Subject index. Symbols Δβ Δχ β...see regression, standardized coefficient *... see do-files, comments
|
|
- Φόβος Κωνσταντόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Subject index Symbols Δβ Δχ β...see regression, standardized coefficient *... see do-files, comments +...see operators //... see do-files, comments &...see operators...see operators...see operators ~...see operators A Academic Technology Service.. see ATS added-variable plot additive index...77 adjusted count R adjusted R ado-directories ado-files basics programming aggregate....see collapse AIC Akaike s information criterion.. see AIC Aldrich Nelson s p all...43 alphanumerical variables.... see strings analysis of variance...see regression angle() (axis-label suboption) ANOVA...see regression Anscombe quartet , 206, 231 anycount() (egen function) append arithmetic mean...see average arithmetical expressions...see expressions ascategory (graph dot option) ASCII files ATS augmented component-plus-residual plot autocode() (function) autocorrelation...see regression, autocorrelation average , , avplots aweight (weight type) axis labels , scales titles , transformations B b[ ] balanced panel data bands() (twoway mband option) bar (graph type) , 109, , 164 bar charts , 164 batch jobs...see do-files Bayesian information criterion....see BIC Bernoulli s distribution... see binomial distribution beta...see regression, standardized coefficient bias BIC...271
2 380 Subject index bin() (histogram option) binary variables..see variables, dummy binomial distribution BLUE..see Gauss Markov assumptions book materials......xxii xxiii bookstore bootstrap box (graph type) , box plots...16, Box Cox transformation bcskew break... see commands, break browse by prefix , 55 56, 79 83, 93, 161 by() (graph option) by() (tabstat option) bysort...56 byte (storage type) C calculator see pocket calculator caption() (graph option) capture...34 categories cd center...see variables, center chi-squared likelihood-ratio Pearson classification tables clock position cluster samples cmdlog CMYK CNEF coefficient of determination collapse...79 comma-separated values....see spreadsheet format command +....see commands, break command line.... see windows, Command window commands abbreviations.....8, access previous...8 commands, continued break... 8 e-class end of commands external , 345, 364 internal , 345, 364 long... see do-files, line breaks r-class...67 search...17 comments....see do-files, comments component-plus-residual plot compound quotes compress compute...see generate cond() (function) conditional-effects plot conditions....see if qualifier confidence interval connect() (scatter option) connected (plottype) contingency table....see frequency tables, two-way contract...63 Cook s D cooksd (predict option) correlation coefficient negative positive weak count R covariate.... see variables, independent covariate pattern cplot cprplot Cramér s V csv...see spreadsheet format Ctrl+Break...see commands, break Ctrl+C... see commands, break cumulated probability function.... see probit model D Data Editor data matrix
3 Subject index 381 data region data types...see storage types datasets ASCII files combine , describe export hierarchical...82, import load nonmachine-readable oversized panel data preserve...62 rectangular reshape restore...62 save , 326 sort titanic dates from strings dates, combining datasets by elapsed degrees of freedom...see df delete...see erase #delimit...32 density , describe...2 3, 5 6 destring df DFBETA dfbeta dictionary dir...4, 21 directory change contents...4 working directory.... xxiii, 3 4, 54 discard discrepancy , 276 discrete (histogram option) display...50, distributions describe grouped do...20 do-files analyzing basics comments create editors error messages execute...20 exit from interactive work line breaks master organization set more off...33 version control...33 doedit...19, 26 dot (graph type) , , dot charts , double (storage type)...95, 101 drop...6, 43 dummy variables...see variables, dummy E e() (saved results) e(b) (saved result) e-class... see commands, e-class edit egen elapsed dates...see dates, elapsed elapsed time... see time, elapsed EMF Encapsulated PostScript....see EPS encode endogenous variable...see variables, dependent enhanced metafile....see EMF Epanechnikov kernel
4 382 Subject index EPS erase...39, 316 ereturn list...68 error messages ignore...34 invalid syntax error-components model estat bootstrap estat classification estat dwatson estat effects estat gof estat ic...271, 281 Excel files exit (in do-files) exit Stata exogenous variable...see variables, independent expand...63 expected value export... see datasets, export expressions extensions...54 F F test FAQ...17, 363 fence filenames Fisher s exact test five-number summary...160, 166 fixed format fixed-effects model float() (function) float (storage type) foreach , 319, 353 levelsof forvalues...60 free format frequencies absolute conditional relative frequency tables one-way two-way frequency weights....see weights function (plottype) functions fweight (weight type) fxsize() (graph option) fysize() (graph option) G gamma coefficient Gauss curve... see normal distribution Gauss distribution....see normal distribution Gauss Markov assumptions GEE generalized estimation equations... see GEE generate...18, generate() (tabulate option) , 224 gladder (statistical graph) graph graph region , 117 graphs 3-D combining connecting points editor , , elements export multiple overlay print titles types weights grid lines...120, grouping by quantiles intervals with arbitrary width..157 intervals with same width
5 Subject index 383 GSOEP...xxiii, 5 6, 97 98, 234, 237, , 324 H help help files histogram , histogram (plottype) homoskedasticity....see regression, homoskedasticity Hosmer Lemeshow test Huber/White/sandwich estimator..221 I if qualifier...11, imargin() (graph combine option) importing... see data, import in qualifier , infile influential cases , input inputting data insheet inspect interaction terms , invnormal() (function) iscale() (graph combine option) iteration block K kdensity Kendall s tau-b kernel density estimator key variable L label data labels and values datasets display values...15, 99 variables...15, legend , leverage , 276 lfit (plottype) likelihood likelihood-ratio χ likelihood-ratio test , limits....3 line (plottype) , linear probability model....see regression, LPM linear regression...see regression linearity assumption , list local...69, local macro...see macro local mean regression loess...see LOWESS log() (function) log (scale suboption) log files finish recording...34 interrupt recording...28 log commands SMCL start recording logarithm logical expressions...see expressions logistic logistic regression coefficients command dependent variable diagnostic estimation fit marginal effect logit logit model.... see logistic regression logits loops foreach forvalues...60 lower() (function) LOWESS...209,
6 384 Subject index lowess (plottype) lowess (statistical graph) LPM... see regression, LPM M macro extended macro functions local , manuals...xxiv margin() (graph option) marker colors labels...107, options sizes symbols , master data match.... see datasets, combine matrix (command) matrix (graph type) , , 210 maximum...10, maximum likelihood principle search domain mband (plottype) mean...see average median median regression , median-trace memory...see RAM merge merge (variable) meta data minimum...10, missing encode...97 missing (tabulate option) missing values... see missings missings coding definition in expressions set , ML...see maximum likelihood mlabel() (scatter option) mlabposition() (scatter option) mlabsize() (scatter option) mlabvposition() (scatter option) MLE...see maximum likelihood mlogit more off...33 MSS multicollinearity , multinomial logistic regression mvdecode...12, 97 mvencode...97 N N , 93 n , 93 net install NetCourses newlist nonlinear relationships , normal distribution density density function note() (graph option) notes...98 null model numlabel numlist...53, 59 O observations definition....6 list odds odds ratio , odds-ratio interpretation OLS operators options , 45 46
7 Subject index 385 order ordered logistic regression...see proportional-odds model ordinal logit model....see proportional-odds model ordinary least squares...see OLS P package description panel data... see datasets, panel data PanelWhiz partial correlation... see regression, standardized coefficient partial regression plot see added-variable plot partial residual plot....see component-plus-residual plot PDF Pearson residual Pearson-χ percentiles... see quantiles PICT pie (graph type)...105, 152, 164 pie charts...152, 164 plot region , 117 plotregion() (graph option) PNG pocket calculator...50 portable document format...see PDF PostScript...see PS ppfad.dta predict predicted values Pregibon s Δβ...see Δβ preserve...62 probability interpretation , 266 probit probit model program define program drop programs and do-files debugging , 351 defining in do-files programs, continued naming redefining syntax , proportional-odds model PS pseudo R PSID...313, 324 pwd...21, 54 pweight (weight type) Q quantile plot quantile regression quantiles quartiles quietly Q Q plots R r...see correlation coefficient r() (saved results) r(max) (saved result) r(mean) (saved result) r(mean) (saved result)...59 r(min) (saved result)...67 r(n) (saved result) r(sd) (saved result) r(sum) (saved result)...67 r(sum w) (saved result)...67 r(var) (saved result) r-class...see commands, r-class R RAM...3, random numbers , 75 random-effects model range() (scale suboption) RAW raw data...see RAW recode... see variables, replace recode() (function) recode...84 reference lines , 120 regress...19, 188
8 386 Subject index regression ANOVA table autocorrelation coefficient , command , control diagnostics fit homoskedasticity linear...19, LPM multiple nonlinear relationships omitted variables panel data residuals simple standard error standardized coefficient with heteroskedasticity replace...18, reshape residual (predict option) residual definition sum...187, 194 residual sum of squares...see RSS residual-versus-fitted plot , , 232 response variable...see variables, dependent restore...62 Results window.. see windows, Results window return list...68 reverse (scale suboption) Review window.. see windows, Review window RGB root MSE round() (function) rowmiss() (egen function) RSS rstudent (predict option) runiform() (function) , 75 running counter running sum rvfplot S sampling weights...see weights SAS files save , 326 saved results...59, 67 70, , 275 scatter (plottype) , 109 scatterplot scatterplot matrix , 210 scatterplot smoother search sensitivity separate sign interpretation SJ...17, 363 SJ-ados SMCL , 360 SOEP...see GSOEP sort sort (scatter option) specificity spreadsheet format SPSS files SSC ssc install SSC-ados standard deviation , 158 Stata Journal Stata Press Stata Technical Bulletin stata.toc Statalist statistical inference , STB...17, 363 STB-ados stereotype model storage types , strings...303, 311 display format in expressions...88 replace substrings storage type
9 Subject index 387 strings, continued to dates to numeric strpos() (function) subinstr() (function) subscripts substr() (function) subtitle() (graph option) sum() (function) summarize , 160 summarize() (tabulate option) summary graphs summary tables superposition...153, survey data svmat svy symmetry plot symplot (statistical graph) syntax , syntax checks syntax diagram T tab-separated values... see spreadsheet format tab tab table tabstat tabulate tagged-image file format.....see TIFF tau-b...see Kendall s tau-b tempvar text() (twoway option) textbox options tick lines , TIFF time from strings time, elapsed title() (graph option) total sum of squares...see TSS total variance....see TSS trace TSS two-way table...see frequency tables, two-way twoway (graph type) U U-shaped relationship , 231 unbalanced panel data uniform() (function)..see runiform() (function) update updating Stata upper() (function) use using using data V V...see Cramér s V value labels... see labels, values valuelabel (axis-label suboption) variable list... see variables, varlist variables all...43 allowed names categorical center , 59, 68, 199, 226 definition....6 delete... 6, 43 dependent dummy , 151, 198, , generate...18, group identifier independent multiple codings names...98 ordinal replace...18, temporary transformations , 209, 218, 221, varlist...8, 43 45
10 388 Subject index Variables window...see windows, Variables window variance...see standard deviation variance of residuals...see RSS variation varlist... see variables, varlist vce(robust) version...33 view yline() (twoway option) ytick() (twoway option) yscale() (twoway option) ysize() (graph option) ytick() (twoway option) ytitle() (twoway option) Z zip archive...xxiii W webuse...xxiv weights whisker wildcards...44 windows change...20 Command window... 1 font sizes...2 preferences....2 Results window...1 Review window...1, 8 scroll back... 4 Variables window...1 windows metafile...see WMF WMF working directory...see directory, working directory wstata.exe X xi: xlabel() (twoway option) xline() (twoway option) xtick() (twoway option) xscale() (twoway option) xsize() (graph option) xt commands xtgee xtick() (twoway option) xtitle() (twoway option) xtreg , 247 Y ylabel() (twoway option)
Subject index. Symbols β χ β...see regression, standardized coefficient *... see do-files, comments
Subject index Symbols β... 375 376 χ 2... 376 377 β...see regression, standardized coefficient *... see do-files, comments +... see operators ==... see operators //... see do-files, comments # (factor-variable
Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.
Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και
519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008
.. ( ) 2008 519.22(07.07) 78 : ( ) /.. ;. : -, 2008. 38 c. ( ) STATISTICA.,. STATISTICA.,. 519.22(07.07),.., 2008.., 2008., 2008 2 ... 4 1...5...5 2...14...14 3...27...27 3 ,, -. " ", :,,,... STATISTICA.,,,.
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Subject index. Symbols β weights η...184, 194 η φ...109
Subject index Symbols β weights...216 η...184, 194 η 2...184 φ...109 A acquiring datasets.... 275 add, label define option.....33 adjust, postestimation command..195, 200 adjusted means...195 agreement,
Subject index. Symbols β weights η φ...118
Subject index Symbols β weights...224 η 2...190 φ...118 A acquiring datasets.... 319 add, label define option.....32 adjust, postestimation command..202, 207 adjusted means...202 agreement, intraclass
Why Stata. Statacorp.
Εισαγωγή στη Stata Ευτυχία Σολέα Κέντρο Διδασκαλίας και Μάθησης (ΚΕ.ΔΙ.ΜΑ) Πανεπιστήμιο Κύπρου Ιανουάριος 24, 2018 1/60 Outline Εισαγωγή 1 Εισαγωγή 2 3 4 5 6 2/60 Outline Εισαγωγή 1 Εισαγωγή 2 3 4 5 6
Subject index 387. F F ratio F test of unequal variances factor analysis, commonality...337
Subject index Symbols β weights...248 η 2... 208 φ...126 * comment... 79 /* and */ comment...79 A acquiring datasets...376 377 add, label define option... 2 agreement, intraclass correlation... 237 alpha
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics
TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics Exploring Data: Distributions Look for overall pattern (shape, center, spread) and deviations (outliers). Mean (use a calculator): x = x 1 + x
Subject index. Symbols β weights η φ * comment /* and */ comment...81
Subject index Symbols β weights...254 η 2... 212 φ...129 * comment... 81 /* and */ comment...81 A acquiring datasets...383 384 add, label define option... 2 agreement, intraclass correlation... 244 alpha
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
1. Ιστόγραμμα. Προκειμένου να αλλάξουμε το εύρος των bins κάνουμε διπλό κλικ οπουδήποτε στο ιστόγραμμα και μετά
1. Ιστόγραμμα Δεδομένα από το αρχείο Data_for_SPSS.xls Αλλαγή σε Variable View (Κάτω αριστερά) και μετονομασία της μεταβλητής σε NormData, Type: numeric και Measure: scale Αλλαγή πάλι σε Data View. Graphs
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Σεμινάριο Προηγμένα Θέματα Στατιστικής. Dr. Nikolaos Mittas Dr. Theodosios Theodosiou
Σεμινάριο Προηγμένα Θέματα Στατιστικής Dr. Nikolaos Mittas Dr. Theodosios Theodosiou Λογιστική Παλινδρόμηση Binary Logistic Regression Dr. Nikolaos Mittas Dr. Theodosios Theodosiou Γενικά-Το κίνητρο (1/2)
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 1ο Τι είναι το SPSS; Statistical Package for the Social Sciences Λογισμικό για διαχείριση και στατιστική ανάλυση δεδομένων σε γραφικό περιβάλλον http://en.wikipedia.org/wiki/spss
Subject index. Symbols β weights η φ * comment /* and */ comment...85
Subject index Symbols β weights...278 η 2...226 φ...133 * comment... 85 /* and */ comment...85 A acquiring datasets...525 526 add, label define option...2 agreement, intraclass correlation... 260 alpha
Λογισμικά για Στατιστική Ανάλυση. Minitab, R (ελεύθερο λογισμικό), Sas, S-Plus, Stata, StatGraphics, Mathematica (εξειδικευμένο λογισμικό για
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 1ο Τι είναι το SPSS; Statistical Package for the Social Sciences Λογισμικό για διαχείριση και στατιστική ανάλυση δεδομένων σε γραφικό περιβάλλον http://en.wikipedia.org/wiki/spss
Δείγμα πριν τις διορθώσεις
Εισαγωγή Α ΜΕΡΟΣ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ 1 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Εισαγωγή 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or Αnalytical Statistics)
Αν οι προϋποθέσεις αυτές δεν ισχύουν, τότε ανατρέχουµε σε µη παραµετρικό τεστ.
ΣΤ. ΑΝΑΛΥΣΗ ΙΑΣΠΟΡΑΣ (ANALYSIS OF VARIANCE - ANOVA) ΣΤ 1. Ανάλυση ιασποράς κατά µία κατεύθυνση. Όπως έχουµε δει στη παράγραφο Β 2, όταν θέλουµε να ελέγξουµε, αν η µέση τιµή µιας ποσοτικής µεταβλητής διαφέρει
Εισαγωγή στο SPSS. ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας
Εισαγωγή στο SPSS ΚΕΔΙΜΑ 28/9/2013 Γεώργιος Σπανούδης (spanouod@ucy.ac.cy) Τμήμα Ψυχολογίας Στόχος του μαθήματος Τα τέσσερα παράθυρα του SPSS Η διαχείριση των αρχείων δεδομένων Βασικά στοιχεία ανάλυσης
Summary of the model specified
Program: HLM 7 Hierarchical Linear and Nonlinear Modeling Authors: Stephen Raudenbush, Tony Bryk, & Richard Congdon Publisher: Scientific Software International, Inc. (c) 2010 techsupport@ssicentral.com
ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)
ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., -) (Επιµέλεια: Ελευθεράκη Αναστασία) Άσκηση (Εργαστήριο #) Στις εξετάσεις Φεβρουαρίου του µαθήµατος
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS
Λογαριθμικά Γραμμικά Μοντέλα Poisson Παλινδρόμηση Παράδειγμα στο SPSS Ο παρακάτω πίνακας παρουσιάζει θανάτους από καρδιακή ανεπάρκεια ανάμεσα σε άνδρες γιατρούς οι οποίοι έχουν κατηγοριοποιηθεί κατά ηλικία
Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata
One-way ANOVA µε το SPSS Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata To call in a statistician after the experiment is
8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι
8. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Ι Απλή γραμμική παλινδρόμηση είναι μία στατιστική μέθοδος που χρησιμοποιείται για τη μελέτη της σχέσης μεταξύ δύο ποσοτικών μεταβλητών εκ των οποίων μία είναι η ανεξάρτητη
Περιεχόμενα. Πρόλογος 17 ΚΕΦΑΛΑΙΟ 1 23
Περιεχόμενα Πρόλογος 17 Μέρος A ΚΕΦΑΛΑΙΟ 1 23 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ 23 1.1 Εισαγωγή 23 1.1.1 Περιγραφική Στατιστική (Descriptive Statistics) 24 1.1.2 Επαγωγική ή Αναλυτική Στατιστική (Inferential or
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 6 ο
Παράδειγμα 1 Ο παρακάτω πίνακας δίνει τις πωλήσεις (ζήτηση) ενός προϊόντος Υ (σε κιλά) από το delicatessen μιας περιοχής και τις αντίστοιχες τιμές Χ του προϊόντος (σε ευρώ ανά κιλό) για μια ορισμένη χρονική
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ
Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Θεσσαλονίκης Τμήμα Πληροφορικής Εργαστήριο «Θεωρία Πιθανοτήτων και Στατιστική» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ Περιεχόμενα 1. ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ...
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Subject index. B bar chart...108, 358 bar graph of means Bartlett test of equal variances beta option
Subject index A acquiring datasets...545 546 add, label define option...2 adoupdate command...130 agreement, intraclass correlation... 261 alpha command...391 alpha reliability...387, 389 ameans command...97
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
6.4. LOGLINEAR 90 8.5 (MANOVA) 121
Φ Γ SPSS Dr. υ υ α α Θ α 2012 2 1. Γ SPSS 19.0 1.1 Φ Γ SPSS 4 1.2 Φ Γ 7 1.3 9 1.4 Φ 10 1.5 Pτ ΘHKH IAΓPAΦH 16 1.6 16 1.7 17 1.8 20 1.9 22 1.10 Γ 23 1.11 Γ Φ 25 1.12 Γ 27 1.13 Θ 28 2. Γ Φ 2.1 Θ, Γ, Γ 29
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 7. Παλινδρόµηση
ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ 7. Παλινδρόµηση Γενικά Επέκταση της έννοιας της συσχέτισης: Πώς µπορούµε να προβλέπουµε τη µια µεταβλητή από την άλλη; Απλή παλινδρόµηση (simple regression): Κατασκευή µοντέλου πρόβλεψης
Βήματα για την επίλυση ενός προβλήματος
ΜΑΘΗΜΑ 2ο Βήματα για την επίλυση ενός προβλήματος 1. Κατανόηση του προβλήματος με τη σχετική επιστήμη (όπως οικονομία, διοίκηση, γενικές επιστήμες) π.χ το πρόβλημα της κατανάλωσης κάποιας περιοχής σε σχέση
PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI
155 Lampiran 6 Yayan Sumaryana, 2014 PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI Universitas Pendidikan Indonesia
Principles of Workflow in Data Analysis
IndianaUniversity PrinciplesofWorkflowin DataAnalysis ScottLong 1.Acoordinatedframeworkforconductingdataanalysis 2.WFinvolvescoordinatedproceduresfor: o Planning,organizinganddocumentingresearch o Cleaningdata
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση
Γενικευμένα Γραμμικά Μοντέλα (GLM) Επισκόπηση Γενική μορφή g( E[ Y X ]) Xb Κατανομή της Υ στην εκθετική οικογένεια Ανεξάρτητες παρατηρήσεις Ενας όρος για το σφάλμα g(.) Συνδετική συνάρτηση (link function)
IT & Networking DEVELOPING Essential Python 3. Κωδικός Σεμιναρίου / Code
2352 Essential Python 3 Κωδικός Σεμιναρίου / Code 2352 Essential Python 3 Σκοπός Εκπαιδευτικού Προγράμματος / Objectives Με την ολοκλήρωση του μαθήματος οι συμμετέχοντες θα: Μπορούν να εγκαταστήσουν την
Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment
Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...
Άσκηση 10, σελ. 119. Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F
Άσκηση 0, σελ. 9 από το βιβλίο «Μοντέλα Αξιοπιστίας και Επιβίωσης» της Χ. Καρώνη (i) Αρχικά, εισάγουμε τα δεδομένα στο minitab δημιουργώντας δύο μεταβλητές: τη x για τον άτυπο όγκο και την y για τον τυπικό
Supplementary figures
A Supplementary figures a) DMT.BG2 0.87 0.87 0.72 20 40 60 80 100 DMT.EG2 0.93 0.85 20 40 60 80 EMT.MG3 0.85 0 20 40 60 80 20 40 60 80 100 20 40 60 80 100 20 40 60 80 EMT.G6 DMT/EMT b) EG2 0.92 0.85 5
Standardized Coefficients t Sig.
Στο αρχείο δεδομένων dummy1.sav καταγράφονται τα χρόνια εμπειρίας (exprnc), το επίπεδο μόρφωσης (educ), οι αρμοδιότητες (mgt) και ο μισθός (salary) 46 υπαλλήλων. Να βρεθεί ένα μοντέλο πρόβλεψης του μισθού
2. ΕΠΙΛΟΓΗ ΤΟΥ ΜΕΓΕΘΟΥΣ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ
1. ΕΙΣΑΓΩΓΗ ΣΤΟ SPSS Το SPSS είναι ένα στατιστικό πρόγραμμα γενικής στατιστικής ανάλυσης αρκετά εύκολο στη λειτουργία του. Για να πραγματοποιηθεί ανάλυση χρονοσειρών με τη βοήθεια του SPSS θα πρέπει απαραίτητα
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Lampiran 1 Output SPSS MODEL I
67 Variables Entered/Removed(b) Lampiran 1 Output SPSS MODEL I Model Variables Entered Variables Removed Method 1 CFO, ACCOTHER, ACCPAID, ACCDEPAMOR,. Enter ACCREC, ACCINV(a) a All requested variables
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή στο SPSS Ο Data editor Ο Viewer Άνοιγμα Αρχείου στο SPSS Εισαγωγή Δεδομένων
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ,
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, -- Άσκηση. Δίνονται τα παρακάτω δεδομένα 5 7 8 9 5 X 8 5 5 5 9 7 Y. 5.. 7..7.7.9.. 5.... 8.. α) Να γίνει το διάγραμμα διασποράς β) εξετάστε τα μοντέλα Υ = β + β Χ + ε, (linear),
Interpretation of linear, logistic and Poisson regression models with transformed variables and its implementation in the R package tlm
Interpretation of linear, logistic and Poisson regression models with transformed variables and its implementation in the R package tlm Jose Barrera-Gómez a jbarrera@creal.cat a Centre for Research in
5.1 logistic regresssion Chris Parrish July 3, 2016
5.1 logistic regresssion Chris Parrish July 3, 2016 Contents logistic regression model 1 1992 vote 1 data..................................................... 1 model....................................................
Multilevel models for analyzing people s daily moving behaviour
Multilevel models for analyzing people s daily moving behaviour Matteo BOTTAI 1 Nicola SALVATI 2 Nicola ORSINI 3 13th European Colloquium on Theoretical and Quantitative Geography Lucca 5th - 9th September,
BarChart y 1, y 2, makes a bar chart with bar lengths y 1, y 2,.
In[]:= In[]:= In[3]:= In[4]:= In[5]:= Out[5]= r : Random ri : Random Integer rdice : Random Integer,, 6 disp : Export "t.ps",, "EPS" & list Table rdice, 0 5,, 4, 6,, 3,, 3, 4,, 6, 4, 6,,, 6, 6,, 3, In[6]:=
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 5: ΠΡΟΥΠΟΛΟΓΙΣΜΟΙ ΚΑΙ ΠΡΟΒΛΕΨΕΙΣ ΠΩΛΗΣΕΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
Εισαγωγή στο SPSS, Ενότητα 1
Εισαγωγή στο SPSS, Ενότητα Βήματα για την Στατιστική ανάλυση δεδομένων.. Εισαγωγή δεδομένων στον data editor (Εισαγωγή από μία βάση δεδομένων ή από ένα spreadsheet ή από ένα αρχείο txt, ή απευθείας εισαγωγή
ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
ΠΡΟΚΑΤΑΡΚΤΙΚΗ Στατιστική Ανάλυση με το S.P.S.S.
ΠΡΟΚΑΤΑΡΚΤΙΚΗ Στατιστική Ανάλυση με το S.P.S.S. μέρος B Νίκος Τσάντας Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά και Σύγχρονες Εφαρμογές Ακαδημαϊκό έτος 2011-12 Ξέρουμε πια τα στατιστικά
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL
Lampiran 1 Hasil Kuesioner NO CI1 CI2 CI3 CT1 CT2 CT3 CS1 CS2 CS3 CL1 CL2 CL3 1 5 5 4 4 4 3 4 3 4 3 4 5 2 4 4 3 5 4 4 4 4 5 4 3 4 3 2 2 3 2 3 3 3 3 4 2 3 2 4 4 4 5 3 4 4 4 3 4 4 5 4 5 5 5 4 2 3 3 3 4 3
Προϋποθέσεις : ! Και οι δύο µεταβλητές να κατανέµονται κανονικά και να έχουν επιλεγεί τυχαία.
. ΣΤΑΤΙΣΤΙΚΗ ΣΥΣΧΕΤΙΣΗ. Υπολογισµός συντελεστών συσχέτισης Προκειµένου να ελέγξουµε την ύπαρξη γραµµικής σχέσης µεταξύ δύο ποσοτικών µεταβλητών, χρησιµοποιούµε συνήθως τον παραµετρικό συντελεστή συσχέτισης
10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη
Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα. Copyright: Δαφέρμος Βασίλης, Eκδόσεις Zήτη, Μάϊος 2005, Θεσσαλονίκη
Kάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ISBN 960-431-960-4 Copyright: Δαφέρμος Βασίλης, Eκδόσεις Zήτη, Μάϊος 2005, Θεσσαλονίκη SPSS SPSS Inc., http://www.spss.com/ Tο παρόν έργο πνευματικής
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Poisson Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
Σηµερινή ατζέντα µαθήµατος... Προηγούµενα αναφερθήκαµε. Σήµερα θα συνεχίσουµε µε τις δοµές τους
Σηµερινή ατζέντα µαθήµατος... Χρήσεις µονοδιάστατων και πολυδιάστατων ( 2) αντικειµένων στην R Χειρισµός δεδοµένων στο λογισµικό R ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ Προηγούµενα αναφερθήκαµε στους τύπους δεδοµένων
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Σηµερινή ατζέντα µαθήµατος... Προηγούµενα αναφερθήκαµε. Σήµερα θα συνεχίσουµε µε τις δοµές τους
Σηµερινή ατζέντα µαθήµατος... Χρήσεις µονοδιάστατων και πολυδιάστατων ( 2) αντικειµένων στην R Χειρισµός δεδοµένων στο λογισµικό R Προηγούµενα αναφερθήκαµε στους τύπους δεδοµένων στην R Basic Data Types:
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
+ ε βελτιώνει ουσιαστικά το προηγούμενο (β 3 = 0;) 2. Εξετάστε ποιο από τα παρακάτω τρία μοντέλα:
ΑΝΑΛΥΣΗ ΠΑΛΙΝΔΡΟΜΗΣΗΣ, 6-5-0 Άσκηση 8. Δίνονται οι παρακάτω 0 παρατηρήσεις (πίνακας Α) με βάση τις οποίες θέλουμε να δημιουργήσουμε ένα γραμμικό μοντέλο για την πρόβλεψη της Υ μέσω των ανεξάρτητων μεταβλητών
Wan Nor Arifin under the Creative Commons Attribution-ShareAlike 4.0 International License. 1 Introduction 1
Linear Regression A Short Course on Data Analysis Using R Software (2017) Wan Nor Arifin (wnarifin@usm.my), Universiti Sains Malaysia Website: sites.google.com/site/wnarifin Wan Nor Arifin under the Creative
διαγνωστικούς ελέγχους MCMC diagnostics CODA
MCMC DIAGNOSTICS Πόσο πρέπει να περιμένουμε για να επιτευχθεί η στασιμότητα; Πόσο μεγάλο πρέπει να είναι το m (μετά την στασιμότητα για πόσο πρέπει να τρέξεις την αλυσίδα σου); Από που να ξεκινήσεις; Για
τατιστική στην Εκπαίδευση II
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΣΙΑ ΠΑΝΕΠΙΣΗΜΙΟ ΚΡΗΣΗ τατιστική στην Εκπαίδευση II Λφση επαναληπτικής άσκησης Διδάσκων: Μιχάλης Λιναρδάκης ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ Άδειες Χρήσης Το
Απλή Ευθύγραµµη Συµµεταβολή
Απλή Ευθύγραµµη Συµµεταβολή Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές Τοµέας Φυτών Μεγάλης Καλλιέργειας και Οικολογίας, Εργαστήριο Γεωργίας Viola adorata Εισαγωγή Ανάλυση Παλινδρόµησης και Συσχέτιση Απλή
MATHACHij = γ00 + u0j + rij
Stata output for Hierarchical Linear Models. ***************************************. * Unconditional Random Intercept Model. *************************************** MATHACHij = γ00 + u0j + rij. mixed
ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ 1 Παλινδρόµηση Έλεγχοι Υποθέσεων ΙI ΕΠΙΜΕΛΕΙΑ ΣΗΜEΙΩΣΕΩΝ: ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ ΗΜΗΤΡΙΟΥ ΒΑΣΙΛΕΙΟΣ
Table A.1 Random numbers (section 1)
A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Επίλυση: Oneway Anova Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης Το παρόν
Περιγραφή των εργαλείων ρουτινών του στατιστικού
Κεφάλαιο 5 ο Περιγραφή των εργαλείων ρουτινών του στατιστικού πακέτου SPSS που χρησιµοποιήθηκαν. 5.1 Γενικά Το στατιστικό πακέτο SPSS είναι ένα λογισµικό που χρησιµοποιείται ευρέως ανά τον κόσµο από επιχειρήσεις
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
Generalized additive models in R
www.nr.no Generalized additive models in R Magne Aldrin, Norwegian Computing Center and the University of Oslo Sharp workshop, Copenhagen, October 2012 Generalized Linear Models - GLM y Distributed with
Προβλέψεις ισοτιμιών στο EViews
Προβλέψεις ισοτιμιών στο EViews Θεωρητικό πλαίσιο προβλέψεων σημείου Σημαντικές επιλογές πλαισίου: Τί θα κάνουμε με την πρόβλεψη; Θα την μοιραστούμε με πολλούς πελάτες, που θα την χρησιμοποιήσουν με διαφορετικό
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Statistical product and service solution
SPSS Statistical product and service SPSS SPSS solution SPSS Statistics 17.5
Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ
Lampiran 2 Hasil Kuesioner No. BA1 BA2 BA3 BA4 PQ1 PQ2 PQ3 PQ4 PQ5 1 4 3 3 4 4 5 4 5 4 2 5 5 4 5 4 4 3 5 4 3 2 1 3 2 3 3 4 3 3 4 2 3 3 2 4 4 4 3 4 5 2 3 2 2 3 3 3 3 3 6 3 3 3 3 4 4 4 5 4 7 4 3 3 4 3 3
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
Παράδειγμα: Γούργουλης Βασίλειος, Επίκουρος Καθηγητής Τ.Ε.Φ.Α.Α.-Δ.Π.Θ.
Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ περισσότερων από δύο δειγμάτων, που διαχωρίζονται βάσει δύο ανεξάρτητων παραγόντων (Ανάλυση διακύμανσης για ανεξάρτητα δείγματα ως προς περισσότερους
m4.3 Chris Parrish June 16, 2016
m4.3 Chris Parrish June 16, 2016 Contents!Kung model 1 data..................................................... 1 scatterplot with ggplot2....................................... 2 model....................................................
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
794 Appendix A:Tables
Appendix A Tables A Table Contents Page A.1 Random numbers 794 A.2 Orthogonal polynomial trend contrast coefficients 800 A.3 Standard normal distribution 801 A.4 Student s t-distribution 802 A.5 Chi-squared
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Περιεχόμενα Εισαγωγή Το πρόβλημα - Συντελεστής συσχέτισης Μοντέλο απλής γραμμικής παλινδρόμησης
Stata Session 3. Tarjei Havnes. University of Oslo. Statistics Norway. ECON 4136, UiO, 2012
Stata Session 3 Tarjei Havnes 1 ESOP and Department of Economics University of Oslo 2 Research department Statistics Norway ECON 4136, UiO, 2012 Tarjei Havnes (University of Oslo) Stata Session 3 ECON
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Πρακτική με SPSS (1)
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Πρακτική με SPSS (1) Εισαγωγή στο SPSS Παρουσίαση ποσοτικών και ποιοτικών δεδομένων Φίλιππος Ορφανός Εργαστήριο Υγιεινής, Επιδημιολογίας και Ιατρικής Στατιστικής, Πανεπιστήμιο Αθηνών orfanos@nut.uoa.gr