NFATEC L11 Restrained beams (25/02/2004) {LASTEDIT}Roger 25/02/04{/LASTEDIT} {LECTURE} {LTITLE} Πλευρικά εξασφαλισµένες δοκοί {/LTITLE}
|
|
- Αιθήρ Κόρακας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 NFATEC L11 Restrained beams (25/02/2004) {LASTEDIT}Roger 25/02/04{/LASTEDIT} {LECTURE} {LTITLE} Πλευρικά εξασφαλισµένες δοκοί {/LTITLE} {AUTHOR}Roger{/AUTHOR} {PREREQUISITES} Θεωρία ελαστικότητας για απλή κάµψη Μηχανικές ιδιότητες χάλυβος Κατηγορίες διατοµών σε κατηγορίες. {/PREREQUISITES} {OBJECTIVES} Μετά την επιτυχή ολοκλήρωση αυτής της διάλεξης θα πρέπει: Να έχετε εξοικειωθεί µε τις µεθοδολογίες για το σχεδιασµό πλευρικά εξασφαλισµένων δοκών, Να µπορείτε να σχεδιάσετε µια δοκό µε κριτήριο την αντοχή σε κάµψη, Να µπορείτε να ελέγχετε µια δοκό για ικανοποίηση των κριτηρίων λειτουργικότητας, Να γνωρίζετε τον τρόπο αποµείωσης της καµπτικής αντοχής δοκού ώστε αυτή να µπορεί να φέρει υψηλά διατµητικά φορτία. {/OBJECTIVES} {REFERENCES} pren :2003 Eurocode 3: Design of steel structures Part 1-1 General rules and rules for buildings. Stage 49 draft (Nov 2003). Trahair, N.S. and Bradord, M.A., The Behaviour and Design of Steel Structures, E & F Spon, Galambos, T.V., Structural Members and Frames, Prentice-Hall, 1968 Narayanan, R., Beams and Beam Columns - Stability and Strength, Applied Science, London, 1983
2 {/REFERENCES} {OVERVIEW} Μια ποικιλία διατοµών είναι διαθέσιµες για δοκούς. Η επιλογή εξαρτάται από το φορτίο και το άνοιγµα. Οι δοκοί συνήθως διαστασιολογούνται µε βάση την αντοχή σε ροπή κάµψης. Η δυσκαµψία και η επίδρασή της στα βέλη υπό φορτία λειτουργίας είναι επίσης µια σηµαντική παράµετρος. Οι δοκοί στις οποίες παρεµποδίζεται η πλευρική µετακίνηση λέγονται πλευρικά εξασφαλισµένες. Η αντοχή σε ροπή κάµψης εξαρτάται από την κατάταξη της διατοµής σε κατηγορία. Η επίδραση στη αντοχή σε ροπή κάµψης τεµνουσών δυνάµεων που συνυπάρχουν στη διατοµή µπορεί να αγνοείται εάν αυτές είναι µικρότερες από 50% της πλαστικής αντοχής σε τέµνουσα. {/OVERVIEW} {SECTION} {STITLE}Εισαγωγή{/STITLE} {SUMMARY} {SUMTITLE}Τύποι δοκών{/sumtitle} Ένα πλήθος είδους δοκών µπορούν να χρησιµοποιηθούν για διάφορες εφαρµογές. {DETAIL} Οι δοκοί είναι πιθανόν τα πλέον βασικά µέλη µιας κατασκευής. Ένα πλήθος διατοµών και είδους δοκών µπορούν να χρησιµοποιηθούν σε σχέση µε το µέγεθος των φορτίων και του ανοίγµατος, όπως φαίνεται στον πίνακα και τα σχήµατα που ακολουθούν. Είδος οκού Άνοιγµα (m) Παρατηρήσεις 0. Γωνιακά 3-6 χρησιµοποιούνται ως τεγίδες σε στέγες ή µηκίδες όπου µόνο µικρά φορτία πρέπει να παραληφθούν. 1. ιατοµές ψυχρής έλασης 4-8 χρησιµοποιούνται ως τεγίδες σε στέγες ή µηκίδες όπου µόνο µικρά φορτία πρέπει να παραληφθούν. 2 ιατοµές συνεχούς 1-30 οι πλέον συνήθεις διατοµές δοκών το σχήµα τους είναι τέτοιο
3 έλασης UB, IPE, UPN, HE 3. Σύνθετες διατοµές ανοικτού κορµού 4. οκοί µε διάτρητους κορµούς 5. Σύνθετες διατοµές π.χ. IPE + UPN 6. Σύνθετες διατοµές από ελάσµατα 7. Κιβωτοειδείς διατοµές ώστε να αποφεύγονται πολλά πιθανά είδη αστοχίας προκατασκευασµένες µε γωνιακά ή κοιλοδοκούς σαν ράβδους πληρώσεως και κυκλικές διατοµές σαν διαγώνιες, αντί για διατοµές συνεχούς έλασης χρησιµοποιούνται σε µεγάλα ανοίγµατα και/ή µικρά φορτία. Το ύψος των UB αυξάνεται κατά 50% και τα ανοίγµατα στον κορµό µπορούν να αξοιοποιηθούν λειτουργικά χρησιµοποιούνται όταν µία απλή διατοµή δεν επαρκεί σε κάµψη. Συχνά διατάσσονται ώστε να παρέχουν επαρκή εγκάρσια ακαµψία κατασκευάζονται συγκολλώντας 3 ελάσµατα µαζί, µερικές φορές αυτόµατα. Ύψος κορµού έως και 3-4m, ενίοτε απαιτείται ενίσχυση κατασκευάζονται από ελάσµατα, συνήθως ενισχυµένα. Χρησιµοποιούνται για γερανοδοκούς και γέφυρες λόγω της καλής συµπεριφοράς σε στρεπτική και εγκάρσια καταπόνηση. {FIGURE}Πίνακας 1. Τυπικά είδη δοκών για διάφορες εφαρµογές {/FIGURE} {IMAGE}Cold formed sections.jpg{/image} {FIGURE}Σχήµα 1. ιατοµές ψυχρής ελάσεως που χρησιµοποιούνται ως τεγίδες{/figure} {IMAGE}Simple beam.jpg{/image} {FIGURE} Σχήµα 2. Απλή δοκός{/figure} {IMAGE}Castellated beam.jpg{/image} {FIGURE} Σχήµα 3. οκός µε διάτρητο κορµό {/FIGURE} {IMAGE}Plate girder.jpg{/image} {FIGURE} Σχήµα 4. οκός µε σύνθετη διατοµή {/FIGURE} {IMAGE}Box girder.jpg{/image} {FIGURE} Σχήµα 5. οκός µε κιβωτοειδή διατοµή {/FIGURE}
4 {/DETAIL} {/SUMMARY} {SUMMARY} {SUMTITLE}Πλευρική εξασφάλιση δοκού{/sumtitle} Οι πλευρικά εξασφαλισµένες δοκοί µπορούν να διαστασιολογηθούν απλά µε βάση την αντοχή τους έναντι ροπής κάµψης και τη δυσκαµψία τους. Η πλευρική εξασφάλιση εξαρτάται από άλλα δοµικά στοιχεία ( συνεχή ή διακριτά), όπως πλάκες πατωµάτων ή δευτερεύουσες δοκούς, που εµποδίζουν την πλευρική µετατόπιση ή στροφή της διατοµής. {PPT}Lecture11Intro.pps{/PPT} {DETAIL} Οι χαλύβδινες δοκοί µπορούν συνήθως να σχεδιαστούν µε βάση την αντοχή σε κάµψη (εξασφαλίζοντας ότι η ροπή αντοχής σε κάµψη υπερβαίνει τη µέγιστη ροπή που εφαρµόζεται) και τη δυσκαµψία, δηλ. ότι η δοκός δεν παραµορφώνεται πέραν των µεγίστων ορίων λειτουργικότητας. οκοί που δεν µπορούν να µετατοπισθούν εγκάρσια καλούνται εξασφαλισµένες και δεν επηρεάζονται από εκτός του επιπέδου λυγισµό (πλευρική αστάθεια). Ως εξασφαλισµένες θεωρούνται δοκοί για τις οποίες εξασφαλίζεται πλήρης πλευρική στήριξη, αν για παράδειγµα το άνω πέλµα αµφιερείστου δοκού στηρίζεται στο σύστηµα δαπέδου (πολλοί µελετητές θεωρούν ότι η τριβή µεταξύ πλάκας σκυροδέµατος και χαλύβδινης δοκού εξασφαλίζει επαρκή στήριξη) ή παρέχεται επαρκής στρεπτική αντίσταση στο θλιβόµενο πέλµα, για παράδειγµα, µέσω χαλύβδινων φύλλων οροφής ή υπάρχουν πυκνά τοποθετηµένοι εγκάρσιοι σύνδεσµοι ώστε η λυγηρότητα περί τον ασθενή άξονα να είναι µικρή (βλέπε µή-εξασφαλισµένες δοκοί για περισσότερες λεπτοµέρειες). Επιπρόσθετα, διατοµές καµπτόµενες περί τον ασθενή άξονα δεν αστοχούν λόγω στρεπτο-καµπτικού λυγισµού, και δεν είναι πιθανό να αστοχήσουν τοιουτοτρόπως διατοµές µε µεγάλη στρεπτική και εγκάρσια δυσκαµψία (π.χ. ορθογωνικές κοιλοδοκοί). Το υλικό που παρουσιάζεται στη διάλεξη αυτή προϋποθέτει επαρκή πλευρική εξασφάλιση για τις δοκούς. Στην πράξη είναι ευθύνη του µελετητή να εξασφαλίσει ότι οι κατασκευαστικές λεπτοµέρειες θα είναι συνεπείς µε αυτή την παραδοχή. {/DETAIL} {/SUMMARY} {/SECTION} {SECTION} {STITLE} Καµπτική Αντοχή {/STITLE}
5 {SUMMARY} {SUMTITLE}Βασικές αρχές{/sumtitle} Η αντοχή ροπής σχεδιασµού µιας διατοµής εξαρτάται από το σχήµα της διατοµής, την αντοχή του υλικού και την κατηγορία της διατοµής. {PPT}Lecture11MR.pps{/PPT} {DETAIL} Σε µία απλή αµφιέρειστη δοκό, όπως φαίνεται στο παρακάτω σχήµα, αστοχία επέρχεται όταν η τιµή της ροπής σχεδιασµού {EQN}MEd.gif{/EQN} υπερβαίνει την καµπτική αντοχή της διατοµής, η τιµή της οποίας εξαρτάται από τη γεωµετρία της διατοµής, την αντοχή του υλικού και την κατηγορία της διατοµής. {IMAGE}L11I1.jpg{/IMAGE} {FIGURE}Σχήµα 6. Συµπεριφορά µιας αµφιέρειστης δοκού, που δείχνει το εφαρµοζόµενο φορτίο {EQN}F.gif{/EQN} ως προς το κατακόρυφο βέλος {EQN}delta.gif{/EQN} (a) Ελαστικό (b) Ελαστοπλαστικό (c) Πλαστικό{/FIGURE} Σε περιπτώσεις όπου η τέµνουσα στη διατοµή µπορεί να θεωρηθεί µικρή τόσο ώστε η επίδρασή της επί της καµπτικής αντοχής να µπορεί να αγνοηθεί (ο EC3 ορίζει ως τέτοια τιµή το 50% της πλαστικής αντοχής σε διάτµηση), τότε η καµπτική αντοχή σχεδιασµού {EQN}McRd.gif{/EQN} µπορεί να ληφθεί ως Για διατοµές κατηγορίας 1 και 2, η πλαστική ροπή της πλήρους διατοµής {EQN}L11E1.gif{/EQN} {ECLINK}EC3:Μέρος 1-1:6.2.5(2) (6.13){/ECLINK} Για διατοµές κατηγορίας 3, η ελαστική ροπή αντοχής της πλήρους διατοµής {EQN}L11E2.gif{/EQN} {ECLINK}EC3:Μέρος 1-1:6.2.5(2) (6.14){/ECLINK} Για διατοµές κατηγορίας 4, η αντοχή έναντι τοπικού λυγισµού {EQN}L11E3.gif{/EQN} {ECLINK}EC3:Μέρος 1-1:6.2.5(2) (6.15){/ECLINK}
6 {/DETAIL} {/SUMMARY} {TEST} {TTITLE}Παράγοντες που επηρεάζουν την αντοχή σε ροπή{/ttitle} {QUESTION} {QTITLE} Αντοχή σε ροπή {/QTITLE} {QTYPE}MC{/QTYPE} {QTEXT} Ποια από τις επόµενες παραµέτρους επηρεάζει την αντοχή µιας διατοµής σε ροπή; {/QTEXT} σχήµα διατοµής {CHECKMARK}1{/CHECKMARK} {CHECK}Ναι το σχήµα της διατοµής έχει σηµαντική επιρροή{/check} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Το σχήµα της διατοµής έχει σηµαντική επιρροή {/UNCHECK} αντοχή υλικού {CHECKMARK}1{/CHECKMARK} {CHECK} Ναι η αντοχή του υλικού έχει σηµαντική επιρροή {/CHECK} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Η αντοχή του υλικού έχει σηµαντική επιρροή {/UNCHECK}
7 κατηγορία διατοµής {CHECKMARK}1{/CHECKMARK} {CHECK} Ναι η κατηγορία της διατοµής έχει σηµαντική επιρροή {/CHECK} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Η κατηγορία της διατοµής έχει σηµαντική επιρροή {/UNCHECK} άνοιγµα δοκού {CHECKMARK}0{/CHECKMARK} {CHECK}Όχι το άνοιγµα της δοκού δεν επηρεάζει την αντοχή σε καµπτική ροπή {/CHECK} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Το άνοιγµα της δοκού δεν επηρεάζει την αντοχή σε καµπτική ροπή {/UNCHECK} φορτίο {CHECKMARK}0{/CHECKMARK} {CHECK} Όχι το φορτίο δεν επηρεάζει την αντοχή σε καµπτική ροπή {/CHECK} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Το φορτίο δεν επηρεάζει την αντοχή σε καµπτική ροπή {/UNCHECK}
8 συνθήκες στήριξης {CHECKMARK}0{/CHECKMARK} {CHECK} Όχι οι συνθήκες στήριξης δεν επηρεάζουν την αντοχή σε καµπτική ροπή {/CHECK} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Οι συνθήκες στήριξης δεν επηρεάζουν την αντοχή σε καµπτική ροπή {/UNCHECK} {FEEDBACK} Η αντοχή σε καµπτική ροπή µιας διατοµής κυριαρχείται από το σχήµα της διατοµής, την αντοχή του υλικού και την κατηγορία της διατοµής {/FEEDBACK} {/QUESTION} {QUESTION} {QTITLE}Ροπή-στροφή και κατηγορία διατοµής {/QTITLE} {QTYPE}M{/QTYPE} {QTEXT}Να συσχετιστεί η συµπεριφορά ροπής-στροφής που φαίνεται στο σχήµα µε την κατηγορία της διατοµής {/QTEXT} Κατηγορία διατοµής 1 {MARK}1{/MARK} {MATCH} {IMAGE}L11I5.jpg{/IMAGE} {/MATCH} {REASON}Οι διατοµές κατηγορίας 1 µπορούν να αναπτύξουν πλαστική άρθρωση µε την απαιτούµενη στροφική ικανότητα για πλαστική ανάλυση.{/reason}
9 Κατηγορία διατοµής 2 {MARK}1{/MARK} {MATCH} {IMAGE}L11I6.jpg{/IMAGE} {/MATCH} {REASON} Οι διατοµές κατηγορίας 2 µπορούν να αναπτύξουν πλαστική άρθρωση αλλά διαθέτουν περιορισµένη στροφική ικανότητα (και εποµένως είναι ακατάλληλες για πλαστική ανάλυση).{/reason} Κατηγορία διατοµής 3 {MARK}1{/MARK} {MATCH} {IMAGE}L11I7.jpg{/IMAGE} {/MATCH} {REASON} Οι διατοµές κατηγορίας 3 µπορούν να αναπτύξουν την τάση διαρροής στις ακραίες ίνες, αλλά ο σχηµατισµός πλαστικής άρθρωσης παρεµποδίζεται από την εµφάνιση τοπικού λυγισµού.{/reason} Κατηγορία διατοµής 4 {MARK}1{/MARK} {MATCH} {IMAGE}L11I8.jpg{/IMAGE}
10 {/MATCH} {REASON} Σε διατοµές κατηγορίας 4 η εµφάνιση τοπικού λυγισµού περιορίζει την αντοχή σε ροπή και απαιτείται συγκεκριµένη αποµείωση.{/reason} {/QUESTION} {QUESTION} {QTITLE}Κατηγορία διατοµής πλαστική αντοχή και πλήρης στροφή{/qtitle} {QTYPE}N{/QTYPE} {QTEXT}Ποια κατηγορία διατοµής µπορεί να αναπτύξει την πλαστική ροπή αντοχής και έχει δυνατότητα πλήρους στροφής {/QTEXT} {VARMIN}1{/VARMIN} {VARMAX}1{/VARMAX} {FEEDBACK} Μόνον οι διατοµές κατηγορίας 1 µπορούν να αναπτύξουν πλαστική άρθρωση µε την απαιτούµενη στροφική ικανότητα για πλαστική ανάλυση.{/feedback} {/QUESTION} {QUESTION} {QTITLE} Κατηγορία διατοµής πλαστική αντοχή αλλά περιορισµένη στροφή {/QTITLE} {QTYPE}N{/QTYPE} {QTEXT} Ποια κατηγορία διατοµής µπορεί να αναπτύξει την πλαστική ροπή αντοχής αλλά έχει χαµηλή στροφική ικανότητα;{/qtext} {VARMIN}2{/VARMIN}
11 {VARMAX}2{/VARMAX} {FEEDBACK} Οι διατοµές κατηγορίας 2 µπορούν να αναπτύξουν πλαστική άρθρωση αλλά διαθέτουν περιορισµένη στροφική ικανότητα (και εποµένως είναι ακατάλληλες για πλαστική ανάλυση).{/feedback} {/QUESTION} {QUESTION} {QTITLE}Κατηγορία διατοµής ελαστική αντοχή και όχι στροφή{/qtitle} {QTYPE}N{/QTYPE} {QTEXT} Ποια κατηγορία διατοµής µπορεί να αναπτύξει την πλήρη ελαστική ροπή αντοχής της και δεν έχει στροφική ικανότητα;{/qtext} {VARMIN}3{/VARMIN} {VARMAX}3{/VARMAX} {FEEDBACK} Οι διατοµές κατηγορίας 3 µπορούν να αναπτύξουν την τάση διαρροής στις ακραίες ίνες, αλλά ο σχηµατισµός πλαστικής άρθρωσης παρεµποδίζεται από την εµφάνιση τοπικού λυγισµού.{/feedback} {/QUESTION} {QUESTION} {QTITLE} Κατηγορία διατοµής περιορισµένη αντοχή και όχι στροφή {/QTITLE} {QTYPE}N{/QTYPE} {QTEXT} Ποια κατηγορία διατοµής µπορεί να αναπτύξει µόνο περιορισµένη ελαστική ροπή αντοχής (µε βάση µια ενεργό διατοµή) και δεν έχει στροφική ικανότητα; {/QTEXT} {VARMIN}4{/VARMIN}
12 {VARMAX}4{/VARMAX} {FEEDBACK} Οι διατοµές κατηγορίας 4 έχουν περιορισµένη ελαστική ροπή αντοχής βάσει συγκεκριµένης αποµείωσης λόγω τοπικού λυγισµού.{/feedback} {/QUESTION} {/TEST} {SUMMARY} {SUMTITLE}Επιρροή οπών{/sumtitle} Η ροπή αντοχής σχεδιασµού µπορεί να θεωρηθεί ότι δεν επηρεάζεται από οπές κοχλιών, υπό την προϋπόθεση ότι η αποµείωση της διατοµής είναι µικρή. {PPT}Lecture11Holes.pps{/PPT} {DETAIL} Εάν οι οπές βρίσκονται στο εφελκυόµενο πέλµα στην κρίσιµη διατοµή, απαιτείται να ελεγχθεί ότι ο λόγος καθαρής διατοµής προς πλήρη διατοµή δεν είναι τόσο µικρός ώστε να συµβεί θραύση στην καθαρή διατοµή πριν διαρρεύσει η πλήρης διατοµή. Ο έλεγχος αυτός είναι ο ίδιος µε αυτόν για όλκιµα µέλη και θα ικανοποιείται εάν {EQN}L11Eeqn8.gif{/EQN} {ECLINK}6.2.5(4) (6.16){/ECLINK} Συνιστώνται τιµές 1,00 για {EQN}gammaM0.gif{/EQN} και 1,25 για {EQN}gammaM2.gif{/EQN}, αλλά άλλες τιµές µπορούν να οριστούν στα εθνικά παραρτήµατα. Εάν υιοθετηθούν οι συνιστώµενες τιµές, η παραπάνω σχέση, για εφελκυόµενα πέλµατα πάχους µικρότερου από 40mm, γίνεται {EQN}AfnetAf81.gif{/EQN} για S275 {EQN}AfnetAf88.gif{/EQN} για S355 Εάν {EQN}AfnetAf.gif{/EQN}είναι µικρότερο από το όριο αυτό, µπορεί να υποτεθεί ένα αποµειωµένο πέλµα {EQN}Af.gif{/EQN} που να ικανοποιεί το όριο, δηλαδή το αποµειωµένο εµβαδό πέλµατος να είναι ίσο µε {EQN}Afnet.gif{/EQN} διαιρούµενο δια της οριακής τιµής. Οι οπές κοχλιών σε εφελκυόµενη ζώνη του κορµού πρέπει να αντιµετωπίζονται αναλόγως µε τα προηγούµενα, αλλά οι οπές σε θλιβόµενη ζώνη (για πέλµατα και κορµό) µπορούν να αγνοηθούν εκτός εάν είναι υπερµεγέθεις ή επιµήκεις.
13 {/DETAIL} {/SUMMARY} {TEST} {TTITLE}Οπές κοχλιών{/ttitle} {QUESTION} {QTITLE}Θέση οπών{/qtitle} {QTYPE}MC{/QTYPE} {QTEXT}Οπές κοχλιών σε ποια από τα επόµενα τµήµατα µιας διατοµής απαιτούν επιπλέον έλεγχο; {/QTEXT} θλιβόµενο πέλµα {CHECKMARK}0{/CHECKMARK} {CHECK}Οπές κοχλιών σε θλιβόµενο πέλµα µπορούν να αγνοηθούν εκτός εάν είναι υπερµεγέθεις ή επιµήκεις.{/check} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Οπές κοχλιών σε θλιβόµενο πέλµα µπορούν να αγνοηθούν εκτός εάν είναι υπερµεγέθεις ή επιµήκεις.{/uncheck} κορµός (θλιβόµενη ζώνη) {CHECKMARK}0{/CHECKMARK} {CHECK} Οπές κοχλιών σε θλιβόµενη ζώνη κορµού µπορούν να αγνοηθούν εκτός εάν είναι υπερµεγέθεις ή επιµήκεις.{/check} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Οπές κοχλιών σε θλιβόµενη ζώνη κορµού µπορούν να αγνοηθούν εκτός εάν είναι υπερµεγέθεις ή επιµήκεις.{/uncheck}
14 εφελκυόµενο πέλµα {CHECKMARK}1{/CHECKMARK} {CHECK}Ναι όπου υπάρχουν οπές κοχλιών σε εφελκυόµενο πέλµα, µπορεί να απαιτούνται επιπλέον έλεγχοι.{/check} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Όχι όπου υπάρχουν οπές κοχλιών σε εφελκυόµενο πέλµα, µπορεί να απαιτούνται επιπλέον έλεγχοι.{/uncheck} κορµός (εφελκυόµενη ζώνη) {CHECKMARK}0{/CHECKMARK} {CHECK} Ναι όπου υπάρχουν οπές κοχλιών στην εφελκυόµενη ζώνη του κορµού, µπορεί να απαιτούνται επιπλέον έλεγχοι.{/check} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Όπου υπάρχουν οπές κοχλιών στην εφελκυόµενη ζώνη του κορµού, µπορεί να απαιτούνται επιπλέον έλεγχοι.{/uncheck} {/QUESTION} {QUESTION} {QTITLE}Περιορισµός µεγέθους οπής - S275{/QTITLE} {QTYPE}N{/QTYPE} {QTEXT}Για ποιότητα χάλυβα S275 και πάχος πέλµατος µικρότερο από 40mm, ποιος είναι ο λόγος αποµειωµένης προς πλήρη διατοµή του εφελκυόµενου πέλµατος (µε ακρίβεια δύο δεκαδικών ψηφίων), πάνω από τον οποίο µπορούν να αγνοηθούν οι οπές
15 κοχλιών, υποθέτοντας τις συνιστώµενες τιµές για τους µερικούς συντελεστές ασφαλείας {EQN}gammaM0.gif{/EQN} και {EQN}gammaM2.gif{/EQN}; {/QTEXT} {VARMIN}0.81{/VARMIN} {VARMAX}0.81{/VARMAX} {FEEDBACK} Χρησιµοποιώντας τιµές 1,00 για {EQN}gammaM0.gif{/EQN} και 1,25 για {EQN}gammaM2.gif{/EQN} η γενική σχέση γίνεται {EQN}AfnetAf81.gif{/EQN} {/FEEDBACK} {/QUESTION} {QUESTION} {QTITLE}Περιορισµός µεγέθους οπών - S355{/QTITLE} {QTYPE}N{/QTYPE} {QTEXT} Για ποιότητα χάλυβα S355 και πάχος πέλµατος µικρότερο από 40mm, ποιος είναι ο λόγος αποµειωµένης προς πλήρη διατοµή του εφελκυόµενου πέλµατος (µε ακρίβεια δύο δεκαδικών ψηφίων), πάνω από τον οποίο µπορούν να αγνοηθούν οι οπές κοχλιών, υποθέτοντας τις συνιστώµενες τιµές για τους µερικούς συντελεστές ασφαλείας {EQN}gammaM0.gif{/EQN} and {EQN}gammaM2.gif{/EQN}?{/QTEXT} {VARMIN}0.88{/VARMIN} {VARMAX}0.88{/VARMAX} {FEEDBACK} Χρησιµοποιώντας τιµές 1,00 για {EQN}gammaM0.gif{/EQN} και 1,25 για {EQN}gammaM2.gif{/EQN} η γενική σχέση γίνεται {EQN}AfnetAf88.gif{/EQN} {/FEEDBACK}
16 {/QUESTION} {/TEST} {SUMMARY} {SUMTITLE}Συνεχείς δοκοί{/sumtitle} Οι συνεχείς δοκοί µπορούν να σχεδιαστούν πλαστικά, επιτρέποντας το σχηµατισµό διαδοχικών πλαστικών αρθρώσεων, υπό την προϋπόθεση ότι χρησιµοποιούνται διατοµές κατηγορίας 1. {DETAIL} Εδώ πρέπει να σηµειωθεί ότι για συνεχείς φορείς (υπερστατικούς), η προσέγγιση της ροπής αντοχής σχεδιασµού στο σηµείο µέγιστης ροπής µέσω ελαστικής ανάλυσης δεν οδηγεί συνήθως σε κατάρρευση (βλ. το παρακάτω σχήµα). Αντίθετα, η διατοµή στο σηµείο αυτό θα συµπεριφερθεί ως άρθρωση -µε την προϋπόθεση ότι έχει την απαιτούµενη στροφική ικανότητα- και το διάγραµµα ροπών θα µεταβληθεί από την αρχική ελαστική κατάσταση καθώς θα δηµιουργούνται οι πλαστικές αρθρώσεις. Αναδιανοµή των ροπών δίνει τη δυνατότητα στην κατασκευή να φέρει φορτία µεγαλύτερα αυτών που προκαλούν την πρώτη άρθρωση µέχρις ότου σχηµατισθεί αριθµός αρθρώσεων τέτοιος ώστε η κατασκευή να είναι πλέον µηχανισµός. Αυτός είναι ο πλαστικός σχεδιασµός και απαιτούνται διατοµές µε στροφική ικανότητα τέτοια ώστε να διατηρούν πλαστική αντοχή σε ροπή, δηλαδή διατοµές κατηγορίας 1. {IMAGE}L11I2.jpg{/IMAGE} {FIGURE}Σχήµα 7. Καµπύλη φορτίου µετατόπισης για µία υπερστατική δοκό που περιγράφει τη µεταβολή του εφαρµοζόµενου φορτίου {EQN}F.gif{/EQN} ως προς το κατακόρυφο βέλος {EQN}delta.gif{/EQN}. Η πραγµατική συµπεριφορά φαίνεται µε µπλέ, και η συµπεριφορά σύµφωνα µε την απλή πλαστική θεωρία µε κόκκινο. (a) Ελαστικό (b) Ελαστοπλαστικό (c) Πλαστικό {EQN}Fy.gif{/EQN} φορτίο πρώτης διαρροής; {EQN}F1.gif{/EQN} φορτίο πρώτης πλαστικής άρθρωσης; {EQN}FC.gif{/EQN} φορτίο κατάρρευσης{/figure} {/DETAIL} {/SUMMARY} {TEST} {TTITLE}Μηχανισµοί κατάρρευσης {/TTITLE}
17 {QUESTION} {QTITLE} ιατάξεις πλαστικών αρθρώσεων που προκαλούν κατάρρευση {/QTITLE} {QTYPE}N{/QTYPE} {QTEXT}Σε ένα τρεις φορές υπερστατικό σύστηµα, πόσες πλαστικές αρθρώσεις απαιτούνται κανονικά για να προκληθεί κατάρρευση; {/QTEXT} {VARMIN}4{/VARMIN} {VARMAX}4{/VARMAX} {/QUESTION} {/TEST} {/SECTION} {SECTION} {STITLE}Αντοχή σε διάτµηση{/stitle} {SUMMARY} {SUMTITLE}Παραδοχές{/SUMTITLE} Ο σχεδιασµός για αντοχή σε διάτµηση, που συνήθως δεν είναι κρίσιµη κατάσταση, βασίζεται σε µια απλοποιηµένη κατανοµή τάσεων και αντοχή υλικού ίση µε {EQN}fyRt3.gif{/EQN}. Η αντοχή σε διάτµηση θεωρείται ότι παρέχεται µόνο από το τµήµα της διατοµής που είναι παράλληλο µε τη διεύθυνση της τέµνουσας δύναµης. {PPT}Lecture11Shear res.pps{/ppt} {DETAIL} Η κάµψη είναι ο βασικός παράγοντας σχεδιασµού χαλύβδινων δοκών αλλά και η αντοχή σε διάτµηση µπορεί να είναι αρκετά σηµαντική σε δοκούς µικρού µήκους υπό σηµαντικά συγκεντρωµένα φορτία. Το επόµενο σχήµα δείχνει την κατανοµή των διατµητικών τάσεων σε µία δοκό Ι στην ελαστική περιοχή. Σχεδόν το σύνολο της τέµνουσας δύναµης παραλαµβάνεται από τον κορµό και επειδή η µεταβολή των διατµητικών τάσεων στον
18 κορµό είναι µικρή µπορεί να ληφθεί µε ικανοποιητική ακρίβεια µία µέση τιµή διατµητικών τάσεων στον κορµό. Cross-section {IMAGE}L11I3a.jpg{/IMAGE} {IMAGE}L11I3c.jpg{/IMAGE} Distribution of shear stress {EQN}tau.gif{/EQN} {IMAGE}L11I3b.jpg{/IMAGE} {IMAGE}L11I3d.jpg{/IMAGE} {FIGURE}Σχήµα 8. Κατανοµή διατµητικών τάσεων σε δοκούς {/FIGURE} Η τάση διαρροής του χάλυβα σε διάτµηση είναι περίπου ίση µε {EQN}fyRt3.gif{/EQN}. Συνεπώς, η τιµή σχεδιασµού σε τέµνουσα {EQN}VSd.gif{/EQN}κάθε διατοµής συγκρίνεται µε την πλαστική αντοχή σε τέµνουσα, {EQN}VplRd.gif{/EQN} της επιφάνειας διάτµησης {EQN}Av.gif{/EQN}. {EQN}L11E4.gif{/EQN} {ECLINK}EC3:Part 1-1:6.2.6(1) (6.18){/ECLINK} Οι επιφάνειες διάτµησης για διάφορους τύπους διατοµών φαίνονται στον πίνακα που ακολουθεί. Η επόµενη εξίσωση ισχύει για όλους τους κορµούς, αλλά κορµοί που δεν είναι αρκετά παχείς µπορεί να αστοχήσουν πρόωρα από λυγισµό λόγω διάτµησης. Η αντοχή σε λυγισµό λόγω διάτµησης πρέπει να ελέγχεται αν η λυγηρότητα του κορµού {EQN}dtw.gif{/EQN}υπερβαίνει τα όρια που καθορίζονται στο {ECLINK}EC3 Μέρος 1-5 παράγραφος 5.1(2){/ECLINK}. Τα όρια εξαρτώνται από την ποιότητα του χάλυβα. Πρότυπες Φορτίο παράλληλα στον κορµό 1,04 {EQN}h.gif{/EQN}{EQN}dtw.gif{/EQN} * {IMAGE}Table21.wmf{/IMAGE} ιατοµές I και H Κατασκευασµένες Φορτίο παράλληλα στον κορµό {EQN}h2tf.gif{/EQN}{EQN}tw.gif{/EQN} {IMAGE}Table21.wmf{/IMAGE} Φορτίο παράλληλα στα πέλµατα {EQN}h2tf.gif{/EQN}{EQN}tw.gif{/EQN} * {IMAGE}Table22.wmf{/IMAGE} Πρότυπες διατοµές Ού Φορτίο παράλληλα στον κορµό {IMAGE}Table23.wmf{/IMAGE}
19 1,04 {EQN}h.gif{/EQN}{EQN}dtw.gif{/EQN} * Πρότυπες διατοµές γωνιακού Φορτίο παράλληλα στο µακρύτερο σκέλος {EQN}h.gif{/EQN}{EQN}t.gif{/EQN} * Πρότυπες ορθογωνικές κοίλες Φορτίο παράλληλα στο ύψος {EQN}Ahbh.gif{/EQN} ** {IMAGE}Table24.wmf{/IMAGE} ιατοµές µε οµοιόµορφο πάχος Φορτίο παράλληλα στο πλάτος {EQN}Ahbh.gif{/EQN} ** Κυκλικές κοίλες διατοµές και σωλήνες µε οµοιόµορφο πάχος 0,6 {EQN}A.gif{/EQN} ** {IMAGE}Table25.wmf{/IMAGE} Ελάσµατα και συµπαγείς ράβδοι {EQN}A.gif{/EQN} ** {IMAGE}Table26.wmf{/IMAGE} * Πρόκειται για προσεγγιστικό τύπο. Πλέον ακριβείς τιµές του {EQN}Av.gif{/EQN} για πρότυπες διατοµές µπορούν να προσδιορισθούν βάσει των ακόλουθων εκφράσεων: για I και H διατοµές: {EQN}Av.gif{/EQN} = {EQN}Avformula.gif{/EQN} για διατοµές ού: {EQN}Av.gif{/EQN} = {EQN}Avformula.gif{/EQN} Αξίζει να σηµειωθεί ότι 1,04 /{EQN}Rt3.gif{/EQN} = 0,60 και συνεπώς για διατοµές I, H ή ού: {EQN}VplRdformula.gif{/EQN} ** {EQN}A.gif{/EQN} είναι η ολική επιφάνεια διατοµής {FIGURE}Πίνακας 2 Επιφάνειες διάτµησης {EQN}Av.gif{/EQN} για τυπικές διατοµές {/DETAIL} {/SUMMARY} {TEST} {TTITLE}Αντοχή σε διάτµηση{/ttitle}
20 {QUESTION} {QTITLE}Επιφάνεια διάτµησης{/qtitle} {QTYPE}MC{/QTYPE} {QTEXT}Ποιο από τα επόµενα µέλη µιας διατοµής είναι κυρίως υπεύθυνο για την αντοχή σε κατακόρυφη διάτµηση;{/qtext} το θλιβόµενο πέλµα {CHECKMARK}0{/CHECKMARK} {CHECK}Το θλιβόµενο πέλµα έχει µόνον αµελητέα συµβολή στην αντοχή σε διάτµηση και αµελείται.{/check} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Το θλιβόµενο πέλµα έχει µόνον αµελητέα συµβολή στην αντοχή σε διάτµηση και αµελείται.{/uncheck} ο κορµός {CHECKMARK}1{/CHECKMARK} {CHECK} Ο κορµός είναι το µέλος της διατοµής που είναι κυρίως υπεύθυνο για την αντοχή σε κατακόρυφη διάτµηση.{/check} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Ο κορµός είναι το µέλος της διατοµής που είναι κυρίως υπεύθυνο για την αντοχή σε κατακόρυφη διάτµηση.{/uncheck} το θλιβόµενο πέλµα το εφελκυόµενο πέλµα
21 {CHECKMARK}0{/CHECKMARK} {CHECK} Το εφελκυόµενο πέλµα έχει µόνον αµελητέα συµβολή στην αντοχή σε διάτµηση και αµελείται.{/check} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Το εφελκυόµενο πέλµα έχει µόνον αµελητέα συµβολή στην αντοχή σε διάτµηση και αµελείται.{/uncheck} {/QUESTION} {/TEST} {/SECTION} {SECTION} {STITLE} Καµπτική αντοχή µε υψηλή τέµνουσα {/STITLE} {SUMMARY} {SUMTITLE} Επίδραση της τέµνουσας στην καµπτική αντοχή {/SUMTITLE} Η καµπτική αντοχή δοκών µε συνυπάρχουσα υψηλή τέµνουσα πρέπει να υπολογίζεται µε βάση µια αποµειωµένη διατοµή. {PPT}Lecture11M and V.pps{/PPT} {DETAIL} Όταν η τέµνουσα σχεδιασµού υπερβαίνει το 50% της πλαστικής αντοχής σε τέµνουσα, η ροπή αντοχής της διατοµής αποµειώνεται ώστε να ληφθεί υπόψη η αλληλεπίδραση ροπής-τέµνουσας. Θεωρείται ότι για συνδυασµό ορθής και διατµητικής τάσης ο χάλυβας διαρρέει σύµφωνα µε την ακόλουθη σχέση {EQN}L11E5.gif{/EQN} {ECLINK}EC3:Part 1-1:6.2.10(2) (6.45){/ECLINK} Η πλαστική ροπή σχεδιασµού µιας διατοµής που φέρει ταυτόχρονα υψηλή τέµνουσα προσδιορίζεται χρησιµοποιώντας µία αποµειωµένη αντοχή για την επιφάνεια διάτµησης. Η αποµειωµένη αυτή αντοχή εξαρτάται από το λόγο της δρώσας τέµνουσας προς την αντοχή σε τέµνουσα βάσει της σχέσης,
22 {EQN}L11E6.gif{/EQN} {ECLINK}EC3:Part 1-1:6.2.10(2) (6.45){/ECLINK} και η αποµειωµένη αντοχή είναι {EQN}rhofy.gif{/EQN} για την επιφάνεια διάτµησης. Για δοκούς διατοµής I ή H καµπτόµενες περί τον ισχυρό άξονα, αυτό οδηγεί στην αποµειωµένη πλαστική ροπή αντοχής (για διατοµές κατηγορίας 1 ή 2) παρουσία τέµνουσας {EQN}MyRd.gif{/EQN}. {EQN}L11E7.gif{/EQN} {ECLINK}EC3:Μέρος 1-1:6.2.8(5) εξίσωση 6.30{/ECLINK} {/DETAIL} {/SUMMARY} {TEST} {TTITLE}Αλληλεπίδραση διάτµησης και κάµψης{/ttitle} {QUESTION} {QTITLE}Ορισµός «υψηλής» τέµνουσας δύναµης{/qtitle} {QTYPE}N{/QTYPE} {QTEXT}Ποια είναι η µέγιστη δρώσα τέµνουσα δύναµη σχεδιασµού, ως αναλογία (µεταξύ 0 και 1) της πλαστικής αντοχής σε τέµνουσα µιας διατοµής, πάνω από την οποία είναι απαραίτητο να λαµβάνεται υπόψη η επίδρασή της στην αντοχή σε ροπή κάµψης; {/QTEXT} {VARMIN}0.5{/VARMIN} {VARMAX}0.5{/VARMAX} {FEEDBACK}Η επίδραση της διάτµησης στην αντοχή σε ροπή κάµψης µπορεί να αµελείται εάν η δρώσα τέµνουσα δύναµη σχεδιασµού είναι µικρότερη από 50% της πλαστικής αντοχής σε τέµνουσα της διατοµής.{/feedback} {/QUESTION}
23 {/TEST} {/SECTION} {SECTION} {STITLE} ιαξονική κάµψη{/stitle} {SUMMARY} {SUMTITLE} οκοί υπό διαξονική κάµψη {/SUMTITLE} οκοί υπό διαξονική κάµψη µπορούν να διαστασιολογούνται µε τη χρήση µιας καµπύλης αλληλεπίδρασης. {DETAIL} οκοί υπό διαξονική κάµψη παρουσιάζουν πλαστικό ουδέτερο άξονα κεκλιµένο ως προς το ορθογωνικό σύστηµα των κυρίων αξόνων, κατά γωνία που εξαρτάται από το λόγο των ροπών που εφαρµόζονται και το ακριβές σχήµα της διατοµής. Το επόµενο σχήµα δείχνει την καµπύλη αλληλεπίδρασης για πλήρη πλαστικοποίηση µιας διατοµής Ι υπό διαξονική κάµψη. {IMAGE}L11I4.jpg{/IMAGE} {FIGURE}Σχήµα 9. Καµπύλη αλληλεπίδρασης για πλήρη πλαστικοποίηση µιας διατοµής Ι υπό διαξονική κάµψη {/FIGURE} Το σχήµα της αλληλεπίδρασης εκφράζεται από {EQN}L11E8.gif{/EQN} {ECLINK}EC3:Part 1-1: (6) (6.41){/ECLINK} {/DETAIL} {/SUMMARY} {/SECTION} {SECTION} {STITLE} Έλεγχοι λειτουργικότητας {/STITLE} {SUMMARY}
24 {SUMTITLE}Deflection control{/sumtitle} Οι δοκοί πρέπει να ελέγχονται, ώστε να αποφεύγονται υπερβολικά βέλη ή δονήσεις, που µπορεί να προκαλέσουν βλάβες σε µη φέροντα στοιχεία καθώς και ανησυχία ή ανασφάλεια στους χρήστες. {PPT}Lecture11Defs.pps{/PPT} {DETAIL} Πέραν των ελέγχων αντοχής που παρουσιάσθηκαν ανωτέρω, επιβάλλονται και έλεγχοι σχετικά µε τη συµπεριφορά δοκών σε καταστάσεις λειτουργικότητας. Οι παραµορφώσεις και ταλαντώσεις των δοκών πρέπει να περιορίζονται, ώστε να αποφεύγονται δυσµενείς επιδράσεις στη µορφή και αποτελεσµατική χρήση του φορέα, αίσθηµα ανασφάλειας ή και φθορές στα µη δοµικά µέλη ή τον εξοπλισµό του κτιρίου. Τα ανεκτά όρια για παραµορφώσεις θα πρέπει να τίθενται από κοινού µε τον πελάτη, το µελετητή και τις αρµόδιες αρχές. Συµβουλευτικά, ο παρακάτω πίνακας δίδει προτεινόµενες οριακές τιµές για κατακόρυφες µετατοπίσεις. Όρια Συνθήκες δ max δ 2 Οροφές γενικώς L/200 L/250 Οροφές που συχνά είναι βατές από προσωπικό πέραν συντήρησης L/250 L/300 άπεδα γενικώς L/250 L/300 άπεδα και οροφές που φέρουν γυψοκατασκευές ή άλλες ψαθυρές ή άκαµπτες κατασκευές άπεδα που φέρουν υποστυλώµατα (εκτός αν το L/250 L/350 L/400 L/500
25 βέλος έχει ληφθεί υπόψη στην ανάλυση οριακής κατάστασης) Όπου δ max βλάπτει την εµφάνιση του κτιρίου L/250 - {FIGURE}Πίνακας 3 Προτεινόµενες οριακές τιµές για κατακόρυφα βέλη {/FIGURE} Σε δηµόσια κτίρια πρέπει να εξασφαλιστεί ότι η ταλάντωση ή δόνηση δεν είναι τόσο µεγάλη που να προκαλεί δυσφορία στους χρήστες. Επαλήθευση επαρκούς σχεδιασµού µπορεί να γίνει µέσω δυναµικής ανάλυσης, αλλά στις περισσότερες περιπτώσεις είναι αρκετό απλώς να περιορισθούν τα βέλη. Για παράδειγµα, δάπεδα διαδρόµων και γραφείων πρέπει να έχουν θεµελιώδη συχνότητα µικρότερη των 3 κύκλων/δευτερόλεπτο. Η συνθήκη αυτή θα ικανοποιείται αν το συνολικό βέλος (βλ. πίνακα ανωτέρω) είναι µικρότερο των 28mm. Για δάπεδα γυµναστηρίων ή αιθουσών χορού, η θεµελιώδης συχνότητα πρέπει να είναι µικρότερη των 5 κύκλων/δευτερόλεπτο - οριακό βέλος 10mm θα ικανοποιεί τη συνθήκη αυτή. Επίπεδες οροφές (µε κλίση µικρότερη των 5 ) είναι ευπαθείς σε βουλιάγµατα εάν παραµορφωθούν έτσι ώστε να σχηµατίζονται λίµνες νερού. Γι αυτό πρέπει να ελέγχονται προσεκτικά οι παραµορφώσεις συµπεριλαµβανοµένων των κατασκευαστικών ατελειών, υποχωρήσεων των θεµελίων, παραµορφώσεων των υλικών της οροφής κλπ. {/DETAIL} {/SUMMARY} {TEST} {TTITLE}Έλεγχοι βελών{/ttitle} {QUESTION} {QTITLE}Επίδραση υπερβολικών βελών {/QTITLE} {QTYPE}MC{/QTYPE} {QTEXT}Υπερβολικά βέλη µπορούν να προκαλέσουν βλάβη ή να υπονοµεύσουν τη λειτουργία ποιών από τα παρακάτω; {/QTEXT}
26 Εµφάνιση {CHECKMARK}1{/CHECKMARK} {CHECK}Ναι η εµφάνιση µπορεί να επηρεαστεί δυσµενώς από υπερβολικά βέλη {/CHECK} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Η εµφάνιση µπορεί να επηρεαστεί δυσµενώς από υπερβολικά βέλη {/UNCHECK} Βλάβη σε επικαλύψεις {CHECKMARK}1{/CHECKMARK} {CHECK} Ναι οι επικαλύψεις µπορεί να υποστούν βλάβη από υπερβολικά βέλη {/CHECK} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Οι επικαλύψεις µπορεί να υποστούν βλάβη από υπερβολικά βέλη {/UNCHECK} Αποτελεσµατική χρήση του κτηρίου {CHECKMARK}1{/CHECKMARK} {CHECK} Ναι η αποτελεσµατική χρήση του κτηρίου µπορεί να επηρεαστεί δυσµενώς από υπερβολικά βέλη {/CHECK} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Η αποτελεσµατική χρήση του κτηρίου µπορεί να επηρεαστεί δυσµενώς από υπερβολικά βέλη.{/uncheck}
27 καµπτική αντοχή {CHECKMARK}0{/CHECKMARK} {CHECK}Όχι η καµπτική αντοχή είναι µια ξεχωριστή θεώρηση από τα βέλη {/CHECK} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Η αντοχή είναι µια ξεχωριστή θεώρηση από τα βέλη {/UNCHECK} αντοχή σε διάτµηση {CHECKMARK}0{/CHECKMARK} {CHECK}Όχι η αντοχή είναι µια ξεχωριστή θεώρηση από τα βέλη {/CHECK} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Η αντοχή είναι µια ξεχωριστή θεώρηση από τα βέλη {/UNCHECK} {/QUESTION} {QUESTION} {QTITLE}Όρια βελών{/qtitle} {QTYPE}MC{/QTYPE} {QTEXT}Τα µέγιστα βέλη συνήθως περιορίζονται σε ένα ποσοστό τίνος από τα επόµενα; {/QTEXT} του ανοίγµατος της δοκού
28 {CHECKMARK}1{/CHECKMARK} {CHECK}Ναι - τα µέγιστα βέλη συνήθως περιορίζονται σε ένα ποσοστό του ανοίγµατος της δοκού {/CHECK} {UNCHECKMARK}0{/UNCHECKMARK} {UNCHECK} Τα µέγιστα βέλη συνήθως περιορίζονται σε ένα ποσοστό του ανοίγµατος της δοκού {/UNCHECK} του ύψους της διατοµής της δοκού {CHECKMARK}0{/CHECKMARK} {CHECK}Όχι - το ύψος της διατοµής της δοκού επηρεάζει τα ίδια τα βέλη, αλλά όχι το επιτρεπόµενο όριο.{/check} {UNCHECKMARK}1{/UNCHECKMARK} {UNCHECK} Το ύψος της διατοµής της δοκού επηρεάζει τα ίδια τα βέλη, αλλά όχι το επιτρεπόµενο όριο.{/uncheck} {/QUESTION} {/TEST} {/SECTION} {SECTION} {STITLE} Σύνοψη {/STITLE} {SUMMARY} Μια ποικιλία διατοµών είναι διαθέσιµες για δοκούς. Η επιλογή εξαρτάται από το φορτίο και το άνοιγµα. Οι δοκοί συνήθως διαστασιολογούνται µε βάση την αντοχή σε ροπή κάµψης. Η δυσκαµψία και η επίδρασή της στα βέλη υπό φορτία λειτουργίας είναι επίσης µια σηµαντική παράµετρος.
29 Οι δοκοί στις οποίες παρεµποδίζεται η πλευρική µετακίνηση λέγονται πλευρικά εξασφαλισµένες. Η αντοχή σε ροπή κάµψης εξαρτάται από την κατάταξη της διατοµής σε κατηγορία. Η επίδραση στη αντοχή σε ροπή κάµψης τεµνουσών δυνάµεων που συνυπάρχουν στη διατοµή µπορεί να αγνοείται εάν αυτές είναι µικρότερες από 50% της πλαστικής αντοχής σε τέµνουσα. {/SUMMARY} {/SECTION} {/LECTURE}
NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR}
NFATEC L12 Unrestrained beams (11/05/2004) {LASTEDIT}Roger 11/05/04{/LASTEDIT} {LECTURE} {LTITLE}Unrestrained Beams{/LTITLE} {AUTHOR}Roger{/AUTHOR} {EMAIL}r.j.plank@sheffield.ac.uk{/EMAIL} {OVERVIEW} οκοί
Για την επιτυχή ολοκλήρωση της διάλεξης αυτής θα πρέπει να γίνει:
NFATEC L Tension members (28/8/23) {LECTURE} {LTITLE} Εφελκυόµενα Μέλη {/LTITLE} {AUTHOR} Miguel Serrano {/AUTHOR} {EMAIL} serrano@correo.uniovi.es {/EMAIL} {LASTEDIT} MAS28/8/3 {/LASTEDIT} {OBJECTIVES}
NFATEC L13 Columns (27/09/2004)
NFATEC L13 Columns (27/09/2004) {LASTEDIT}Roger 27/09/2004{/LASTEDIT} {LECTURE} {LTITLE}Στύλοι{/LTITLE} {AUTHOR}John Ermopoulos{/AUTHOR} {EMAIL}jermop@central.ntua.gr{/EMAIL} {OVERVIEW} Κατασκευαστικά
NFATEC L17 Characterisation and idealization of moment resist joint. Χαρακτηρισµός και προσοµοίωση κόµβων που παραλαµβάνουν ροπή
NFATEC L17 Characterisation and idealization of moment resist joint {LECTURE} {LTITLE} Χαρακτηρισµός και προσοµοίωση κόµβων που παραλαµβάνουν ροπή {/LTITLE} {LASTEDIT} /07/04 {/LASTEDIT} {AUTHOR} Andy
NFATEC L11c Design of steel structures for fire (07/11/2003) Σχεδιασµός κατασκευών από χάλυβα σε συνθήκες φωτιάς κατά τον EC-3
NFATEC L11c Design of steel structures for fire (07/11/2003) {LECTURE} {LTITLE} Σχεδιασµός κατασκευών από χάλυβα σε συνθήκες φωτιάς κατά τον EC-3 {/LTITLE} {AUTHOR} Roger {/AUTHOR} {EMAIL} r.j.plank@sheffield.ac.uk
NFATEC L15 General aspects of structural joints (26/01/2004)
NFATEC L15 General aspects of structural joints (26/01/2004) {LASTEDIT} PAK26/01/04 {/LASTEDIT} {LECTURE} {LTITLE} Γενικές πληροφορίες περί κόµβων {/LTITLE} {AUTHOR} Pat Kirby {/AUTHOR} {EMAIL} patrickkirby@myactiveware.com
NFATEC L11b Design of composite structures for fire (25/05/2003)
NFATEC L11b Design of composite structures for fire (25/05/2003) {LASTEDIT} CLE 20/5/03 {/LASTEDIT} {LECTURE} {LTITLE} EC4 Σχεδιασµός σύµµικτων κατασκευών έναντι φωτιάς {/LTITLE} {AUTHOR} Bruno {/AUTHOR}
Σιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Πλευρικός λυγισμός δοκού γέφυρας Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα. Πού γίνονται σεισμοί?
Τι είναι σεισμός? Γεωγραφική κατανομή σεισμικών δονήσεων τελευταίου αιώνα Πού γίνονται σεισμοί? h
Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη
Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ
Ευστάθεια μελών μεταλλικών κατασκευών
Ευστάθεια μελών μεταλλικών κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Χαλύβδινες και Σύμμικτες Κατασκευές Επιστημονικό Σεμινάριο Μυτιλήνη 9-10 Οκτωβρίου 009 Περιεχόμενα παρουσίασης Εισαγωγή Μορφές
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 5 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών
ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.
ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα
( Σχόλια) (Κείµ ενο) Κοντά Υποστυλώµατα Ορισµός και Περιοχή Εφαρµογής. Υποστυλώµατα µε λόγο διατµήσεως. α s 2,5
( Σχόλια) (Κείµ ενο) 18.4.9 Κοντά Υποστυλώµατα 18.4.9 Κοντά Υποστυλώµατα 18.4.9.1 Ορισµός και Περιοχή Εφαρµογής N Sd Υποστυλώµατα µε λόγο διατµήσεως V Sd M Sd1 h N Sd M Sd2 V Sd L l s =M Sd /V Sd M Sd
Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών
Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης
Σχεδιασμός Μεταλλικών Κατασκευών
Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης
Νέα έκδοση προγράμματος STeel CONnections 2010.354
http://www.sofistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnections 2010.354 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων μεταλλικών
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 3 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Τ.Ε.Ι. Θεσσαλίας - Σχολή Τεχνολογικών Εφαρμογών
9 ΚΕΦΑΛΑΙΟ 9. ΚΑΔΕΤ-ΚΕΦΑΛΑΙΟ 9 ΕΚΔΟΣΗ 2η ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ
9 ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ Βλ. Κεφ. 4, Παρ. 4.4, για την λογική των ελέγχων. Το παρόν Κεφάλαιο περιλαμβάνει τα κριτήρια ελέγχου της ανίσωσης ασφαλείας, κατά την αποτίμηση ή τον ανασχεδιασμό,
ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια. ΟΚΑ από Ευστάθεια 29/5/2013
ΟΚΑ από Ευστάθεια σε Κατασκευές από Σκυρόδεμα Φαινόμενα 2 ης Τάξης (Λυγισμός) ΟΚΑ από Ευστάθεια παρουσιάζεται σε κατασκευές οι οποίες περιλαμβάνουν δομικά στοιχεία μεγάλης λυγηρότητας με σημαντικές θλιπτικές
AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ
ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) 371 AΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΥΤΟΑΞΙΟΛΟΓΗΣΗΣ (ΚΕΦ. 6-11) ΑΣΚΗΣΗ 1 Το µηκυνσιόµετρο στο σηµείο Α της δοκού του σχήµατος καταγράφει θλιπτική παραµόρφωση ίση µε 0.05. Πόση
Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης
Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος
ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ
ΕΝΙΣΧΥΣΗ ΚΑΤΑΣΚΕΥΩΝ ΜΕ ΧΡΗΣΗ ΔΙΚΤΥΩΤΩΝ ΣΥΝΔΕΣΜΩΝ ΔΙΓΕΝΗΣ ΣΠΥΡΟΣ Περίληψη Σκοπός της εργασίας είναι η περιγραφή της συμπεριφοράς διαφόρων διατάξεων δικτυωτών συνδέσμων σε πλευρικά επιβαλλόμενα φορτία. Στο
Περιεχ μενα. Πρόλογος Κεφάλαιο 1 Εισαγωγή Κεφάλαιο 2 Βάσεις σχεδιασμού... 27
Περιεχ μενα Πρόλογος... 9 Πρόλογος 3 ης έκδοσης... 11 Κεφάλαιο 1 Εισαγωγή... 13 1.1 Γενικά Ιστορική αναδρομή... 13 1.2 Aρχές λειτουργίας ορισμοί... 20 Κεφάλαιο 2 Βάσεις σχεδιασμού... 27 2.1 Εισαγωγή...
Υπολογισµός κοχλιωτών και συγκολλητών συνδέσεων µεταλλικών κατασκευών
Υπολογισµός κοχλιωτών και συγκολλητών συνδέσεων µεταλλικών κατασκευών SOFiSTiK Hellas A.E. Γ Σεπτεµβρίου 56, 104 33 Αθήνα Τηλ: 210-8220607, 210-8251632 Fax: 210-8251632 info@sofistik.gr http://www.sofistik.gr
Παραδείγματα μελών υπό αξονική θλίψη
Παραδείγματα μελών υπό αξονική θλίψη Παραδείγματα μελών υπό αξονική θλίψη Η έννοια του λυγισμού Λυγισμός είναι η ξαφνική, μεγάλη αύξηση των παραμορφώσεων ενός φορέα για μικρή αύξηση των επιβαλλόμενων φορτίων.
Νοέμβριος 2008. Άσκηση 5 Δίνεται αμφίπακτη δοκός μήκους L=6,00m με διατομή IPE270 από χάλυβα S235.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας Δομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι Διδάσκοντες : Ι Βάγιας Γ. Ιωαννίδης Χ. Γαντές Φ. Καρυδάκης Α. Αβραάμ
Νέα έκδοση προγράμματος STeel CONnections
6.10.2011 http://www.sfistik.gr/ Μεταλλικές και Σύμμικτες Κατασκευές Νέα έκδοση προγράμματος STeel CONnectins 2011.280 Aξιότιμοι συνάδελφοι, Κυκλοφόρησε η νέα έκδοση του προγράμματος διαστασιολόγησης κόμβων
Πλαστική Κατάρρευση Δοκών
Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός
4.5 Αµφιέρειστες πλάκες
Τόµος B 4.5 Αµφιέρειστες πλάκες Οι αµφιέρειστες πλάκες στηρίζονται σε δύο απέναντι παρυφές, όπως η s1 στην εικόνα της 4.1. Αν µία αµφιέρειστη πλάκα στηρίζεται επιπρόσθετα σε µία ή δύο ακόµη παρυφές και
ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης
5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).
Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, EN :2005)
RUET sotware Πίνακες Χαλύβδινων Διατομών (Ευρωκώδικας 3, E1993-1-1:005) Πίνακες με όλες τις πρότυπες χαλύβδινες διατομές, διαστάσεις και ιδιότητες, κατάταξη, αντοχές, αντοχή σε καμπτικό και στρεπτοκαμπτικό
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι
ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:
Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται
ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η
ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:
Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος
NFATEC L16 Simple joints (07/06/2004) {LASTEDIT} 07/06/04 {/LASTEDIT} {LECTURE} {LTITLE} Απλοί Κόµβοι {/LTITLE} {AUTHOR} Rudolf Aroch {/AUTHOR}
NFATEC L16 Simple joints (07/06/2004) {LASTEDIT} 07/06/04 {/LASTEDIT} {LECTURE} {LTITLE} Απλοί Κόµβοι {/LTITLE} {AUTHOR} Rudolf Aroch {/AUTHOR} {EMAIL} aroch@svf.stuba.sk {/EMAIL} {OVERVIEW} Η διάλεξη
Σιδηρές Κατασκευές Ι. Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου. Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ. Σχολή Πολιτικών Μηχανικών
Σιδηρές Κατασκευές Ι Άσκηση 6: Διαστασιολόγηση τεγίδας στεγάστρου Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης
Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων
Γιώργος ΒΑ ΑΛΟΥΚΑΣ 1, Κρίστης ΧΡΥΣΟΣΤΟΜΟΥ 2. Λέξεις κλειδιά: Ευρωκώδικας 2, CYS159, όγκος σκυροδέµατος, βάρος χάλυβα
Συγκριτική µελέτη τυπικών κτιρίων οπλισµένου σκυροδέµατος µε το Ευρωκώδικα 2 και τον CYS 159 Comparative Study of typical reinforced concrete structures according το EC2 and CYS 159 Γιώργος ΒΑ ΑΛΟΥΚΑΣ
Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ)
ΚΩΔΙΚΟΣ: Ε.202-2 ΕΝΤΥΠΑ ΣΥΣΤΗΜΑΤΟΣ ΠΟΙΟΤΗΤΑΣ ΕΝΤΥΠΟ: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ ΕΚΔΟΤΗΣ: ΥΠΕΥΘΥΝΟΣ ΣΥΝΤΑΞΗΣ ΕΓΧΕΙΡΙΔΙΟΥ Ε.202-2: ΕΓΧΕΙΡΙΔΙΟ ΜΑΘΗΜΑΤΟΣ (ΘΕΩΡΙΑ, ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ, ΕΡΓΑΣΤΗΡΙΟ) A ΜΕΡΟΣ 1. ΓΕΝΙΚΑ
Υ.ΠΕ.ΧΩ.Δ.Ε. Ημερίδα Ευρωκωδίκων EC6. Ε. Βιντζηλαίου, Σχολή Π.Μ./ΕΜΠ
Υ.ΠΕ.ΧΩ.Δ.Ε. Ημερίδα Ευρωκωδίκων EC6 Ε. Βιντζηλαίου, Σχολή Π.Μ./ΕΜΠ ΚΕΙΜΕΝΑ ΕΥΡΩΚΩΔΙΚΑ 6 ΜΕΡΟΣ 1-1: ΚΑΝΟΝΕΣ ΓΙΑ ΤΟΝ ΣΧΕΔΙΑΣΜΟ ΚΑΤΑΣΚΕΥΩΝ ΑΠΟ ΩΠΛΙΣΜΕΝΗ ΚΑΙ ΑΟΠΛΗ ΤΟΙΧΟΠΟΙΙΑ (σε φάση ψηφίσεως από τις χώρες-μέλη)
XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73
XΑΛΥΒΔOΦΥΛΛΟ SYMDECK 73 20 1 XΑΛΥΒΔΌΦΥΛΛΟ SYMDECK 73 ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύμμικτες πλάκες ονομάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούνται από χαλυβδόφυλλα και επί τόπου έγχυτο
ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ
ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΠΡΟΒΛΕΨΕΩΝ ΚΑΝΕΠΕ ΜΕ ΠΕΙΡΑΜΑΤΙΚΑ ΔΕΔΟΜΕΝΑ ΑΠΟ ΕΝΙΣΧΥΣΕΙΣ ΔΟΚΩΝ ΜΕ ΙΟΠ ΜΠΕΡΝΑΚΟΣ ΑΝΤΩΝΙΟΣ Περίληψη Στόχος της παρούσας εργασίας είναι η πρακτική εφαρμογή αναλυτικών προβλέψεων του ΚΑΝΕΠΕ
Σιδηρές Κατασκευές ΙΙ Άσκηση 14 Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα
ιδηρές ατασκευές Άσκηση ντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται
ΑΘAΝΑΣΙΟΣ X. TPIANTAΦYΛΛOY KAΘHΓHTHΣ ΠANEΠIΣTHMIO ΠATPΩN TMHMA ΠOΛITIKΩN MHXANIKΩN ΣΥΜΜΙΚΤΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΑΘAΝΑΣΙΟΣΣ X. TPIANTAΦYΛΛOYY KAΘHΓHTHΣ ΠANEΠIΣTHMIO ΠATPΩN TMHMA ΠOΛITIKΩN MHXANIKΩN ΣΥΜΜΙΚΤΕΣ ΚΑΤΑΣΚΕΥΕΣ ΠΑΤΡΑ 2016 ii ISBN 978-960-92177-4-3 c ΑΘ. X. TPIANTAΦYΛΛOY Απαγορεύεται η ολική ή εν μέρει αντιγραφή
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A
Περιεχόμενα. 1 Εισαγωγή... 17
Περιεχόμενα 1 Εισαγωγή... 17 1.1 Αντικείμενο... 17 1. Δομικά στοιχεία με σύμμικτη δράση... 17 1.3 Κτίρια από σύμμικτη κατασκευή... 19 1.4 Περιορισμοί... 19 Βάσεις σχεδιασμού... 1.1 Δομικά υλικά... 1.1.1
ίνεται ποιότητα χάλυβα S355. Επιλογή καμπύλης λυγισμού Καμπύλη λυγισμού S 235 S 275 S 460 S 355 S 420 Λυγισμός περί τον άξονα y y a a a b t f 40 mm
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Τμήμα Πολιτικών Μηχανικών Τομέας ομοστατικής Εργαστήριο Μεταλλικών Κατασκευών Μάθημα : Σιδηρές Κατασκευές Ι ιδάσκοντες :Χ. Γαντές.Βαμβάτσικος Π. Θανόπουλος Νοέμβριος 04 Άσκηση
Στοιχεία Μηχανών. Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά
Στοιχεία Μηχανών Εαρινό εξάμηνο 2017 Διδάσκουσα: Σωτηρία Δ. Χουλιαρά Ύλη μαθήματος -ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΜΗΧΑΝΙΚΗΣ ΥΛΙΚΩΝ -ΑΞΟΝΕΣ -ΚΟΧΛΙΕΣ -ΙΜΑΝΤΕΣ -ΟΔΟΝΤΩΤΟΙ ΤΡΟΧΟΙ ΒΑΘΜΟΛΟΓΙΑ ΜΑΘΗΜΑΤΟΣ: 25% πρόοδος 15% θέμα
Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών
Βόλος 29-3/9 & 1/1 211 Εκτίμηση της στροφικής ικανότητας χαλύβδινων δοκών στις υψηλές θερμοκρασίες θεωρώντας την επιρροή των αρχικών γεωμετρικών ατελειών Δάφνη Παντούσα και Ευριπίδης Μυστακίδης Εργαστήριο
Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:
Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος
4/11/2017. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης
Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1)
Μέθοδοι Ανάλυσης Απλών Δοκών & Πλαισίων (1) ΠΕΡΙΕΧΟΜΕΝΑ Πλαστική Κατάρρευση Υπερστατικής Δοκού Πλαστική Κατάρρευση Συνεχούς Δοκού Η Εξίσωση Δυνατών Εργων Θεωρήματα Πλαστικής Αναλυσης Θεωρία Μηχανισμών
ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ
ΚΕΦΑΛΑΙΟ 9 ΕΛΕΓΧΟΙ ΑΣΦΑΛΕΙΑΣ 9.1 ΣΚΟΠΟΣ Βλ. Κεφ. 4, Παρ. 4.4, για την λογική των ελέγχων. 9.1.1 Το παρόν Κεφάλαιο περιλαµβάνει τα κριτήρια ελέγχου της ανίσωσης ασφαλείας, κατά την αποτίµηση ή τον ανασχεδιασµό,
Σιδηρές Κατασκευές ΙΙ Διάλεξη 1 Πλευρικός λυγισμός. Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών
ιδηρές ατασκευές Διάλεξη Πλευρικός λυγισμός χολή Πολιτικών ηχανικών ργαστήριο εταλλικών ατασκευών Άδεια Χρήσης ο παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. ια εκπαιδευτικό υλικό,
ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ
Επίλυση γραμμικών φορέων ΟΣ σύμφωνα με τους EC & EC8 ΑΣΚΗΣΗ 4 (3/3/017) ΕΛΕΓΧΟΣ ΟΚΟΥ ΣΕ ΚΑΜΨΗ Να υπολογιστεί σε κάµψη η µονοπροέχουσα δοκός του σχήµατος για συνδυασµό φόρτισης 135G15Q Η δοκός ανήκει σε
Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα. Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια. Κεφάλαιο 7
Ευρωκώδικας 2: Σχεδιασμός φορέων από Σκυρόδεμα Μέρος 1-1: Γενικοί Κανόνες και Κανόνες για κτίρια Κεφάλαιο 7 Διαφάνειες παρουσίασης εκπαιδευτικών σεμιναρίων Γεώργιος Πενέλης, ομότιμος καθηγητής Α.Π.Θ. Ανδρέας
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΣΧΕΣΕΙΣ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΡΕΠΤΙΚΩΝ ΣΤΑΘΕΡΩΝ ΤΥΠΙΚΩΝ ΜΕΤΑΛΛΙΚΩΝ ΔΙΑΤΟΜΩΝ Παναγιώτης Ι. Κόκκαλης, Διπλ. Π.Μ., ΜSc ΑSAναστασιάδης & Συνεργάτες 1. Εισαγωγή Η στρέψη ως φαινόμενο καταπόνησης συνδυάζεται, κυρίως,
«ΜΕΛΕΤΗ ΜΕΤΑΛΛΙΚΟΥ ΕΜΠΟΡΙΚΟΥ ΚΤΙΡΙΟΥ ΜΕ ΣΥΜΜΙΚΤΑ ΣΤΟΙΧΕΙΑ»
EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΠΜΣ ΘΕΜΑ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ: «ΜΕΛΕΤΗ ΜΕΤΑΛΛΙΚΟΥ ΕΜΠΟΡΙΚΟΥ ΚΤΙΡΙΟΥ ΜΕ ΣΥΜΜΙΚΤΑ ΣΤΟΙΧΕΙΑ» Όνοµα: Επιβλέπων καθηγητής: Ζαφειριάδης Χρήστος Σπηλιώτης
ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *
ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε
ΣΧΕΔΙΑΣΜΟΣ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ ΠΕΡΙΕΧΟΜΕΝΑ
ΠΕΡΙΕΧΟΜΕΝΑ 1. ΕΙΣΑΓΩΓΗ... 3 2. ΓΕΝΙΚΕΣ ΠΑΡΑΜΕΤΡΟΙ... 5 3. ΔΙΑΤΟΜΕΣ ΧΑΛΥΒΔΟΦΥΛΛΩΝ... 6 4. ΟΠΛΙΣΜΟΣ ΣΥΜΜΙΚΤΗΣ ΠΛΑΚΑΣ... 9 5. ΦΟΡΤΙΑ... 9 6. ΑΝΑΛΥΣΗ... 11 7. ΔΙΑΣΤΑΣΙΟΛΟΓΗΣΗ... 11 8. ΤΕΥΧΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ...
5/14/2018. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80)
Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) 1 Βασική αρχή εργαστηριακής άσκησης Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία
Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων
Αντισεισμικός Σχεδιασμός Μεταλλικών Κτιρίων 1. Γενικά Τα κριτήρια σχεδιασμού κτιρίων σε σεισμικές περιοχές είναι η προσφορά επαρκούς δυσκαμψίας, αντοχής και πλαστιμότητας. Η δυσκαμψία απαιτείται για την
ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ.
Σχεδιασμός κτιρίου με ΕΑΚ, Κανονισμό 84 και Κανονισμό 59 και αποτίμηση με ΚΑΝ.ΕΠΕ. ΣΧΕΔΙΑΣΜΟΣ ΚΤΙΡΙΟΥ ΜΕ ΕΑΚ, ΚΑΝΟΝΙΣΜΟ 84 ΚΑΙ ΚΑΝΟΝΙΣΜΟ 59 ΚΑΙ ΑΠΟΤΙΜΗΣΗ ΜΕ ΚΑΝ.ΕΠΕ. ΡΑΥΤΟΠΟΥΛΟΥ ΜΑΡΙΝΑ Περίληψη Αντικείμενο
Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ ]
Οριακή Κατάσταση Αστοχίας έναντι Κάμψης με ή χωρίς ορθή δύναμη ΓΙΑΝΝΟΠΟΥΛΟΣ ΠΛΟΥΤΑΡΧΟΣ Δρ. Πολ. Μηχανικός Αν. Καθηγητής Ε.Μ.Π. Οριακή Κατάσταση Αστοχίας έναντι κάμψης με ή χωρίς ορθή δύναμη [ΕΝ 1992-1-1
Σιδηρές Κατασκευές ΙΙ
Σιδηρές Κατασκευές ΙΙ Άσκηση 1: Αντισεισμικός σχεδιασμός στεγάστρου με συνδέσμους δυσκαμψίας με εκκεντρότητα Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες
ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά
προς τον προσδιορισμό εντατικών μεγεθών, τα οποία μπορούν να υπολογιστούν με πολλά εμπορικά λογισμικά.
ΜΕΤΑΛΛΟΝ [ ΑΝΤΟΧΗ ΑΜΦΙΑΡΘΡΩΤΩΝ ΚΥΚΛΙΚΩΝ ΤΟΞΩΝ ΚΟΙΛΗΣ ΚΥΚΛΙΚΗΣ ΔΙΑΤΟΜΗΣ ΥΠΟ ΟΜΟΙΟΜΟΡΦΑ ΚΑΤΑΝΕΜΗΜΕΝΟ ΚΑΤΑΚΟΡΥΦΟ ΦΟΡΤΙΟ ΚΑΤΑ ΤΟΝ ΕΚ3 Χάρης Ι. Γαντές Δρ. Πολιτικός Μηχανικός, Αναπληρωτής Καθηγητής & Χριστόφορος
ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA
ΣYMMIKTEΣ KATAΣKEYEΣ KAI OPIZONTIA ΦOPTIA Άρης Αβδελάς, Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τα δομικά συστήματα στις σύμμικτες κτιριακές κατασκευές, αποτελούνται
ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ
ΓΕΝΙΚΑ ΠΕΡΙ ΣΥΜΜΙΚΤΩΝ ΠΛΑΚΩΝ Σύµµικτες πλάκες ονοµάζονται οι φέρουσες πλάκες οροφής κτιρίων, οι οποίες αποτελούντα από χαλυβδόφυλλα και επί τόπου έγχυτο σκυρόδεµα. Η σύµµικτη µέθοδος κατασκευής πλακών
ΝΕΕΣ ΔΥΝΑΤΟΤΗΤΕΣ CONSTEEL
ΝΕΕΣ ΔΥΝΑΤΟΤΗΤΕΣ CONSTEEL Version 9.0 08. 04.201 5 www.ergocad.eu www. consteelsoftware.com ΠΕΡΙΕΧΟΜΕΝΑ 1. ΜΟΝΑΔΙΚΕΣ ΛΕΙΤΟΥΡΓΙΕΣ 3 1.1 ΟΔΗΓΟΣ ΓΩΝΙΑΣ ΚΟΜΒΟΥ ΠΛΑΙΣΙΟΥ.3 1.2 ΑΥΤΟΜΑΤΗ ΕΠΙΛΟΓΗ ΤΟΥ ΚΑΘΟΡΙΣΤΙΚΟΥ
4/26/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία. Βασική αρχή εργαστηριακής άσκησης
Βασική αρχή εργαστηριακής άσκησης Σημειώσεις Εργαστηριακής Άσκησης Διάτμηση Κοχλία Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Λέκτορας Π.Δ. 407/80) Αξονικό φορτίο Ανάπτυξη διατμητικών τάσεων σε στοιχεία σύνδεσης
Σιδηρές Κατασκευές Ι. Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ
Σιδηρές Κατασκευές Ι Άσκηση 7: Δικτύωμα πεζογέφυρας (εφελκυσμός, κάμψη και διάτμηση κάτω πέλματος) Δρ. Χάρης Γαντές, Καθηγητής ΕΜΠ Σχολή Πολιτικών Μηχανικών Εργαστήριο Μεταλλικών Κατασκευών Άδειες Χρήσης
ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143. Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση:
ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ (ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ) 18143 9.2 ΔΙΣΚΟΙ 9.2.1 Μέθοδοι ανάλυσης Οι δυνάμεις που ενεργούν στο μέσο επίπεδο ενός δίσκου μπορούν να προσδιοριστούν με βάση: ελαστική ανάλυση πλαστική ανάλυση
Drill. Έλεγχος ιάτρησης. Έλεγχος πλακών οπλισμένου σκυροδέματος έναντι διάτρησης, σύμφωνα με τον Ευρωκώδικα 2 (Μέρος 1)
Drill Έλεγχος ιάτρησης Έλεγχος πλακών οπλισμένου σκυροδέματος έναντι διάτρησης, σύμφωνα με τον Ευρωκώδικα 2 (Μέρος 1) Αθήνα, Ιούνιος 2009 version 1_0_1 2 Έλεγχος διάτρησης ΠΕΡΙΕΧΟΜΕΝΑ 1 ΓΕΝΙΚΑ... 1 1.1
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ
2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ. Ευρωκώδικας 4: Σύµµικτες κατασκευές
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Ευρωκώδικας 4: Σύµµικτες κατασκευές 1. ΙΑΤΜΗΤΙΚΗ ΣΥΝ ΕΣΗ 2. ΣΥΜΜΙΚΤΑ ΥΠΟΣΤΥΛΩΜΑΤΑ Ερµόπουλος Γιάννης 1. ΙΑΤΜΗΤΙΚΗ
ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ
Επίδραση Γειτονικού Κτιρίου στην Αποτίμηση Κατασκευών Ο/Σ ΕΠΙΔΡΑΣΗ ΓΕΙΤΟΝΙΚΟΥ ΚΤΙΡΙΟΥ ΣΤΗΝ ΑΠΟΤΙΜΗΣΗ ΚΑΤΑΣΚΕΥΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΒΑΣΙΛΕΙΑΔΗ ΜΙΧΑΕΛΑ Μεταπτυχιακή Φοιτήτρια Π.Π., mikaelavas@gmail.com
SRP 3X , SRP12X-23-12, CFRP, STEEL. f(mpa) SRP 12X, stress. strain
Συµπεριφορά οκών Υφιστάµενων Κατασκευών από Ο.Σ. ενισχυµένων µε Ινοπλισµένα Πολυµερή από Ίνες Άνθρακα (CFRP) και Ίνες Χάλυβα (SRP) ΜιτολίδηςΙ. Γιώργος ιπλ. Πολ. Μηχανικός MSc, Υπ. ιδάκτοραςα.π.θ. Ινοπλισµένα
Συµπεριφορά µεταλλικών και σύµµικτων συστηµάτων πλάκας σε πυρκαγιά. Νέα πειραµατικά στοιχεία
Συµπεριφορά µεταλλικών και σύµµικτων συστηµάτων πλάκας σε πυρκαγιά Νέα πειραµατικά στοιχεία Περιεχόµενα παρουσίασης των νέων δοκιµών πυρκαγιάς οκιµές πραγµατικής κλίµακας στα πλαίσια των FRACOF ( οκιµή
ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 2016 ΗΜΕΡΟΜΗΝΙΑ 07 ΣΕΠΤΕΜΒΡΙΟΥ 2016
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΚΑΘΗΓΗΤΗΣ Μ. ΣΑΜΟΥΗΛΙΔΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΑΝΤΟΧΗ ΠΛΟΙΟΥ 5 ου ΕΞΑΜΗΝΟΥ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΣΕΠΤΕΜΒΡΙΟΥ 016
Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1
Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N
ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1
Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εισαγωγή... 1 1.1 Ιστορική αναδρομή...1 1. Μικροδομή του χάλυβα...19 1.3 Τεχνολογία παραγωγής χάλυβα...30 1.4 Μηχανικές ιδιότητες χάλυβα...49 1.5 Ποιότητες δομικού χάλυβα...58 ΚΕΦΑΛΑΙΟ
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602)
Τ.Ε.Ι. Θεσσαλίας Σχολή Τεχνολογικών Εφαρμογών (Σ.Τ.ΕΦ.) ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ (602) 1 η Διάλεξη Δημήτριος Ν. Χριστοδούλου Δρ. Πολιτικός Μηχανικός, M.Sc. Σκοπός και Στόχος του μαθήματος Στόχος του μαθήματος
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3
ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΥΝΟΠΤΙΚΟ ΤΕΥΧΟΣ ΕΛΕΓΧΟΥ ΙΑΤΟΜΗΣ - ΜΕΛΟΥΣ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΕΥΡΩΚΩ ΙΚΑ 3 ΗΡΑΚΛΕΙΟ ΜΑΡΤΙΟΣ 1999 Α. ΑΝΤΟΧΗ ΙΑΤΟΜΗΣ 1.ΕΦΕΛΚΥΣΜΟΣ ( 5.4.3 ). N t.rd = min { N pl. Rd = A f y / γ M0, N u.
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 100 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΠΑΤΡΑ 26504 Ομάδα εκτέλεσης έργου: Αθανάσιος
ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η
ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα
Εργαστήριο Ωπλισµένου Σκυροδέµατος. ηµοκρίτειο Πανεπιστήµιο Θράκης Ξάνθη
Εργαστήριο Ωπλισµένου Σκυροδέµατος Τµήµα Πολιτικών Μηχανικών ηµοκρίτειο Πανεπιστήµιο Θράκης Ξάνθη ΟΚΛ ΚΕΦΑΛΑΙΟ 7 ΟΡΙΑΚΕΣ ΚΑΤΑΣΤΑΣΕΙΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ - EC2 Περιορισμός των παραμορφώσεων Θεόδωρος Χ. Ρουσάκης
11. Χρήση Λογισμικού Ανάλυσης Κατασκευών
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής
ΣΥΜΒΟΛΗ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΜΕΘΟ ΩΝ ΠΟΥ ΕΞΑΣΦΑΛΙΖΟΥΝ ΤΙΣ ΑΠΑΙΤΗΣΕΙΣ ΤΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ
ΣΥΜΒΟΛΗ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΜΕΘΟ ΩΝ ΠΟΥ ΕΞΑΣΦΑΛΙΖΟΥΝ ΤΙΣ ΑΠΑΙΤΗΣΕΙΣ ΤΟΥ ΑΝΤΙΣΕΙΣΜΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ Γ.Μ. Κωτσοβός και Μ.. Κωτσοβός Εργαστήριο Οπλισµένου Σκυροδέµατος, ΕΜΠ Λέξεις κλειδιά: Αντισεισµικός σχεδιασµός,
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ
ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ Θεωρούµε ινώδες σύνθετο υλικό ενισχυµένο µονοδιευθυντικά µε συνεχείς ίνες. Για τη µελέτη της µηχανικής συµπεριφοράς µιας τυχαίας στρώσης, πρέπει να είναι γνωστές οι
Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8
Μερικά στοιχεία για τις Σύμμικτες Κατασκευές από τον Ευρωκώδικα 8 Α. ΑΒΔΕΛΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Α.Π.Θ. Α. ΑΒΔΕΛΑΣ 1986: Οδηγίες Σχεδιασμού της ECCS (European Convention
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE09-S07 μαθήματος:
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50
Πίνακες σχεδιασμού σύμμικτων πλακών με τραπεζοειδές χαλυβδόφυλλο SYMDECK 50 Εγχειρίδιο σχεδιασμού σύμμικτων πλακών σύμφωνα με τον Ευρωκώδικα 3 (ΕΝ 1993.01.03:2006) και τον Ευρωκώδικα 4 (EN 1994.01.04:
ιάλεξη 7 η, 8 η και 9 η
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy