arxiv: v1 [math.ca] 6 Oct 2017

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "arxiv: v1 [math.ca] 6 Oct 2017"

Transcript

1 SPECTRUM, TRACE AND OSCILLATION OF A STURM-LIOUVILLE TYPE RETARDED DIFFERENTIAL OPERATOR WITH INTERFACE CONDITIONS ERDOĞAN ŞEN arxiv:7.789v math.ca 6 Oct 7 Abstract. I this study, a formula for regularized sums of eigevalues of a Sturm-Liouville problem with retarded argumet at the poit of discotiuity is obtaied. Moreover, oscillatio properties of the related problem is ivestigated. Mathematics Subject Classificatio. 344, 47A, 47A55. Keywords ad phrases. Differetial equatio with retarded argumet; iterface coditios; spectrum; regularized trace; odal poits; oscillatio.. Itroductio I this paper, we cosider the boudary value problem for the differetial equatio with retarded argumet pxy x+qxyx x+ yx =, o,,, with boudary coditios a y+a y =, 3 y +dy = ad iterface coditios 4 γ y δ y + =, 5 γ y δ y + =, where px = p for x, ad px = p for x, ; the realvalued fuctio qx is cotiuous i,, ad has fiite limits q ± = lim x ± qx, the real-valued fuctio x is cotiuous i,, has fiite limits ± = lim x ± x, if x, thex x ; if x, thex x ;isaspectralparameter; p i,a i,d,γ i,δ i i =, are arbitrary real umbers such that p i a i d i =,. Differetial equatios with retarded argumet appeared as far back as the eighteeth cetury i coectio with the solutio of the problem of Euler o the ivestigatio of the geeral form of curves similar to their ow evolutes. Differetial equatios with retarded argumet arise i may applicatio of mathematical modellig: for example, combustio i the chamber of a liquid propellat rocket egie, ad vibratios of the hammer i a electromagetic circuit breaker 3,4.

2 ERDOĞAN ŞEN oudary value problems with iterface coditios arise i varied assortmet of physical trasfer problems see 5. Also, some problems with iterface coditios arise i thermal coductio problems for a thi lamiated plate i.e., a plate composed by materials with differet characteristics piled i the thickess. I this class of problems, iterface coditios across the iterfaces should be added sice the plate is lamiated. The study of the structure of the solutio i the matchig regio of the layer with the basis solutio i the plate leads to cosideratio of a eigevalue problem for a secod-order differetial operator with piecewise cotiuous coefficiets ad iterface coditios 6. The asymptotic formulas for eigevalues of boudary value problems with retarded argumet obtaied i 7-7. I 7, the pricipal term of asymptotic distributio of eigevalues of the problem -5 was obtaied up to O. ut we eed sharper asymptotic formulas. Therefore, we improve this formula up to O. 3 The theory of regularized traces of Sturm-Liouville operators stems from the paper 8 of Gelfad ad Levita. Trace formulas for the Sturm- Liouville equatio with a complex valued potetial ad with two poit boudary coditios obtaied i 9. Regularized trace of the Sturm- Liouville problem with irregular boudary coditios ivestigated i. A regularized trace formula for the matrix Sturm-Liouville operator foud i. The first regularized traces of boudary value problems with ubouded operator coefficiet i a fiite iterval obtaied i -4. The secod regularized trace of a differetial operator with bouded operator coefficiet ad with the mixed boudary coditios ca be foud i 5. For a comprehesive review of traces of Schrödiger operators, the iterested reader is referred to 6. As metioed above partly, the literature is about the regularized traces of classic type differetial operators is so rich ad diverse. For a more comprehesive list, oe ca refer to the survey paper 7 ad the paper 8. However, there are oly a few works o regularized traces ad oscillatio properties for differetial operators with retarded argumet. M. Pikula i 8 obtaied trace formula of first order: if τ τ = qϕ τ h +H = ad if τ τ h+h + cosτ = = qϕ τ h +H + b 4 8 τ + h+h qtdt τ τ τ qtdt qτ+q qtdt+ 4 τ qτ

3 ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR 3 for the boudary-value problem of secod order with retarded argumet: y +qxyx τ = y, y hy = y +Hy =, yx τ = yϕx τ, x τ, ϕ =. C-F. Yag i obtaied formula of the first regularized trace, oscillatios of the eigefuctios ad the solutios of iverse odal problem for discotiuous boudary value problems with retarded argumet ad with iterface coditios at the oe poit of discotiuity. F. Hira i 4 obtaied a formula for regularized sums of eigevalues for a Sturm-Liouville problem with retarded argumet at the oe poit of discotiuity which cotais a spectral parameter i the boudary coditios ad as a most recet study i this topic, Şe studied regularized trace formula ad oscillatio of eigefuctios of a Sturm-Liouville operator with retarded argumet at two poits of discotiuity 6. The goals of this article are to calculate the regularized trace ad to fid the odal poits of eigefuctios for the problem -5. We poit out that our results are extesio ad/or geeralizatio to those i 7-, 7-8, 8, 3, 3. For example, if the retardatio fuctio i ad px,δ =,γ = we have the formula of the first regularized trace for the classical Sturm-Liouville operator which is called Gelfad-Levita formula see 9.. The spectrum Let ω x, be a solutio of Eq. o,, satisfyig the iitial coditios 6 ω, = a ad ω, = a. The coditios 6 defie a uique solutio of Eq. o, see 7,7. After defiigtheabove solutio, thewe will defiethesolutio ω x, of Eq. o, by meas of the solutio ω x, usig the iitial coditios 7 ω, = γ δ ω, ad ω, = γ δ ω,. The coditios 7 defie a uique solutio of Eq. o, see 7. Cosequetly, the fuctio ωx, is defied o,, by the equality ωx, = { ω x,, x,, ω x,, x, is a solutio of o,,, which satisfies oe of the boudary coditios ad the iterface coditios 4-5 The the followig itegral equatios hold: 8 ω x, = a cos x a p p si x p qτsi x τω τ τ,dτ, p p

4 4 ERDOĞAN ŞEN 9 ω x, = γ ω δ, cos x p p + γ p ω, si x δ p qτsi p x τω τ τ,dτ. Solvig the equatios 8-9 by the method of successive approximatio, we obtai the followig asymptotic equalities for : ω x, = a cos p x a p si p x a p a p qτsi p x τdτ qτsi x τ τdτ p. Differetiatig with respect to x, we get ω x, = a si x a cos x a p p p p qτcos x τdτ p a p Usig the fact that, O = qτcos p x τ τdτ. x qτsi p τ τdτ, x, ; x qτcos p τ τdτ, x, ; x x see 9, ad we have ω x, = γ a δ cos p γ a p +p δ p p qτsi p τ τdτ, x, ; qτcos p τ τdτ, x, p p p γ a p δ si p p p p {, +Dx, si p p p p + A, +Cx, cos } p p p p.

5 Here, ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR 5 Ax, = x, = Cx, = Dx, = qτsi τ dτ x, ; p qτcos τ dτ x, ; p qτsi τ dτ, x p, ; qτcos τ dτ, x p,. Differetiatig with respect to x, we get ω x, = γ a si p p γ a p cos p p δ p p p δ p p p γ { a p +p δ p p, +Dx, cos p p p p 3 A, +Cx, si p p p p }. The solutio ωx, defied above is a otrivial solutio of satisfyig coditios ad 4-5. Puttig ωx, ito 3, we get the characteristic equatio 4 Θ ω,+dω,. The set of eigevalues of boudary value problem -5 coicides with the set of the squares of roots of 4, ad eigevalues are simple see 7. From, 3 ad 4, we obtai p p γ a p cos p p δ p p γ { a p +p δ p p, +D, cos p p p p A, +C, si } p p p p + dγ a cos p p. δ p p Θ γ a δ p si p p p Defie Θ γ a si p p. δ p p p Deote by = p p p +p, Z, zeros of the fuctio Θ. It is simple algebraically except for ± ad we have

6 6 ERDOĞAN ŞEN 5. Deote by C the circle of radius, < ε <, cetered at the origi ad by Γ N the couterclockwise square cotours with four vertices K = N +ε+n i, L = N ε+n i, M = N ε N i,, N = N +ε N i, where i = ad N is a atural umber. Obviously, if C or Γ N, the Θ M e Im M > by usig a similar method i, 3. Thus, o C or Γ N, we have { Θ p p p p Θ = + cot a p p, +D, cot p p p p dp cot } p p p p. Expadig l Θ Θ A, +C, by the Maclauri formula, we fid that l Θ Θ = { a p p, +D, dp cot p p p +p } A p p p p, +C, { a p cot p a p p p p p 4p p + p +p p p a p p A, +C, cot p, +D, dp A, +C,, +D, dp } p p p Usig the well-kow Rouche Theorem, we get that Θ has the same umber of zeros iside Γ N as Θ see. Usig the residue theorem, we have = l i C Θ Θ d = cot i a p p, +D, dp C + p +p d A i p p, +C, C 3. p p p p d

7 ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR 7 + cot i a p p, +D, dp C + i C + p +p i p p C p +p 4p p d A, +C, p p p p a p p, +D, dp cot p p A, p p +C, d Thus, usig 5 ad residue calculatio we have prove the followig theorem. Theorem.. The spectrum of the problem -5 has the = a p p, +D, dp + { p +p A p p, a p p, 3 a p p, asymptotic distributio for sufficietly large. +C, 3 +D, dp }. +D, dp 3 3. The regularized trace formula I this sectio, we will get regularized trace formula for the problem - 5. The asymptotic formula 5 for the eigevalues implies that for all sufficietly large N, the umbers with N are iside Γ N, ad the umbers with > N are outside Γ N. It follows that cot p N + + = i Γ = N p p p = i l Γ a p p, +D, d dp d+ p +p A +C, i p p, d Γ + cot i a p p, +D, dp Γ p p p p d d

8 8 ERDOĞAN ŞEN + i Γ + p +p i p p Γ p +p 4p p a p p A, d +C, cot p p A, p p +C, by calculatios, which implies that + = N N = N p +p p p = N 6 where,, +D, dp d, N N + + = N a p p, +D, dp a p p, +D, dp a p p, +D, dp A, +C, +R a p p, +D, 4p p R = Res = { p +p p p dp A, +C,, N a p p, +D, dp cot p p A, p p +C, Passig to the limit as N i 6, we have { + + = d. + a p p, +D, dp p +p p p a p p, +D, dp A, } +C,

9 ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR 9 = a p p, a p p, 7 4p p +D, dp +R +D, dp. A +C,, Theseriesotheleftsideof7 iscalledtheregularizedtraceoftheproblem The oscillatio I this chapter, we will fid odal poits of eigefuctios of the problem -5. Let us rewrite the equatio ad replace by ω x, = a cos x a p si x a si x p p p p + a cos x p p p τ qτsi dτ τ qτcos dτ Let us assume that x j are the odal poits of the eigefuctio ω x,. Takig si x p ito accout for sufficietly large, we get x cot + Ax, = a p + x,. p p a p It follows easily that x 8 ta + p. = a p x, a p. Thus, solvig the equatio 8, oe obtais j 9 x j = p a p x j, a Note that = + ad a + p +p = 3. p p, +D, dp 3 4. p 4 Substitutig ad ito 9 we have j x j = p j a p p a + p +p p p, +D, dp 3

10 ERDOĞAN ŞEN j a p a p, 3, j =,. Similarly, from, we get δ ω x, = a cos p p a p si p p γ p p p p a { p +p p p, +Dx, si p p p p + A, +Cx, cos } p p p p. For odal poits of ω x,, agai, takig si p p p p ito accout for sufficietly large, we get cot p p A, +Cx, p +p p p p p = a p + p +p, +Dx,. a p p ad thus p p ta + p p = a p p +p, +Dx, a p p Thus, solvig the equatio 3, oe obtais 4 x j = p p p + j p α p p a p +p, +D x j, p 3. Substitutig ad ito 4 we have j a p p a + p +p 5 p +p, x j = p p p + j p. 3 p p, +D, dp 3 α p p a p, p +D j Thus we have prove the followig theorem: 3, j =,. Theorem 4.. For sufficietly large, we have the formulas ad 5 of the odal poits for the problem -5.

11 ON A DISCONTINUOUS RETARDED DIFFERENTIAL OPERATOR Refereces L. Crocco ad S. Chag, Theory of combustio istability i liquid propellat rocket motors, utterworths, Lodo, 956. J. Kolesovas, D. Svitra, Mathematical modellig of the combustio process i the chamber of a liquid propellat rocket egie, Lithuaia Mathematical Joural, K.F. Teodorcik, Self-oscillatory systems, 3rd ed., Gostehizdat, Moscow, 95. Russia. 4 A.A. Harkevic, Auto-oscillatios, Gostehizdat, Moscow, 954. Russia. 5 A. V. Likov, Y. A. Mikhalilov, The Theory of Heat ad Mass Trasfer, Qoseergaizdat, 963 I Russia. 6 I. Titeux, Y. Yakubov, Completeess of root fuctios for thermal coductio i a strip with piecewise cotiuous coefficiets, Math. Models Methods Appl. Sci S.. Norki, Differetial equatios of the secod order with retarded argumet, Traslatios of Mathematical Moographs, AMS, Providece, RI, M. Pikula, Regularized traces of differetial operator of Sturm-Liouville type with retarded argumet, Differetsialye Uraveiya, Russia; Eglish traslatio: Differetial Equatios, A. ayramov, S. C. alıṣka ad S. Uslu, Computatio of eigevalues ad eigefuctios of a discotiuous boudary value problem with retarded argumet, Appl. Math. Comput., E. Şe, A. ayramov, Calculatio of eigevalues ad eigefuctios of a discotiuous boudary value problem with retarded argumet which cotais a spectral parameter i the boudary coditio, Math. Comput. Model C-F. Yag, Trace ad iverse problem of a discotiuous Sturm-Liouville operator with retarded argumet, J. Math. Aal. Appl., F.A. Cetikaya, K.R. Mamedov, A boudary value problem with retarded argumet ad discotiuous coefficiet i the differetial equatio, Azerbaija Joural of Mathematics, E. Şe, M. Acikgoz, S. Araci, Spectral problem for Sturm-Liouville operator with retarded argumet which cotais a spectral parameter i the boudary coditio, Ukraiia Mathematical Joural, F. Hira, A trace formula for the Sturm-Liouville type equatio with retarded argumet, Commu. Fac. Sci. Uiv. Ak. Ser. A Math. Stat., M. ayramoglu, A. ayramov, E. Şe, A regularized trace formula for a discotiuous Sturm-Liouville operator with delayed argumet, Electroic Joural of Differetial Equatios EJDE, E. Şe, A regularized trace formula ad oscillatio of eigefuctios of a Sturm- Liouville operator with retarded argumet at two poits of discotiuity, Mathematical Methods i the Applied Scieces, doi:./mma E. Şe, A. ayramov, Spectral aalysis of boudary value problems with retarded argumet, Commu. Fac. Sci. Uiv. Ak. Sér. A Math. Stat., I.M. Gelfad,.M. Levita, O a formula for eigevalues of a differetial operator of secod order, Doklady Akademii Nauk SSSR, Russia. 9 A. Maki, Regularized trace of the Sturm-Liouville operator with irregular boudary coditios, Electroic Joural of Differetial Equatios EJDE, A. Maki, Trace formulas for the Sturm-Liouville operator with regular boudary coditios, Doklady Mathematics, C-F. Yag, Trace formula for the matrix Sturm-Liouville operator, Aal. Math. Phys F.G. Maksudov, M. ayramoglu, E.E. Adıguzelov, O a regularized traces of the Sturm-Liouville operator o a fiite iterval with the ubouded operator coefficiet, Doklady Akademii Nauk SSSR, ; Eglish traslatio: Soviet Math. Dokl.,

12 ERDOĞAN ŞEN 3 E. Adiguzelov, Y. Sezer, The regularized trace of a self adjoit differetial operator of higher order with ubouded operator coefficiet, Appl. Math. Comput., E. Şe, A. ayramov, K. Oruçoğlu; Regularized trace formula for higher order differetial operators with ubouded coefficiets, Electroic Joural of Differetial Equatios EJDE, 6 3 6, -. 5 E. Adiguzelov, Y. Sezer, The secod regularized trace of a self adjoit differetial operator give i a fiite iterval with bouded operator coefficiet, Math. Comput. Model., F. Gesztesy F., H. Holde, O Trace Formulas for Schrödiger-Type Operators. I: Truhlar D.G., Simo. eds Multiparticle Quatum Scatterig With Applicatios to Nuclear, Atomic ad Molecular Physics. The IMA Volumes i Mathematics ad its Applicatios, vol 89. Spriger, New York, V.A. Sadovichii, V.E. Podolskii, Traces of operators, Uspekhi Mat. Nauk, ; Eglish traslatio: Russia Math. Surveys C.T. Fulto ad S.A. Pruess, Eigevalue ad eigefuctio asymptotics for regular Sturm-Liouville problems, J. Math. Aal. Appl L.A. Dikii, Trace formulas for Sturm-Liouville differetial equatios, Uspekhi Mat. Nauk, C. T. Shieh, V.A. Yurko, Iverse odal ad iverse spectral problems for discotiuous boudary value problem, J. Math. Aal. Appl Y.H. Cheg, C.K. Law, O the quasi-odal map for the Sturm-Liouville problem, Proc. Soc. Ediburgh, 36A V.A. Yurko, Iverse Spectral Problems for Differetial Operators ad Their Applicatios, Gordo ad reach, Amsterdam,. Departmet of Mathematics, Namık Kemal Uiversity, 593, Tekirdağ, Turkey address: erdoga.math@gmail.com

A REGULARIZED TRACE FORMULA FOR A DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH DELAYED ARGUMENT

A REGULARIZED TRACE FORMULA FOR A DISCONTINUOUS STURM-LIOUVILLE OPERATOR WITH DELAYED ARGUMENT Electronic Journal of Differential Equations, Vol. 217 217, No. 14, pp. 1 12. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu A REGULARIZED TRACE FORMULA FOR A DISCONTINUOUS

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

arxiv: v1 [math.sp] 29 Jun 2016

arxiv: v1 [math.sp] 29 Jun 2016 INVERSE NODAL PROBLEMS FOR DIRAC-TYPE INTEGRO-DIFFERENTIAL OPERATORS arxiv:606.08985v [math.sp] 29 Ju 206 BAKI KESKIN AND A. SINAN OZKAN Abstract. The iverse odal problem for Dirac differetial operator

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives America Joural of Computatioal ad Applied Mathematics 01, (3): 83-91 DOI: 10.593/j.ajcam.01003.03 A Decompositio Algorithm for the Solutio of Fractioal Quadratic Riccati Differetial Equatios with Caputo

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation

Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 5 (2016, pp. 3885 3893 Research India Publications http://www.ripublication.com/gjpam.htm Eigenvalues and eigenfunctions

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]:

Roman Witu la 1. Let ξ = exp(i2π/5). Then, the following formulas hold true [6]: Novi Sad J. Math. Vol. 43 No. 1 013 9- δ-fibonacci NUMBERS PART II Roman Witu la 1 Abstract. This is a continuation of paper [6]. We study fundamental properties applications of the so called δ-fibonacci

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ.

ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ. Ακουστική AcP4 ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ. ΣΥΓΚΡΙΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΜΕ ΜΕΘΟ Ο ΠΕΠΕΡΑΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα