ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ."

Transcript

1 Ακουστική AcP4 ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ. ΣΥΓΚΡΙΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΜΕ ΜΕΘΟ Ο ΠΕΠΕΡΑΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Γ. A. Αθανασούλης Κ. Α. Μπελιµπασάκης Σχολή Ναυπηγών Μηχ/γων Μηχ Σχολή Ναυπηγών Μηχ/γων Μηχ Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Πολυτεχνειούπολη Ζωγράφου Πολυτεχνειούπολη Ζωγράφου Αθήνα, 5773 Αθήνα, ΠΕΡΙΛΗΨΗ Θεωρούµε το πρόβληµα διάδοσης-σκέδασης ηχητικών κυµάτων σε θαλάσσιο διαστρωµατωµένο περιβάλλον που εκπέµπονται από αρµονική σηµειακή πηγή. Για την επίλυση του προβλήµατος εφαρµόζεται νέα µέθοδος συζευγµένων ιδιοµορφών, η οποία παράγεται από µεταβολική αρχή σε συνδυασµό µε κατάλληλη αναπαράσταση του πεδίου από σειρά τοπικών ιδιοµορφών, που έχει την ιδιότητα να ικανοποιεί µε ακρίβεια τις συνθήκες συναρµογής στις µη-οριζόντιες διεπιφάνειες και να συγκλίνει γρήγορα στην α- κριβή λύση. Παρουσιάζουµε αποτελέσµατα σε διάφορα παραδείγµατα υπολογισµών σε χαµηλές συχνότητες σε σύγκριση µε µέθοδο πεπερασµένων στοιχείων, από όπου διαφαίνεται η ακρίβεια και η αποτελεσµατικότητα της παρούσας µεθόδου. A COUPLED-MODE THEORY OR UDERWATER SOUD PROPAGATO A STRATED EVROMET. COMPARSO O RESULTS AD VALDATO VS. A TE ELEMET METHOD G. A. Athaassoulis Κ. Α. Belibassakis School of aval Arch. ad Marie Egg School of aval Arch. ad Marie Egg atioal Techical Uiversity of Athes atioal Techical Uiversity of Athes Zografos, Athes, 5773, Greece Zografos, Athes, 5773, Greece matha@cetral.tua.gr kbel@fluid.mech.tua.gr

2 Helleic stitute of Acoustics (HELA) Acoustics ABSTRACT We cosider uderwater acoustic wave propagatio ad scatterig i a axially symmetric cylidrical waveguide, cosistig of several fluid layers of variable thickess overlyig a impeetrable bottom. The problem is reformulated as a trasmissio problem by decomposig the domai ito three subdomais: the rageidepedet "ear" ad "far" parts, ad the rage-depedet (itermediate) part cotaiig the medium ad bottom irregularity. The pressure field i the rageidepedet subdomai, is expressed i terms of stadard ormal-mode series expasios. the itermediate subdomai a variatioal priciple is applied to the trasmissio problem, i cojuctio with a ehaced local-mode represetatio of the acoustic-pressure field, resultig i a cosistet coupled-mode system of equatios. This system cotais additioal equatios, associated with the additioal slopig-iterface modes, ad produces solutios cosistet with the iterface coditios ad the coservatio of eergy. umerical results are preseted i compariso with geeral EM solvers demostratig the efficiecy of the preset method.. troductio the preset work, a cosistet coupled-mode model, developed by the authors [], is used to solve the problem of uderwater acoustic wave propagatio ad scatterig i a multi-layered stratified acoustic eviromet, characterised by a peetrable bottom ad a umber of iterfaces of geeral shape, separatig layers with differet acoustic properties. The complete uderwater acoustic b.v.p. is reformulated as a trasmissio problem by decomposig the domai ito three subdomais: the rageidepedet "ear" ad "far" parts, ad the rage-depedet (itermediate) part cotaiig the bottom ad medium irregularity; see ig.. The pressure field i the two rageidepedet subdomais, is expressed i terms of stadard ormal-mode series represetatios. the itermediate subdomai, a variatioal priciple is applied to the trasmissio problem, i cojuctio with the ehaced local-mode represetatio of the acoustic pressure, resultig i a ew, cosistet, coupled-mode system of equatios. This system cotais oe additioal equatio, associated with each slopig-iterface mode, ad produces solutios cosistet with the slopig-iterface coditio ad the coservatio of eergy. umerical results are preseted for a two-layer sea eviromet, i the case of a steep upslope i shallow water, ad are compared with results obtaied by a geeral fiite elemet (EM) solver, Kampais ad Dougalis [], Dougalis et al [3], demostratig the applicability of the preset approach.. Differetial formulatio of the problem We cosider the rage-depedet, cylidrically symmetric marie eviromet show i ig.. or simplicity, we cosider two fluid layers, water of costat desity ρ ad sedimet of costat desity ρ > ρ, separated by the iterface J :z= h( r) ad overlyig a perfectly rigid horizotal boudary at z = H. We let c = c( r,z) be the speed of soud (discotiuous at the iterface) ad suppose that i the ear regio D ( r r ) ad i the far regio D ( r r ) the acoustic ad geometric parameters

3 Ελληνικό Ινστιτούτο Ακουστικής (ΕΛΙΝΑ) Ακουστική z r * D h h( r ) D h J D z = H r r r = r = igure. Domai decompositio ad otatio. The poit source is deoted by (*). < < ). The acoustic propagatio ad scatterig boudary-value problem i the domai < r, H z p = p r,z satisfyig are rage idepedet. (Thus, c ad h vary with r oly i D ( r r r ), is to determie a complex-valued fuctio ( ) δ ( r) p p + k ( r,z) p = δ ( z z ), p( r, ), ( r, H) π the iterface coditios r = =, (),(),(3) z + + ( ) = ( ) ( r, h(r) ) ( r, h(r ) ) p r, h(r) p r, h(r), ad the radiatio coditio, p p =, (4),(5) ρ ρ p( r,z ) ~ outgoig cylidrical waves, as r. (6) π f () we have itroduced the wave umber k = k(r,z) = ; i (5) c ormal derivative to the iterface z = h( r ). deotes the 3. Differetial formulatio of the problem The problem ()-(6) ca be reformulated as a trasmissio problem i the D with the aid of the followig geeral (ormal-mode) represe- bouded subdomai tatios of the acoustic field i D ad i ( ) p Z z Z z H k r 4ρ D, respectively, = ( ) ( ) ( ) ( ) ( ) = ( ) = ( ) ( ) + C Z z J k r, (7) = p = C Z z H k r, (8)

4 Helleic stitute of Acoustics (HELA) Acoustics ad by requirig the matchig of the field ad its ormal derivative at the commo vertical iterfaces r = r ad r r k ad { k } = =. formulas (7,8), the sets of umbers { } = { Z z } ad =, { Z ( )},.. z =,,.., ad the sets of fuctios of ( ),,.., are the eigevalues ad eigefuctios, respectively, of Sturm-Liouville problems, obtaied by sepa-,,.. ratio of variables i the subdomais D ad D. More details about the associated depth problem, ad its solutio i the case of two homogeeous layers: ρ z h ρ c r, z h c ρ H z h ρ c r, H < z < h = ( < < ) =, ( < < ) =, ( < < ) =, ( ) = c, ca be foud i [4]. The trasmissio problem admits a variatioal formulatio, expressed by the statioarity of a fuctioal of the form (see Ref. []), ( p,c { } { } ), C. (9) The variatioal priciple, δ =, ca the be used to obtai a alterative, semidiscrete (Katorovich) formulatio of the problem i terms of local modes. This family of local basis fuctios is obtaied by formulatig ad solvig local, vertical Sturm- Liouville problems i the iterval [ H, ]. The ehaced local-mode represetatio of the acoustic field p ( r,z ) i the variable-bathymetry/iterface domai D, developed i [], reads as follows where ( ) p r,z P r Z z;r P r Z z;r = ( ) ( ) ( ) ( ) ( ) = +, () Z z;r,, are obtaied as the eigefuctios of the followig local, vertical eigevalue problem (defied for each r < r < r ) : Z ( z;r) Z + ( k ( r,z) k (r)) Z( z;r ) =, H z, Z ( ;r ) =, ( H;r ) =, () z z i cojuctio with the matchig-iterface coditios + Z + Z Z( h( r ) ;r) = Z( h( r ) ;r), ( h( r ) ;r) = ( h( r ) ;r). () ρ z ρ z P r deote the amplitudes of the modes, ad the fuctios ( ) However, the local eigefuctios Z ( z;r ),, are icompatible with the slopig iterface coditio (5), wheever dh( r) dr. To remedy this icosistecy a additioal mode is itroduced i [], deoted by P ( r) Z ( z;r ) ad called the slopigiterface mode. The vertical structure of the slopig-iterface mode, Z ( z;r ), is a cotiuous fuctio satisfyig the followig coditios dz ( H ) Z ( r ) =, =, dz + Z + Z Z( h( r ) ;r) = Z( h( r ) ;r), ( h( r ) ;r) ( h( r ) ;r) =. ρ z ρ z the series expasio (), the first P r Z z;r < terms { ( ) ( )} =,,.. (3), corre- spodig to real horizotal eigevalues ( k > ), are the propagatig modes, ad the

5 Ελληνικό Ινστιτούτο Ακουστικής (ΕΛΙΝΑ) Ακουστική terms { P( r) Z( z;r )}, = +, +,.., correspodig to imagiary eigevalues ( k < ), are the evaescet modes. The slopig-iterface mode P ( r) Z ( z;r ) is ot eeded whe the iterface is flat. Each term i the expasio () satisfies the free surface coditio (), the boudary coditio (3) ad the iterface coditio (4), idividually. Thus, represetatio () reders all of them essetial coditios i relatio with the variatioal formulatio. Usig () i the variatioal priciple, we obtai the followig coupled-mode system of secod-order ordiary differetial equatios, with respect to the mode amplitudes (the Cosistet Coupled-Mode System): d P( r) dp( r) am ( r) + b m ( r) + cm ( r) P ( r ) =, m =,, 3,..., (4) = dr dr where all coefficiets are defied i terms of Z ( z;r ) i r < r < r. The system (4) cotais a additioal equatio, associated with the additioal slopig-iterface mode, ad produces solutios cosistet with the iterface coditios ad the coservatio of eergy. Eq. (4) is supplemeted by the followig ed coditios P r P r, P r = P r =, ( ) = ( ) = ( ) ( ) ( ) + ( ) = P ( r ) D P ( r ) P r A P r B, + = =, 3,..., (5) where the coefficiets A,B,D are defied i terms of the acoustic parameters at the edpoits ( r = r,r = r), ad ca be foud i Ref. []. 4. umerical results ad coclusios umerical results are preseted for the waveguide show i igs. ad 3, which models a smooth but steep upslope, i shallow water. The results cocer the calculated Trasmissio Loss (TL i db), as obtaied by the preset method (CCMM) ad by a geeral fiite elemet (EM) solver, based o a stadard Galerki/P discretizatio of the b.v.p., coupled with a exact, olocal absorbig boudary coditio at the exterior boudary of the waveguide, Kampais ad Dougalis [], Dougalis et al [3]. The source frequecy is 5Hz. the first case, preseted i ig., the pulsatig source is located at z = 5m (ear the free surface). The desity ad the soud speed of the seawater are take costat: ρ =, c = 5 m/s, ad the 3 gr/cm 3 desity ad soud speed of the sea bottom are: ρ =. 5gr/ cm, c = 7 m/s. this case, the umber of propagatig modes i D is =3. i ig.. the secod case, preseted i ig. 3, the source is located at z = 7m, i.e. very ear the bottom iterface, which i the ear regio lies i 75m depth. The desity ad soud speed of the seawater are also costat, with the same, as i the previous case, values. We ca observe from these figures that the agreemet betwee the two methods is excellet, i the whole domai, although the computatioal requiremets of the EM as compared to the preset method are oe order of magitude larger. O the other had, the EM, is iheretly more flexible to treat localized ihomogeeities. Thus, after further compariso ad validatio, both methods ca be used to complemet each other, i order to treat difficult situatios, such as acoustic scatterig problems from localized scatterers embedded i o-homogeeous waveguides.

6 Helleic stitute of Acoustics (HELA) Acoustics Refereces [] Athaassoulis G.A., Belibassakis K.A.,, A cosistet coupled-mode theory for uderwater soud propagatio i a geeral, stratified acoustic eviromet, i Proc. 6 th Europea Coferece o Uderwater Acoustics, ECUA, Gdask, Polad. [] Kampais.A., Dougalis V.A., 999, A fiite elemet code for the umerical solutio of the Helmholtz equatio i axially symmetric waveguides with iterfaces, J. Comp. Acoustics 7, 83-. [3] Dougalis V., Kampais., Mitsoudis D., A fiite elemet method for the approximatio of uderwater soud propagatio i geeral stratified eviromets, Proc. of Cof. Acoustics, HELA, Patras, Greece. [4] Boyles C.A., 984, Acoustic waveguides, Applicatios to Oceaic Sciece, Wiley, ew York. igure. (a) Compariso of EM ad CCEM i the case of a upslope eviromet. (b)trasmissio Loss (i db) at SD=RD=5m ad at RD=7m. igure 3. (a) Compariso of EM ad CCEM i the case of a upslope eviromet. (b)trasmissio Loss (i db) at RD=5m ad at SD=RD=7m.

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

arxiv: v1 [math.ca] 6 Oct 2017

arxiv: v1 [math.ca] 6 Oct 2017 SPECTRUM, TRACE AND OSCILLATION OF A STURM-LIOUVILLE TYPE RETARDED DIFFERENTIAL OPERATOR WITH INTERFACE CONDITIONS ERDOĞAN ŞEN arxiv:7.789v math.ca 6 Oct 7 Abstract. I this study, a formula for regularized

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE ECE 6382 Fall 2017 David R. Jackso Notes 21 Bessel Fuctio Examples Notes are from D. R. Wilto, Dept. of ECE Note: j is used i this set of otes istead of i. 1 Impedace of Wire A roud wire made of coductig

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1

Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1 4 93 Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια Π. Παπαδάκης,a, Γ. Πιπεράκης,b & Μ. Καλογεράκης,,c Ινστιτούτο Υπολογιστικών Μαθηματικών

Διαβάστε περισσότερα

arxiv: v1 [math.sp] 29 Jun 2016

arxiv: v1 [math.sp] 29 Jun 2016 INVERSE NODAL PROBLEMS FOR DIRAC-TYPE INTEGRO-DIFFERENTIAL OPERATORS arxiv:606.08985v [math.sp] 29 Ju 206 BAKI KESKIN AND A. SINAN OZKAN Abstract. The iverse odal problem for Dirac differetial operator

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Μελέτη της διάδοσης θορύβου σεισμού στο υποθαλάσσιο περιβάλλον

Μελέτη της διάδοσης θορύβου σεισμού στο υποθαλάσσιο περιβάλλον 2014 403 Μελέτη της διάδοσης θορύβου σεισμού στο υποθαλάσσιο περιβάλλον Μιχάλης Ταρουδάκης 1 & Γιάννης Μαστρόκαλος 2 1 Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών, Πανεπιστήμιο Κρήτης 2 Ίδρυμα Τεχνολογίας

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function

Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function HyergeometricPFQ Notatios Traditioal ame Geeralied hyergeometric fuctio Traditioal otatio F a 1,, a ; b 1,, b ; Mathematica StadardForm otatio HyergeometricPFQa 1,, a, b 1,, b, Primary defiitio 07.31.0.0001.01

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Degenerate Solutions of the Nonlinear Self-Dual Network Equation

Degenerate Solutions of the Nonlinear Self-Dual Network Equation Commu Theor Phys 7 (09 8 Vol 7 o Jauary 09 Degeerate Solutios of the oliear Self-Dual etwork Equatio Yig-Yag Qiu ( 邱迎阳 Jig-Sog He ( 贺劲松 ad Mao-Hua Li ( 李茂华 Departmet of Mathematics igbo Uiversity igbo

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα Βασίλειος Α. Ζαφρανάς Παναγιώτης Σ. Καραμπατζάκης ΠΕΡΙΛΗΨΗ H εργασία αφορά μία σειρά μετρήσεων του χρόνου αντήχησης της υπόγειας κρύπτης του «Νεκρομαντείου»

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Ένα μοντέλο Νx2D για τον υπολογισμό της διάδοσης ακουστικών σημάτων στη θάλασσα σε περιβάλλοντα με τρισδιάστατη γεωμετρία

Ένα μοντέλο Νx2D για τον υπολογισμό της διάδοσης ακουστικών σημάτων στη θάλασσα σε περιβάλλοντα με τρισδιάστατη γεωμετρία 2014 285 Ένα μοντέλο Νx2D για τον υπολογισμό της διάδοσης ακουστικών σημάτων στη θάλασσα σε περιβάλλοντα με τρισδιάστατη γεωμετρία Μιχάλης Ταρουδάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών, Πανεπιστήμιο

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ

Διαβάστε περισσότερα

Spherical shell model

Spherical shell model Nilsso Model Spherical Shell Model Deformed Shell Model Aisotropic Harmoic Oscillator Nilsso Model o Nilsso Hamiltoia o Choice of Basis o Matrix Elemets ad Diagoaliatio o Examples. Nilsso diagrams Spherical

Διαβάστε περισσότερα

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα