Εντολές κίνησης σε συστήματα CNC
|
|
- Αφροδίσια Ζωγράφος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Εντολές κίνησης σε συστήματα CNC Τραπεζοειδές προφίλ ταχύτητας Τραπεζοειδές προφίλ επιτάχυνσης Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC
2 Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών Ακαδημαϊκών Μαθημάτων από την Μονάδα Υλοποίησης του ΕΜΠ. Για υλικό που υπόκειται σε άδεια χρήσης άλλου τύπου, αυτή πρέπει να αναφέρεται ρητώς. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
3 Βασικές έννοιες Ι Στο G-code δίνεται η πρόωση f διανυσματικά. Δεδομένα-γνωστά επιτάχυνση Α επιβράδυνση D παράγωγος της επιτάχυνσης J Οι μονάδες μετατρέπονται σε παλμούς counts Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 2
4 Βασικές έννοιες ΙΙ Η τροχιά διακριτοποιείται σε N διαστήματα σε κάθε άξονα, Το κάθε διάστημα αντιστοιχεί σε ένα χρονικό διάστημα παρεμβολής (κίνησης) T i. Ο ελάχιστος χρόνος παρεμβολής T min είναι καθορισμένος από το σύστημα ελέγχου ακέραιο πολλαπλάσιο του χρόνου ολοκλήρωσης του βρόχου ελέγχου θέσης του άξονα. Βήμα παρεμβολής: Δu = f T min Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 3
5 Βασικές έννοιες ΙΙΙ Κατά την κατεργασία μπορεί να αλλάξει το f παράκαμψη από την κονσόλα χειρισμού της εργαλειομηχανής επιταχυνόμενη ή επιβραδυνόμενη κίνησης στην αρχή ή στο τέλος ενός τμήματος τροχιάς, Τότε Δu παραμένει σταθ., αλλά αλλάζει το T i. T i = Δu f Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 4
6 Βασικές έννοιες ΙV Με τον καθορισμό μεταβλητών διαστημάτων παρεμβολής υπάρχει η δυνατότητα συγχρονισμού περισσότερων αξόνων με βάση υπολογισμούς σε μία διάσταση ένα άξονα. Αν L είναι η συνολική μετατόπιση, εκτελείται παρεμβολή N φορές σε χρονικά διαστήματα T i, όπου Ν: Ν = L Δu Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 5
7 Βασικές έννοιες V N στρογγυλοποιείται στον επόμενο μεγαλύτερο ζυγό ακέραιο για λόγους υπολογιστικής αποτελεσματικότητας η πρόωση f μειώνεται αντίστοιχα. N διακρίνεται σε στάδια ανάλογα με το προφίλ της ταχύτητας τραπεζοειδές παραβολικό κατάλληλο για high-speed Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 6
8 Τραπεζοειδές προφίλ ταχύτητας Ι Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 7
9 TΠT-Ι - Αριθμός διαστημάτων Ν 1 στο στάδιο της επιτάχυνσης Ν 2 στο στάδιο της επιβράδυνσης Ν 3 στο στάδιο της σταθερής ταχύτητας f N = N 1 + N 2 + N 3 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 8
10 ΤΠΤ-Ι - στάδιο επιτάχυνσης διαδρομή l 1 l 1 = Για Α = σταθερό : 0 t 1 At dt = A t Άρα: t 1 = f A N 1 = l 1 Δu = f 2 2 A Δu Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 9
11 ΤΠΤ-Ι - Στάδιο επιβράδυνσης N 3 = l 3 Δu = f 2 2 D Δu Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 10
12 ΤΠΤ-Ι - Παραλλαγή προφίλ Όταν δεν πρέπει να μηδενιστεί η ταχύτητα στο τέλος ενός μπλοκ όταν αυξομειώνεται στη διάρκεια του μπλοκ/κίνησης με βάση προσαρμοστικό έλεγχο Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 11
13 Παραλλαγή τραπεζοειδούς προφίλ Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 12
14 ΤΠΤ-ΙΙ Στάδιο επιτάχυνσης l 1 = t 1 f 0 + A t t 0 dt = t 0 = 0 T α f 0 + A T dt = f 0 T α + A T α 2 Τ α = t 1 t 0 = f f 0 A l 1 = f f A N 1 = l 1 Δu = f2 f 0 2 A Δu 2 2 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 13
15 ΤΠΤ-ΙΙ Στάδιο επιβράδυνσης l 3 = f2 f D N 3 = f2 f D Δu Αν η επιθυμητή f δεν επιτυγχάνεται λόγω μικρής διαδρομής δηλ. Ν 2 < 0 τότε : Ν 1 = Ν 3 = Ν 2 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 14
16 Τi στην επιτάχυνση-επιβράδυνση Ι Ανάγκη υπολογισμού λόγω μεταβολής της f Δu = σταθ., μεταξύ περιόδων κ-1 και κ : t Δu = k tk 1 A t dt = A t 2 k 2 2 t k 1 = A 2 t k + t k+1 t k t k 1 T i (k) = t k t k 1 t k = f(k) A t k 1 = f(k 1) A Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 15
17 Τi στην επιτάχυνση-επιβράδυνση ΙΙ δηλαδή: Δu = A 2 f (k) + f (k 1) T A i(k) από όπου: 2 Δu T i (k) = f(k) + f(k 1) Για μικρά A, D απλοποιείται σε T i (k) = Δu f(k) υπολογιστικά ελαφρύτερη παράγωγος επιτάχυνσης 0 για μεγάλες μεταβολές f Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 16
18 ΤΠΤ ψευδοκώδικας Ι for k = 1, N 1 f(k) = T i (k) = f k A Δu 2 Δu f(k) + f(k 1) next k Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 17
19 ΤΠΤ ψευδοκώδικας ΙΙ for k = 1, N 3 f(k) = f k D Δu T i (k) = 2 Δu f(k) + f(k 1) next k Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 18
20 ΤΠΤ ψευδοκώδικας ΙΙΙ for k = 1, N 2 T i (k) = Δu f next k Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 19
21 Γενική ισχύς για κάθε άξονα Δu = Δx i + Δy j Δu T i = Δx T i i + Δy T i j f = f x i + f y j Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 20
22 Ανάγκη ομαλής μεταβολής της επιτάχυνσης Α = σταθ., J = da dt = 0 οδηγεί σε ταλαντώσεις Στη δυναμική ροπή/δύναμη εμφανίζονται υψίσυχνες συνιστώσες που διεγείρουν τη δομή του συστήματος πρόωσης. Τα ομαλότερα προφίλ f και Α εξασφαλίζονται με σταθερή παράγωγο επιτάχυνσης (Jerk) και περιορισμό μεγέθους Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 21
23 Προφίλ με τραπεζοειδή επιτάχυνση-ι Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 22
24 Προφίλ με τραπεζοειδή επιτάχυνση-ιι Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 23
25 ΤΠΕ-Ι Δίνονται θέσεις αρχής και τέλους l s, l e ταχύτητες πρόωσης f s, f e, μέγιστη επιτάχυνση Α και επιβράδυνση D περιορισμός στην παράγωγο της επιτάχυνσης J. Τα μέγιστα των Α, D προκύπτουν από τη μέγιστη ροπή και δύναμη του συστήματος μετάδοσης κίνησης. Ο χρόνος επιτάχυνσης καθορίζεται από το σερβοενισχυτή. Ο περιορισμός της τιμής του J καθορίζεται από τον λόγο της μέγιστης επιτάχυνσης προς το χρόνο επιτάχυνσης. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 24
26 Εκφράσεις κινηματικών μεγεθών a t = a t i + f t = f t i + t i t t J τ dτ a τ dτ l t = l t i + t i t f τ dτ 7 φάσεις: [0, t 1 ) [t 1, t 2 ) [t 2, t 3 ) [t 3, t 4 ) [t 4, t 5 ) [t 5, t 6 ) [t 6, t 7 ) t i Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 25
27 Παράδειγμα φάσης t4 t < t5 α τ = J 5 τ 5 f τ = f J 5 τ 5 2 με f 4 = f l τ = l 4 + l 4 τ J 5 τ 5 3 με l 4 = l 3 + f 3 T 4 τ κ = t t κ 1 σχετικός χρόνος Τ κ περίοδος της φάσης κ. l κ συνολική μετατόπιση στο τέλος της φάσης κ L κ = l κ l κ 1 βηματική μετατόπιση στη φάση κ l 0 = l s Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 26
28 Ti για i=1,3,5,7 Από τα τραπεζοειδή προφίλ της επιτάχυνσης και επιβράδυνσης προκύπτει: Α = J 1 T 1 = J 3 T 3 D = J 5 T 5 = J 7 T 7 υπολογίζονται τα T i για i=1,3,5,7, ίσως χρειαστούν διόρθωση μετά το πρώτο βήμα αρχικοποίησης. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 27
29 Τ 2 Η επιθυμητή πρόωση επιτυγχάνεται μετά τη φάση 3: f = f 3 = f 2 + Α Τ J 2 3 Τ 3 και επίσης ισχύει: f 2 = f 1 + A T 2 f 1 = f s J 2 1 Τ 1 άρα : T 2 = 1 A f f s 1 2 J 1 T 2 1 A T J 2 3 T 3 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 28
30 Τ6 παρόμοια με το Τ2 η επιθυμητή τελική πρόωση επιτυγχάνεται στο τέλος της φάσης 7: Συνεπώς : T 6 f 7 = f e = f 6 D T J 7 T 7 2 = 1 D f f e 1 2 J 5 T 5 2 D T J 7 T 7 2 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 29
31 Συνολική διαδρομή L = l e l s = 7 k=1 L k Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 30
32 Έλεγχος οριακών περιπτώσεων Ι Αν 2 < Ν 4 τότε Ν = 4 εξασφάλιση ύπαρξης των φάσεων 1,2,5,7. Αν Ν 2 τότε Ν = 2 εξασφάλιση επιτάχυνσης και επιβράδυνσης. Απαραίτητα για πολύ μικρές διαδρομές σε high-speed μηχανές μεγάλη ακρίβεια θέσης των αξόνων Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 31
33 Έλεγχος οριακών περιπτώσεων ΙΙ Αν υπάρχει στάδιο επιτάχυνσης, η f πρέπει να επιτευχθεί στις 3 πρώτες φάσεις υποθέτοντας J 1 = J 3, θα είναι T 1 = T 3 = A J 1 T 2 = f f s A A J 1 > 0 αλλιώς : Τ 2 = 0. A = J 1 f f s Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 32
34 Έλεγχος οριακών περιπτώσεων ΙΙΙ Παρόμοια για επιβράδυνση: T 5 = T 7 = D J 5 T 6 = f f e D D J 5 0, αλλιώς Τ 6 = 0 D = J 5 f f e Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 33
35 Έλεγχος οριακών περιπτώσεων ΙV Αν η διαδρομή είναι αρκετά μεγάλη, ώστε να περιλαμβάνει το στάδιο σταθερής πρόωσης, T L = l e l s = k=1 l k l k 1 αντικαθιστώντας τις εκφράσεις για τα l i L = 1 2 A D f2 + A + D + T 2 J 1 2 J 4 f 5 + A f s + D f e f s 2 J 1 2 J 5 2 A f e 2 D 2 2 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 34
36 Έλεγχος οριακών περιπτώσεων V T 4 = 1 f L 1 2 A D f2 + A + D f 2 J 1 2 J 5 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 35
37 Υπολογισμός βημάτων παρεμβολής N 1 = round L 1 Δu N 3 = round L 3 Δu N 5 = round L 5 Δu N 7 = round L 7 Δu Αν οι παραπάνω ακέραιοι μηδενίζονται, τότε N 1 = 1 N 3 = 1 N 5 = 1 N 7 = 1 Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 36
38 για την επιτάχυνση: N ac = round L 1 + L 2 + L 3 Δu για την επιβράδυνση: συνεπώς: N dec = round L 5 + L 6 + L 7 Δu N 2 = N ac N 1 + N 3 N 6 = N dec N 5 + N 7 για τη φάση σταθερής πρόωσης: N 4 = Ν N ac + N dec Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 37
39 τα L k χρειάζονται επαναπροσδιορισμό L k = N k Δu άρα με δεδομένες πλέον τις διαδρομές, πρέπει να διορθωθούν τα A, D, T i και, ίσως J. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 38
40 φάσεις 1,2,3 Αν Τ 2 > 0, χρησιμοποιούνται οι εξισώσεις που εκφράζουν l 1, l 2, l 3 με αντικατάσταση του Τ 2 από T 2 = 1 A f f s 1 2 J 1 T 1 2 A T J 3 T 3 2 προκύπτει σύστημα τριών εξισώσεων με αγνώστους Τ 1, Τ 3 και Α. Αν Τ 2 = 0, χρησιμοποιείται αντί της προηγούμενης εξίσωσης η σχέση: f = f 3 = f 2 + Α Τ J 3 Τ 3 2 και οι αντίστοιχες που εκφράζουν τις f 2 και f 1 ώστε πάλι προκύπτει σύστημα τριών εξισώσεων με αγνώστους Τ 1, Τ 3 και Α Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 39
41 Φάσεις 5,6,7 και 4 Με το ίδιο τρόπο αντιμετωπίζεται και το στάδιο της επιβράδυνσης με τις φάσεις 5,6,7 Η διάρκεια Τ4 βρίσκεται από T 4 = 1 f L 1 2 A D f2 + A 2 J 1 + D 2 J 5 f Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 40
42 J Έχοντας πλέον τις Τ 1, Τ 2,, Τ 7, A, D βρίσκονται εύκολα τα J από τα τραπεζοειδή προφίλ επιτάχυνσης J 1, J 3, J 5, J 7, π.χ. J 1 = Α/T 1, και στη συνέχεια οι νέες f 1, f 2,, f 7 στο τέλος κάθε φάσης από τις αντίστοιχες εξισώσεις. Συνολικά: N i T i f i L i και πιθανά νέες τιμές για τα A,D,J διότι οι αρχικοί υπολογισμοί αντιστοιχούσαν στις μέγιστες τιμές των A,D,J. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 41
43 Σύγκριση κινηματικών προφίλ -Ι Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 42
44 Σύγκριση κινηματικών προφίλ -ΙΙ Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 43
45 Σύγκριση κινηματικών προφίλ -ΙΙΙ Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 44
46 Σύγκριση κινηματικών προφίλ με αναδειγματοληψία Ι Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 45
47 Σύγκριση κινηματικών προφίλ με αναδειγματοληψία ΙΙ Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εντολές κίνησης σε συστήματα CNC 46
48 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Εντολές κίνησης σε συστήματα CNC
Εντολές κίνησης σε συστήματα CNC Τραπεζοειδές προφίλ ταχύτητας Τραπεζοειδές προφίλ επιτάχυνσης Βασικές έννοιες Ι Στο G code δίνεται η πρόωση f διανυσματικά. Δεδομένα γνωστά επιτάχυνση Α επιβράδυνση D παράγωγος
Παρεμβολή πραγματικού χρόνου σε συστήματα CNC
Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Γραμμική Κυκλική Spline Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Παρεμβολή πραγματικού χρόνου σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative
Σερβοκινητήρες πρόωσης σε συστήματα CNC
Σερβοκινητήρες πρόωσης σε συστήματα CNC τύπος DC μόνιμου μαγνήτη επίδραση ανάδρασης ταχογεννήτρια Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Σερβοκινητήρες πρόωσης σε συστήματα CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται
Πρέσσες κοχλία. Κινηματική Δυνάμεις Έργο. Πρέσσες κοχλία. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες κοχλία Κινηματική Δυνάμεις Έργο Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες κοχλία Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών
Αξιολόγηση εργαλειομηχανών CNC
Αξιολόγηση εργαλειομηχανών CNC Σύγκριση με Συμβατικές μηχανές Αυτόματες μηχανές Θεωρία ΕΒQ Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Αξιολόγηση Εργαλειομηχανών CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης
Πρέσσες. Ορισμοί Τυπολογία. Πρέσσες. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες Ορισμοί Τυπολογία Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών Ακαδημαϊκών Μαθημάτων
Εισαγωγή στις σύγχρονες Εργαλειομηχανές CNC
Εισαγωγή στις σύγχρονες Εργαλειομηχανές CNC Ιστορία Κύρια μέρη Εργαλειομηχανών Αρχές CNC Γ.Βοσνιάκος- ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εισαγωγή στις εργαλειομηχανές CNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης
Συμβατικός προγραμματισμός κέντρων κατεργασιών CNC
Συμβατικός προγραμματισμός κέντρων κατεργασιών CNC Αρχές προγραμματισμού Τυποποιημένες εντολές Μη τυποποιημένες εντολές Φασεολόγια Εργαλεία Γ.Βοσνιάκος-2014 Προγραμματισμός κέντρων κατεργασιών Άδεια Χρήσης
High-Speed Milling. Παρουσίαση σχεδιασμού εργαλειομηχανής - HSM. High-Speed Milling. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
High-Speed Milling Παρουσίαση σχεδιασμού εργαλειομηχανής - HSM Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ High-Speed Milling Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο
Δυναμική εργαλειομηχανών
Δυναμική εργαλειομηχανών Θεωρία μηχανικών ταλαντώσεων Εξαναγκασμένες ταλαντώσεις Παραδείγματα στο φρεζάρισμα Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Δυναμική Εργαλειομηχανών Άδεια Χρήσης Το παρόν υλικό υπόκειται σε
Λειτουργίες CNC-DNC. Επισκόπηση λειτουργιών CNC Επισκόπηση λειτουργιών DNC Επικοινωνίες. Λειτουργίες CNC-DNC. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Λειτουργίες CNC-DNC Επισκόπηση λειτουργιών CNC Επισκόπηση λειτουργιών DNC Επικοινωνίες Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Λειτουργίες CNC-DNC Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons
Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών
Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών Δυνάμεις κοπής στο φρεζάρισμα Απόκριση εκτός συντονισμού Απόκριση σε συντονισμό Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Εξαναγκασμένες ταλαντώσεις εργαλειομηχανών Άδεια Χρήσης
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com
1 1.4 ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗ ΚΙΝΗΣΗ Μια ευθύγραμμη κίνηση στην οποία το διάνυσμα της ταχύτητας δεν μένει σταθερό, δηλαδή έχουμε μεταβολή της ταχύτητας, την ονομάζουμε ευθύγραμμη μεταβαλλόμενη κίνηση.
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Ακρότατα Συνάρτησης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Πρέσσες εκκέντρου. Κινηματική Δυνάμεις Έργο Εφαρμογές. Πρέσσες εκκέντρου. Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ
Πρέσσες εκκέντρου Κινηματική Δυνάμεις Έργο Εφαρμογές Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Πρέσσες εκκέντρου Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο
Επισκόπηση εργαλειομηχανών κοπής. Τόρνος Φρέζα Δράπανο Λειαντικό Συγκρότηση Λειτουργία Εργαλεία
Επισκόπηση εργαλειομηχανών κοπής Τόρνος Φρέζα Δράπανο Λειαντικό Συγκρότηση Λειτουργία Εργαλεία Δεκ-09 Γ.Βοσνιάκος Εργαλειομηχανές κοπής - ΕΜΤ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative
Υδραυλικά & Πνευματικά ΣΑΕ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Ενότητα # 6: Υδραυλικά Κυκλώματα Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Βασικές έννοιες Ανοχές κατά ISO Συναρμογές κατά ISO. Ανοχές-συναρμογές - ΕΜΤ
Ανοχές - συναρμογές Βασικές έννοιες Ανοχές κατά ISO Συναρμογές κατά ISO Δεκ-09 Γ.Βοσνιάκος Ανοχές-συναρμογές - ΕΜΤ Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #8: Χώρος Κατάστασης: Μεταβλητές, Εξισώσεις, Κανονικές Μορφές Δημήτριος Δημογιαννόπουλος
Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Συμβατικός προγραμματισμός CNC. κέντρα τόρνευσης
Συμβατικός προγραμματισμός CNC κέντρα τόρνευσης Κέντρα τόρνευσης Δομή προγράμματος Αρχές προγραμματισμού Τυποποιημένες εντολές Παραδείγματα Γ.Βοσνιάκος-2013 Συμβατικός προγραμματισμός CNC Άδεια Χρήσης
ΦΥΣΙΚΗ. Ενότητα 2: Ταχύτητα - Επιτάχυνση
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗ Ενότητα 2: Ταχύτητα - Επιτάχυνση Παπαζάχος Κωνσταντίνος Καθηγητής Γεωφυσικής, Τομέας Γεωφυσικής Τσόκας Γρηγόρης Καθηγητής Εφαρμοσμένης
Μαθηματικά. Ενότητα 7: Μη Πεπερασμένα Όρια. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 7: Μη Πεπερασμένα Όρια Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Μετρολογία εργαλειομηχανών
Μετρολογία εργαλειομηχανών Συμβολομετρία Σφάλματα θέσης Ευθύτητα επιπεδότητα Γωνιακά σφάλματα Κινηματικά σφάλματα Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ Μετρολογία εργαλειομηχανών Άδεια Χρήσης Το παρόν υλικό υπόκειται
Κεφάλαιο 1: Κινηματική
Κεφάλαιο 1: Κινηματική Θέμα Β: 3763 Β 3768 Β1 3770 Β1 377 Β 4980 Β1 498 Β1 4986 Β1 4989 Β 4995 Β1 5044 Β1 5046 Β1 5050 Β1 505 Β1 5090 Β1 515 Β1 518 Β1 513 Β 563 Β1 535 Β1 535 Β 539 Β1 5515 Β1 6154 Β1 8996
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Συστήματα Αυτομάτου Ελέγχου II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου II Ενότητα #10: Λύση Εξισώσεων Εσωτερικής Κατάστασης με Χρήση Μεθόδου Ιδιοτιμών Δημήτριος Δημογιαννόπουλος
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 8: Άμεσος Διανυσματικός Έλεγχος Ασύγχρονων Μηχανών με προσανατολισμό στην μαγνητική ροή του στάτη Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική
Αστικά υδραυλικά έργα
Εθνικό Μετσόβιο Πολυτεχνείο Τομέας Υδατικών Πόρων και Περιβάλλοντος Αστικά υδραυλικά έργα Υδραυλική ανάλυση δικτύων διανομής Δημήτρης Κουτσογιάννης, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδεια Χρήσης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ. Διδάσκων: Κολιόπουλος Παναγιώτης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 12&13: ΣΕΙΣΜΙΚΗ ΦΑΣΜΑΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΣΥΝΔΥΑΣΜΟ ΙΔΙΟΜΟΡΦΩΝ Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Έλεγχος Κίνησης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 7: Άλγεβρα βαθμίδων (μπλόκ) Ολική συνάρτηση μεταφοράς
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Συστήματα Αυτομάτου Ελέγχου 1 Ενότητα # 7: Άλγεβρα βαθμίδων (μπλόκ) Ολική συνάρτηση μεταφοράς Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής
Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προγραμματισμός Υπολογιστών & Υπολογιστική Φυσική Ενότητα 4: Δομές Ελέγχου Νικόλαος Στεργιούλας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Τεχνολογία Πολυμέσων. Ενότητα # 15: Συγχρονισμός πολυμέσων Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής
Τεχνολογία Πολυμέσων Ενότητα # 15: Συγχρονισμός πολυμέσων Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου
Χρησιμοποιούμε έναν άξονα (π.χ. τον άξονα x x) για να παραστήσουμε τη θέση κάποιου σώματος του οποίου την κίνηση θέλουμε να μελετήσουμε.
ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ 1. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ Μια κίνηση που γίνεται σε ευθεία γραμμή ή με ευθύγραμμη τροχιά, λέμε ότι είναι ευθύγραμμη κίνηση. Τροχιά είναι το σύνολο των Διαδοχικών θέσεων από τις οποίες περνάει
Σύνδεση-ολοκλήρωση CAD-CAM
Σύνδεση-ολοκλήρωση CAD-CAM Mοντέλα Σύνδεση CAD-CAM μέσω CAPP Μορφολογικά χαρακτηριστικά (features) Γ.Βοσνιάκος-ΕΡΓΑΛΕΙΟΜΗΧΑΝΕΣ CAD-CAM Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι
ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ
1η εξεταστική περίοδος από 4/10/15 έως 08/11/15 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α Α Στις ερωτήσεις Α1-Α4 να επιλέξετε τη σωστή
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΠΕΡΣΕΦΟΝΗ ΠΟΛΥΧΡΟΝΙΔΟΥ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Γραφικά με υπολογιστές
Γραφικά με Υπολογιστές Ενότητα # 3: Εισαγωγή Φοίβος Μυλωνάς Τμήμα Πληροφορικής Φοίβος Μυλωνάς Γραφικά με υπολογιστές 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #11: Ελεγκτές PID & Συντονισμός Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το παρόν
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ
ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό
Θέμα Β. Λύση. Έχουμε, επομένως, εκφράσει την κινητική ενέργεια ως συνάρτηση του ύψους y.
Θέμα Β Α. Σωστή είναι η β Στην ελεύθερη πτώση ισχύει η αρχή διατήρησης της μηχανικής ενέργειας, καθώς στο σώμα ενεργεί μόνο η δύναμη του βάρους, η οποία είναι συντηρητική. Έχουμε, επομένως, εκφράσει την
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το
Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative
ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ. Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ ΚΙΝΗΜΑΤΙΚΗΣ
ΠΕΙΡΑΜΑΤΙΚΟ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ Φυσική Γενικής Παιδείας Α Λυκείου ΤΥΠΟΛΟΓΙΟ Σ (Το τυπολόγιο αυτό δεν αντικαθιστά το βιβλίο. Συγκεντρώνει απλώς τις ουσιώδεις σχέσεις του βιβλίου και σχολιάζει κάποια σημεία τους).
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
6 η ΕΝΟΤΗΤΑ Συμπύκνωση εδαφών
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΔΟΜΙΚΕΣ ΜΗΧΑΝΕΣ & ΚΑΤΑΣΚΕΥΑΣΤΙΚΕΣ ΜΕΘΟΔΟΙ 6 η ΕΝΟΤΗΤΑ Συμπύκνωση εδαφών Διδάσκων: Σ. Λαμπρόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 14: Γραμματικές Χωρίς Συμφραζόμενα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 5: Αναδρομικές σχέσεις - Υπολογισμός Αθροισμάτων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
5 η ΕΝΟΤΗΤΑ Εφαρμογές (Συνδυασμός φορτωτή και αυτοκινήτου)
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΔΟΜΙΚΕΣ ΜΗΧΑΝΕΣ & ΚΑΤΑΣΚΕΥΑΣΤΙΚΕΣ ΜΕΘΟΔΟΙ 5 η ΕΝΟΤΗΤΑ Εφαρμογές (Συνδυασμός φορτωτή και αυτοκινήτου) Διδάσκων: Σ. Λαμπρόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
1. Κίνηση Υλικού Σημείου
1. Κίνηση Υλικού Σημείου Εισαγωγή στην Φυσική της Γ λυκείου Τροχιά: Ονομάζεται η γραμμή που συνδέει τις διαδοχικές θέσεις του κινητού. Οι κινήσεις ανάλογα με το είδος της τροχιάς διακρίνονται σε: 1. Ευθύγραμμες
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 2: Έλεγχος Μηχανών Συνεχούς Ρεύματος με διέγερση σε σειρά Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών &
Εισαγωγή στους Ηλεκτρονικούς Υπολογιστές. 6 ο Μάθημα. Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ. url:
στους Ηλεκτρονικούς Υπολογιστές 6 ο Μάθημα Λεωνίδας Αλεξόπουλος Λέκτορας ΕΜΠ email: leo@mail.ntua.gr url: http://users.ntua.gr/leo Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 1: ΑΣΚΗΣΕΙΣ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το παρόν
Διδάσκων: Κολιόπουλος Παναγιώτης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 9Α: ΕΛΛΗΝΙΚΟΣ ΑΝΤΙΣΕΙΣΜΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ (ΕΑΚ, 2003) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Ανάλυση ισορροπίας και κινητικότητας σπονδυλικής στήλης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ανάλυση ισορροπίας και κινητικότητας σπονδυλικής στήλης Ενότητα 11: Ερευνητικά δεδομένα Εισηγητής: Πατίκας Δ. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Συστήματα Αυτομάτου Ελέγχου
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Συστήματα Αυτομάτου Ελέγχου Ενότητα #5: Σχεδιασμός ελεγκτών με τη μέθοδο του Τόπου Ριζών 2 Δ. Δημογιαννόπουλος, dimogian@teipir.gr Επ. Καθηγητής
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 5: Ισοδυναμία Πιστωτικών Τίτλων Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα 1: Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Υπόγεια Υδραυλική και Υδρολογία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Αναλυτική επίλυση του μαθηματικού ομοιώματος: Σύμμορφη Απεικόνιση Καθηγητής Κωνσταντίνος Λ. Κατσιφαράκης Αναπληρωτής Καθηγητής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Κβαντική Θεωρία ΙΙ. Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κβαντική Θεωρία ΙΙ Εκφυλισμένη Θεωρία Διαταραχών Διδάσκων: Καθ. Λέανδρος Περιβολαρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΦΥΣΙΚΗ. Α Λυκείου 14/ 04 / 2019 ΘΕΜΑ Α.
Α Λυκείου 4/ 4 / 9 ΦΥΣΙΚΗ ΘΕΜΑ Α. Α. γ, Α. β, Α3. γ, Α4. α Α5. α) Σ, β) Σ, γ) Λ, δ) Λ, ε) Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (β). Εφαρμόζοντας το ο νόμο του Νεύτωνα υπολογίζουμε την επιτάχυνση του συστήματος
Βιομηχανικοί Ελεγκτές
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #12: Παραδείγματα Αναλογικών Συστημάτων Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Προσομοιώσεις και οπτικοποιήσεις στη μαθησιακή διαδικασία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Προσομοιώσεις και οπτικοποιήσεις στη μαθησιακή διαδικασία Προτάσεις μαθησιακών δραστηριοτήτων Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες Χρήσης
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα 4 η : Χαρακτηριστικά Τυχαίων Μεταβλητών. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Α.Π.Θ.
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑ ΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 8: Μοντελοποίηση Χαρτογραφικών Δεδομένων Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Γενικά Μαθηματικά ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 η : Μερική Παράγωγος ΙΙ Λουκάς Βλάχος Καθηγητής Αστροφυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εισαγωγή Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Αυτόματος Έλεγχος. Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης. Παναγιώτης Σεφερλής. Εργαστήριο Δυναμικής Μηχανών Τμήμα Μηχανολόγων Μηχανικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4 η : Πρότυπα μεταβλητών κατάστασης Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Πληροφορική. Εργαστηριακή Ενότητα 8 η : Γραφήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Εργαστηριακή Ενότητα 8 η : Γραφήματα Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 9: Αρχή της Βελτιστοποίησης-Θεωρία Hamilton Jacobi Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 4 Υπόγεια Ροή
Περιβαλλοντική Γεωτεχνική Θεματική Ενότητα 4 Υπόγεια Ροή Λυμένες ασκήσεις Χρόνος παραμονής ρύπου σε περατό διάφραγμα Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Σχολή Πολιτικών Μηχανικών Άδειες Χρήσης Το
ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :
Νόμος Νόμοι Πρότυπο ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Πρότυπο ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης (Ε.Ο.Μ.Κ) Όταν η επιτάχυνση ενός
Ανάλυση βάδισης. Ενότητα 2: Χωροχρονικές παράμετροι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Χωροχρονικές παράμετροι Εισηγητής: Πατίκας Δ. Τμήμα Επιστήμης Φυσικής Αγωγής & Αθλητισμού, Σερρών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διδάσκων: Κολιόπουλος Παναγιώτης
ΔΥΝΑΜΙΚΗ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ Ενότητα 10: ΣΥΣΤΗΜΑΤΑ ΔΥΟ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ (-ΒΕ) Διδάσκων: Κολιόπουλος Παναγιώτης ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ
ΟΙΚΟΝΟΜΙΚΗ ΤΗΣ ΕΠΙΚΟΙΝΩΝΙΑΣ v.1.0 Τα βασικότερα εργαλεία της Οικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο "Ανοικτά Ακαδημαϊκά
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 17: Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Μικροοικονομία. Ενότητα 5: Θεωρία της Παραγωγής. Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής
Μικροοικονομία Ενότητα 5: Θεωρία της Παραγωγής Δριτσάκη Χάιδω Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 9: Άμεσος Διανυσματικός Έλεγχος Ασύγχρονων Μηχανών με προσανατολισμό στην μαγνητική ροή του δρομέα Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκμετάλλευση και Προστασία των Υπόγειων Υδατικών Πόρων Ενότητα 10: Οριοθέτηση ζωνών προστασίας γεωτρήσεων Μέθοδος ιχνηλάτισης σωματιδίων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θερμοδυναμική
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θερμοδυναμική Ενότητα 5 : Α Θερμοδυναμικός Νόμος Δρ Γεώργιος Αλέξης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Δυναμική Ηλεκτρικών Μηχανών
Δυναμική Ηλεκτρικών Μηχανών Ενότητα : Εισαγωγή Βασικές Αρχές Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Εισαγωγή στις Τηλεπικοινωνίες
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στις Τηλεπικοινωνίες Ενότητα : Εισαγωγή στη Διαμόρφωση Συχνότητας (FΜ) Όνομα Καθηγητή: Δρ. Ηρακλής Σίμος Τμήμα: Ηλεκτρονικών