 205 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Ο : Στις παρακάτω ερωτήσεις έως 4 να γράψετε στο τετράδιό σας τον αριθμό
Διαβάστε περισσότεραΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα
Διαβάστε περισσότεραΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης
ΦΥΣ. 211 ΕΡΓΑΣΙΑ # 8 Επιστροφή την Τετάρτη 30/3/2016 στο τέλος της διάλεξης 1. Μια µάζα m είναι εξαρτηµένη από το άκρο ενός ελατηρίου µε φυσική συχνότητα ω. Η µάζα αφήνεται να κινηθεί από την κατάσταση
Διαβάστε περισσότεραΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης
Διαβάστε περισσότεραΑπόκριση σε Αρμονική Διέγερση
Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται
Διαβάστε περισσότεραΑ = 0,6 m A = 0,3 m ω - ω t = 4π t ω ω = 8π rad/s () και ω + ω t = 500π t ω + ω = 000π rad/s () () + () ω = 008π ω = 504π rad/s και ω = 000π 504π = 49
ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ Σ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ Θέµα ο. δ. γ 3. α 4. γ 5. β ΚΚυυρρι ιιαακκήή 33 ΙΙααννοουυααρρί ίίοουυ 0033 Θέµα ο. Α) Σωστή απάντηση: (β) Αφού ο τροχός κυλίεται
Διαβάστε περισσότεραΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο
Διαβάστε περισσότεραΣυστήματα Αυτόματου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Απόκριση Συχνότητας Αναλογικών Σ.Α.Ε Διαγράμματα BODE Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες
Διαβάστε περισσότεραΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ
ΗΛΕΚΤΡΟΤΕΧΝΙΑ-ΗΛΕΚΤΡΟΝΙΚΗ ΕΡΓΑΣΤΗΡΙΟ Ενότητα 9: ΔΙΟΡΘΩΣΗ ΣΥΝΤΕΛΕΣΤΗ ΙΣΧΥΟΣ Αριστείδης Νικ. Παυλίδης Τμήμα Μηχανολόγων Μηχανικών και Βιομηχανικού Σχεδιασμού ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΠυθαγόρειο θεώρημα στο τρίγωνο ΣΠ 1 Π 2 : r 1 ² = Π 1 Π 2 ² + r 2 ²
1) Υποθέτουμε ότι δύο μικρά ηχεία τα οποία τροφοδοτούνται από τον ίδιο ενισχυτή είναι τοποθετημένα όπως φαίνεται στην εικόνα. Τα ηχεία εκπέμπουν ηχητικά κύματα ίδιας φάσης των οποίων η ταχύτητα είναι υ
Διαβάστε περισσότεραΕ Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.
Μ Ν Σ Υ Κ Σ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Σ. 1. Να γράψετε τους τύπους του εμβαδού των : (α) τετραγώνου (β) ορθογωνίου παραλληλογράμμου (γ) παραλληλογράμμου (δ) τριγώνου (ε) ορθογωνίου τριγώνου (στ) τραπεζίου.
Διαβάστε περισσότεραΦΥΣΙΚΗ Ο.Π. ΘΕΜΑ Α Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Γ ΓΕΛ / 04 / 09 ΦΥΣΙΚΗ Ο.Π ΘΕΜΑ Α Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Α. Σώμα εκτελεί απλή αρμονική ταλάντωση
Διαβάστε περισσότεραΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ)
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ(ΘΕΡΙΝΑ) 5/01/2019 ΟΙΚΟΝΟΜΟΥ ΓΙΩΡΓΟΣ ΚΑΡΑΒΟΚΥΡΟΣ ΧΡΗΣΤΟΣ- ΤΖΑΓΚΑΡΑΚΗΣ ΓΙΑΝΝΗΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα Ι
Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 7: Διαμόρφωση Γωνίας (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση γωνίας Ορισμοί Η έννοια της Στιγμιαίας Συχνότητας Διαμόρφωση Φάσης (Phase
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α
Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου Θέμα Α 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση περιόδου Τ και τη χρονική στιγμή t=0 βρίσκεται στην ακραία αρνητική του απομάκρυνση. Μετά από χρόνο t 1 =
Διαβάστε περισσότεραΣχεδίαση με Ηλεκτρονικούς Υπολογιστές
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Σχεδίαση με Ηλεκτρονικούς Υπολογιστές Ενότητα # 2: Μετασχηματισμοί συντεταγμένων στις 2 διαστάσεις Καθηγητής Ιωάννης Γ. Παρασχάκης Τμήμα
Διαβάστε περισσότερα