4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА"

Transcript

1 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 216. Суботица, СРБИЈА ТЕМПЕРАТУРЕ У БРАНИ И АКУМУЛАЦИЈИ "БАЈИНА БАШТА" У ПЕРИОДУ Јована Јосиповић 1 Марина Ашкрабић 2 Владан Кузмановић 3 Милица Мирковић 4 Зорана Петојевић Радован Госпавић 6 Горан Тодоровић 7 УДК: 1.26 : DOI:1.144/konferencijaGFS Резиме: У раду су најпре приказани подаци мерења температуре ваздуха, тела бране и воде у акумулацији ХЕ "Бајина Башта" у периоду од 199. до 2. године. Мерења су вршена на 1 мерних места. На основу измерених температураа воде у акумулацији дефинисане су аналитичке формуле нестационарног температурног поља према Bofang-овом моделу. Температурно поље бране је приказано у карактеристичним тачкама, у периодима када су температурни градијенти највећи. Добијени резултати омогућавају анализу термичког напрезања, што представља важан фактор праћења стабилности и сигурности брана. Кључне речи: температурно поље, брана, температура акумулације, Bofang-ов модел 1. УВОД Мерење температура је део поступка техничког осматрања код свих значајнијих хидротехничких објеката [1]. По правилу, мере се температуре воде у 1 Јована Јосиповић, маст.инж. грађ., тел: , е-mail: josipovicjovanabb@gmail.com 2 Марина Ашкрабић, маст. инж. грађ., Универзитет у Београду, Грађевински факултет Београд, Булевар краља Александра 73, Београд, Србија, тел: , е-mail: amarina@grf.bg.ac.rs 3 Владан Кузмановић, дипл. грађ. инж., Универзитет у Београду, Грађевински факултет, Булевар краља Александра 73, Београд, Србија, тел: , е-mail: vladak@grf.bg.ac.rs 4 Милица Мирковић, маст. инж. грађ., Универзитет у Београду, Грађевински факултет Београд, Булевар краља Александра 73, Београд, Србија, тел: , е-mail: milicamirkovic91@gmail.com Зорана Петојевић, дипл.инж. грађ., Универзитет у Београду, Грађевински факултет Београд, Булевар краља Александра 73, Београд, Србија, тел: , е-mail: zjovanovic@grf.bg.ac.rs 6 Радован Госпавић, дипл.инж.ел., Универзитет у Београду, Грађевински факултет Београд, Булевар краља Александра 73, Београд, Србија, тел: , е-mail: gospavic@grf.bg.ac.rs 7 Горан Тодоровић, дипл.инж.ел., Универзитет у Београду, Грађевински факултет Београд, Булевар краља Александра 73, Београд, Србија, тел: , е-mail: todor@grf.bg.ac.rs ЗБОРНИК РАДОВА МЕЂУНАРОДНЕ КОНФЕРЕНЦИЈЕ (216) 689

2 4 th INTERNATIONAL CONFERENCE Contemporary achievements in civil engineering 22. April 216. Subotica, SERBIA акумулацији, бетона у телу бране и температуре ваздуха. На основу података ових мерења може се одредити стање термичког напрезања брана, које је веома значајно за процену стабилности и сигурности конструкције. Мерење температуре се врши у већем броју тачака са циљем одређивања температурног поља. Посебно су значајне зоне где постоји велики градијент температуре, јер ту могу настати највећа напрезања. Ово је нарочито изражено у летњим месецима, када су највећи утицаји инсолације и разлике између температура ваздуха и воде. У литератури постоји велики број радова који се бави овим проблемима [2], [3], [4]. У овом раду, температура воде у акумулацији одређена је према Bofang-овом моделу [], на бази мерења температуре воде на брани Бајина Башта. 2. ХЕ БАЈИНА БАШТА Температуре на брани и акумулацији Бајина Башта мерене су у периоду од 199. до 2. године. Мерења температура бетона вршена су једном месечно, а температуре воде на дневном нивоу. Температура ваздуха је мерена три пута дневно. Хидроелектрана "Бајина Башта" (Слика 1) највећи је хидроенергетски објекат на реци Дрини. Слика 1. Хидроелектрана "Бајина Башта" Брана је контрафорна бетонска, висине 9 m и дужине у круни 46 m. Има 24 ламеле од којих су пет преливних, свака дужине по 2 m. Изграђена је од бетона MB 3. На брани су изведене инјекционе завесе и дренажни систем за смањење узгона. На десној обали је машинска зграда са четири агрегата снаге 368 MW. 69 CONFERENCE PROCEEDINGS INTERNATIONAL CONFERENCE (216)

3 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 216. Суботица, СРБИЈА Низводно лице бране је окренуто ка југоистоку. Брана формира акумулацију Перућац, чија је максимална дубина уз брану око 6 m. Површина акумулације је 12,4 km 2, а запремина око 34 x 1 6 m 3. Испуштање вишка воде из акумулације омогућава се подизањем устава. На Слици 2 приказана је фотографија и скица попречног пресека радијалних (сегментних) устава, које се контролисано подижу, чиме се регулише ниво воде акумулације. Слика 2. Изглед сегментних устава на брани "Бајина Башта" Слика 3. Умирујући базен са зубима и низводним прагом Вода са прелива доспева у слапиште, где се умирује и контролисано упушта у низводно речно корито, Слика 3. Тип слапишта је USBR III, што значи да умирењу енергије воде доприносе и тзв. зуби који су постављени на 2 m од почетка слапишта, као и низводни праг, који омогућавају снижење спрегнуте дубине и стабилизацију хидрауличког скока. Попречни пресек бране приказан је на Слици 4. Узводно лице је закошено, чиме се користи повољно деловање вертикалне силе хидростатичког притиска и повећава стабилност бране против ЗБОРНИК РАДОВА МЕЂУНАРОДНЕ КОНФЕРЕНЦИЈЕ (216) 691

4 4 th INTERNATIONAL CONFERENCE Contemporary achievements in civil engineering 22. April 216. Subotica, SERBIA клизања, превртања и испливавања. Слика 4. Попречни пресек бране "Бајина Башта" 3. МЕТОД МЕРЕЊА ТЕМПЕРАТУРЕ Температура воде у површинском слоју акумулације мерена је до дубине од 2, m, на сваких cm. Коришћени су мобилни термометри, са сондама у које се стављају електрични температурни сензори на бази термо-парова. Термометри за мерење температуре бетона су такође електрични, али засновани на принципу мерења отпора. Опсег мерења температуре је -2 C до +6 C, мерне сигурности. Основна својства су им: мала термичка инерција и независност мерења од времена и удаљености. Термометри су фирме Galileo и заснивају рад на принципу равнотеже Wheatstone-овог моста. Номинална вредност електричног отпора отпорног термометра је 29,77 Ω на 2 C. 2 C 4. ФИЗИЧКИ МОДЕЛ ТЕМПЕРАТУРЕ АКУМУЛАЦИЈЕ Због топлотне инерције воде, температура узводног дела бране доминантно зависи од температуре воде у акумулацији. Према Bofang-овом моделу, временска зависност температуре воде у функцији дубине дата је формулом: T( y, t) Tm ( y) A( y)cos ( t t ), (1) где су: y дубина, t време (у данима), T(y, t) температура акумулације у функцији времена и дубине, T m(y) средња годишња температура акумулације у функцији 692 CONFERENCE PROCEEDINGS INTERNATIONAL CONFERENCE (216)

5 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 216. Суботица, СРБИЈА дубине, A(y) амплитуда годишње варијације температуре акумулације, ω кружна фреквенција, ε и t временска кашњења (у данима). По овом моделу средња годишња температура се добија из следећих израза: y Tm( y) c ( Ts c) e, ( T gts ) c b, (2) (1 g).4h g e, где су: T s средња годишња температура акумулације на површини, T b средња годишња температура акумулације на дну, H дубина акумулације, параметар α =,4 и представља фактор пригушења осцилације температуре. Амплитуда се добија преко израза: А(y) y A( y) A e, Tmax T A min. 2 Параметар β је функција дубине акумулације и рачуна се према изразу: x1 4 H. (4) Видимо да за одређивање непознатих параметара c и А непходно је познавање температура на површини и дну акумулације. (3). РЕЗУЛТАТИ МЕРЕЊА ТЕМПЕРАТУРЕ И ОДРЕЂИВАЊЕ ПАРАМЕТАРА BOFANG-ОВОГ МОДЕЛА Сензори у телу бране су распоређени у 4 хоризонталне равни у ламели 11, на котама 213, 228, 243 и 28. Распореди сензора на коти 28, која се налази непосредно изнад темпељног испуста, и коте бране су приказани на Слици. Слика. Хоризонтални пресек ламеле 11 на коти 28 mnm и положај температурних сензора Т ЗБОРНИК РАДОВА МЕЂУНАРОДНЕ КОНФЕРЕНЦИЈЕ (216) 693

6 4 th INTERNATIONAL CONFERENCE Contemporary achievements in civil engineering 22. April 216. Subotica, SERBIA Резултати мерења температуре приказани су преко термометара Т82, Т83, Т89, Т99 и Т1. Термометри Т82, Т83 и Т89 се налазе у узводном делу тела бране, а Т99 и Т1 у низводном. Избор термометара омогућава приказ температурног поља у околини шупљине ламеле и термичко оптерећење у његовој околини. Градијенти температура између ове две групе сензора су највећи, с обзиром на утицај акумулације на температуре узводних сензора, односно ваздуха и сунчевог зрачења на Т99 и Т1. На Слици 6 приказане су измерене температуре поменутих термометара. Црном бојом су приказане температуре на месту сензора Т99. Види се да су у полугодишњим периодима температуре на овом месту по правилу највеће, или најмање, у зависности од тога да ли је лето или зима. То је последица средње температуре ваздуха и количине Сунчевог зрачења које загрева површину тела бране. Плавом, зеленом и црвеном бојом, редеом су означене температуре сензора Т82, Т83 и Т89 на узводној страни Temp. T99 na nizvodnom licu na dubini 3m Temp. T82 na uzvodnom licu na dubini 3m Temp. T83 Temp. T89 Temp. T1 temperature [ C] Vreme [mesec] Слика 6. Приказ измерених температура бетона бране у ламели 11, на коти 213 у периоду од 2 година По правилу ниже температуре у летњем периоду, а више у зимском, у односу на Т99 су последица утицаја температуре воде. На пример, на месту сензора Т99, максимална забележена температура, у целом периоду мерења, је била године и износила је 36 С, што је последица високе дневне температуре ваздуха и загревања услед Сунчевог зрачења. Градијент температуре на коти 28 mnm је тада био највећи и био је оријентисан од низводног ка узводном лицу бране, производећи термичку силу напрезања, чија је резултанта била оријентисана низводно. Постоје и ситуације у зимском периоду када је смер вектора ове силе супротан, тј. када је температура површине узводног лица бране виша од низводног, па је термичка сила напрезања оријентисана узводно. Ови случајеви 694 CONFERENCE PROCEEDINGS INTERNATIONAL CONFERENCE (216)

7 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 216. Суботица, СРБИЈА термичког напрезања, у комбинацији са другим оптерећењима и утицајима, могу потенцијално да изазову појаву прслина у телу бране. T vaz [ C] T vode [ C] vreme [dan] Слика 7. Температура ваздуха vreme [dan] Слика 8. Темпаратура воде на y=2m На Сликама 7 и 8 приказане су температуре ваздуха и воде у акумулацији на дубини од 2 m. На овој дубини, турбулентна конвективна мешања топле и хладне воде су знатно мање изражена у односу на саму површину воде. Уочава се да су годишње амплитуде температуре ваздуха веће од одговарајућих амплитуда температуре воде у акумулацији. На Слици 9 приказане су криве промене температуре воде и ваздуха добијене фитовањем експерименталних резултата са Слика 7 и 8 на синусне функције, са циљем одређивања временских параметара t и ε из једначине (1). fitovane temperature [ C] Fitovana sinusna temperature vode Fitovana sinusna temperature vazduha Srednja temperatura vode Model Sine Equation y=y+a*sin(pi*(x-xc)/w) Plot T vaz y xc w A Model Equation Plot Sine y=y+a*sin(pi*(x-xc)/w) T vode y xc w A vreme [dan] Слика 9. Фитоване синусне температуре ваздуха и воде и средња температура воде за цео период мерења ЗБОРНИК РАДОВА МЕЂУНАРОДНЕ КОНФЕРЕНЦИЈЕ (216) 69

8 fitovane sinusne temperature [ C] 4 th INTERNATIONAL CONFERENCE Contemporary achievements in civil engineering 22. April 216. Subotica, SERBIA Према Bofang-овом моделу поменути параметри се могу одредити графичким путем, ако се упореде карактеристичне синусне промене температуре ваздуха и воде. На Слици 1. је приказан сегмент синусних температура ваздуха и воде са означеним параметрима. Очитавањем са графика, усвојене су следеће вредности параметара: t =9,133 месеца и ε=,4 месеци. Средња годишња температура акумулације у функцији дубине, T m(y), добијена је коришћењем израза (2). Према експерименталним подацима, средња температура воде на површини за читав период мерења је Т s=14,8 С, средња годишња температура воде на дну је Т b= 8, С (сензор Т, кота 213), параметар с=7,39 С и g=,972 m. На бази ових,4y вредности добија се аналитички израз: Тm( y) 7,393 6,689 e [ С]. Параметар А може да се одреди из мерних резултата на било којој дубини акумулације. Овде за израчунавање користимо средње максималне и минималне температуре воде на 2 m дубине због објашњених конвективних ефеката. 3 t vreme [mesec] Слика 1. Графичко одређивање параметара t и ε temperatura vode [ C] T m (y) - srednja godišnja temperatura vode A(y) - amplituda temperature vode y-dubina vode [m] Слика 11. Функција средње годишње емпературе Т m(y) и амплитуда A(y) Минималне Т мин и максималне Т мах температуре графички представљају максимуме и минимуме кривих на Слици 8. Добијене су следеће вредности: Т mаx=26,9 С, Т min=3,876,149y С и амплитуда, према изразу (3): A( y) 11,37e [ С]. Графици функција Т m (y) и A (y) су дати на Слици 11. Коначан аналитички израз за температуру акумулације, по Bofang-овом моделу,4y,149y гласи: Т( y, t) 7,393 6,689 e 11,37e cos ( t 9,38) / 6 [ C], а график модела приказан је на Слици CONFERENCE PROCEEDINGS INTERNATIONAL CONFERENCE (216)

9 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 216. Суботица, СРБИЈА Слика 12. Графички приказ температурног поља воде у акумулацији, Т(у,t) [ C], у фукцији дубине y [m] и времена t [mesec], према Bofang-овом моделу Слика приказује промену температурског поља у периоду од 3 године. Јасно се уочава пад амплитуде температуре са порастом дубине и таласни облик при порасту времена као последица сезонских промена. 6. ЗАКЉУЧАК У раду су приказани резултати двадесетогодишњих мерења температуре ваздуха, воде и бетона на брани "Бајина Башта". Мерења су искоришћена за одређивање нестационарног температурног поља воде у акумулацији, базирана на Bofang-овом моделу, који даје аналитички израз за температуру у функцији времена и дубине. Дати су графички прикази температура и анализирани резултати мерења, који се могу користити за оцену термичког напрезања и сигурности бране. ЛИТЕРАТУРА [1] J. Josipović, B. Milovanović, V. Kuzmanović, Lj. Savić, Analiza uzgona na branu "Bajina Bašta" naosnovu podataka osmatranja, 17. Konferencija SHDI, Vršac, 2 [2] Zhu, B. F., Prediction of Water Temperature in Deep Reservoirs, Dam Engineering, 8 (1997), 1, pp ЗБОРНИК РАДОВА МЕЂУНАРОДНЕ КОНФЕРЕНЦИЈЕ (216) 697

10 4 th INTERNATIONAL CONFERENCE Contemporary achievements in civil engineering 22. April 216. Subotica, SERBIA [3] Long-term thermal 2D and 3D analysis of RCC dams, supported by monitoring verification Kuzmanovic V., Savic Lj., Stefanakos J., Canadian Journal of Civil Engineering, Issue 4, Vol. 37, (21), DOI No /L1-4. [4] Computation of Thermal-Stresses and Contraction Joint Distance of RCC Dams Kuzmanovic V., Savic Lj., Mladenovic N., Journal of Thermal Stresses, 36:2, , DOI: 1.18/ [] H. Mirzabozorg, M. A. Hariri-Ardebili, M. Shirkhan, S.M. Seyed-Kolbadi, Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect, The Scientific World Journal, Volume 214 (214), Article ID TEMPERATURE VARIATION OF "BAJINA BAŠTA" DAM BETWEEN Summary: In this paper, the data for the observed temperatures (of the air, body of the dam and water in the reservoir), for "Bajina Bašta" Dam, during the 2-years period, are presented. The data were used to predict the unsteady temperature field in the reservoir, based on the Bofang model for analytical ralationship between the temperature, time and reservoir depth. Obtained temperature diagrams present a usefull tool for assesing the thermal-stress field and the safety of the dam. Keywords: temperature field, dam, Bofang's model of water temperature 698 CONFERENCE PROCEEDINGS INTERNATIONAL CONFERENCE (216)

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству. април 016. Суботица, СРБИЈА УТИЦАЈ САДРЖАЈА ВЛАГЕ НА КОЕФИЦИЈЕНТ ТОПЛОТНЕ ПРОВОДНОСТИ БЕТОНА Марина Ашкрабић 1 Јована Јосиповић Зорана

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 2016. Суботица, СРБИЈА ДИГИТАЛНА ОБРАДА ЧЕТРДЕСЕТOГОДИШЊИХ СРЕДЊИХ ДНЕВНИХ ТЕМПЕРАТУРА У БЕОГРАДУ Зорана Петојевић 1 Марија Петронијевић

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2. За плочу

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА

МАТРИЧНА АНАЛИЗА КОНСТРУКЦИЈА Београд, 21.06.2014. За штап приказан на слици одредити најмању вредност критичног оптерећења P cr користећи приближан поступак линеаризоване теорије другог реда и: а) и један елемент, слика 1, б) два

Διαβάστε περισσότερα

У к у п н о :

У к у п н о : ГОДИШЊИ (ГЛОБАЛНИ) ПЛАН РАДА НАСТАВНИКА Наставни предмет: ФИЗИКА Разред: Седми Ред.број Н А С Т А В Н А Т Е М А / О Б Л А С Т Број часова по теми Број часова за остале обраду типове часова 1. КРЕТАЊЕ И

Διαβάστε περισσότερα

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала Теоријски део: Вежба број ТЕРМИЈСКА AНАЛИЗА. Термијска анализа је поступак који је 903.год. увео G. Tamman за добијање криве хлађења(загревања). Овај поступак заснива се на принципу промене топлотног садржаја

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству. април 01. Суботица, СРБИЈА ПРОРАЧУН ПОМЕРАЊА ТАНКОЗИДНИХ НОСАЧА ПРИМЕНОМ МЕТОДА КОНАЧНИХ ТРАКА Смиља Живковић 1 УДК: 4.07. : 519.73 DOI:10.14415/konferencijaGFS

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Осцилације система са једним степеном слободе кретања

Осцилације система са једним степеном слободе кретања 03-ec-18 Осцилације система са једним степеном слободе кретања Опруга Принудна сила F(t) Вискозни пригушивач ( дампер ) 1 Принудна (пертурбациона) сила опруга Реституциона сила (сила еластичног отпора)

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Писмени испит из Метода коначних елемената

Писмени испит из Метода коначних елемената Београд,.0.07.. За приказани билинеарни коначни елемент (Q8) одредити вектор чворног оптерећења услед задатог линијског оптерећења p. Користити природни координатни систем (ξ,η).. На слици је приказан

Διαβάστε περισσότερα

НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА 110/X kv

НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА 110/X kv НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА /X kv М. ГРБИЋ, Електротехнички институт Никола Тесла 1, Београд, Република Србија Д. ХРВИЋ, Електротехнички институт Никола Тесла, Београд,

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

Слика 1. Слика 1.2 Слика 1.1

Слика 1. Слика 1.2 Слика 1.1 За случај трожичног вода приказаног на слици одредити: а Вектор магнетне индукције у тачкама А ( и ( б Вектор подужне силе на проводник са струјом Систем се налази у вакууму Познато је: Слика Слика Слика

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 2016. Суботица, СРБИЈА ПРИКАЗ МЕТОДА ЗА ПРОРАЧУН ПЛОЧА ДИРЕКТНО ОСЛОЊЕНИХ НА СТУБОВЕ Никола Мирковић 1 Иван Милићевић 2 Драгослав

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. Београд, 24. јануар 2012. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама. = 0.2 dpl = 0.2 m P= 30 kn/m Линијско оптерећење се мења по синусном закону: 2.

Διαβάστε περισσότερα

L кплп (Калем у кплу прпстпперипдичне струје)

L кплп (Калем у кплу прпстпперипдичне струје) L кплп (Калем у кплу прпстпперипдичне струје) i L u=? За коло са слике кроз калем ппзнате позната простопериодична струја: индуктивности L претпоставићемо да протиче i=i m sin(ωt + ψ). Услед променљиве

Διαβάστε περισσότερα

Количина топлоте и топлотна равнотежа

Количина топлоте и топлотна равнотежа Количина топлоте и топлотна равнотежа Топлота и количина топлоте Топлота је један од видова енергије тела. Енергија коју тело прими или отпушта у топлотним процесима назива се количина топлоте. Количина

Διαβάστε περισσότερα

Слика бр.1 Површина лежишта

Слика бр.1 Површина лежишта . Конвенционалне методе процене.. Параметри за процену рудних резерви... Површина лежишта Површине лежишта ограничавају се спајањем тачака у којима је истражним радом утврђен контакт руде са јаловином.

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

41 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА

41 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА 41 ГОДИНА ГРАЂЕВИНСКОГ ФАКУЛТЕТА СУБОТИЦА Међународна конференција Савремена достигнућа у грађевинарству 24. април 2015. Суботица, СРБИЈА ТРАНСПОРТ НАНОСА И ПРОМЕНА КОТЕ ДНА У МРЕЖИ ОТВОРЕНИХ ТОКОВА Мирјана

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ

ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ ПИТАЊА ЗА КОЛОКВИЈУМ ИЗ ОБНОВЉИВИХ ИЗВОРА ЕНЕРГИЈЕ 1. Удео снаге и енергије ветра у производњи електричне енергије - стање и предвиђања у свету и Европи. 2. Навести називе најмање две међународне организације

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10 Tестирање хипотеза 5.час 30. март 2016. Боjана Тодић Статистички софтвер 2 30. март 2016. 1 / 10 Монте Карло тест Монте Карло методе су методе код коjих се употребљаваjу низови случаjних броjева за извршење

Διαβάστε περισσότερα

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА Стандардна девијација показује расподелу резултата мерења око средње вредности, али не указује на облик расподеле. У табели 1 су дате вредности за 50 поновљених одређивања

Διαβάστε περισσότερα

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004 РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 004 ТРАНСФОРМАТОРИ Tрофазни енергетски трансформатор 100 VA има напон и реактансу кратког споја u 4% и x % респективно При номиналном оптерећењу

Διαβάστε περισσότερα

p /[10 Pa] 102,8 104,9 106,2 107,9 108,7 109,4 r / 1,1 1,3 1,5 2,0 2,5 3,4

p /[10 Pa] 102,8 104,9 106,2 107,9 108,7 109,4 r / 1,1 1,3 1,5 2,0 2,5 3,4 . РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ 9/. ГОДИНЕ II РАЗРЕД Друштво Физичара Србије Министарство Просвете Републике Србије ЗАДАЦИ ГИМНАЗИЈА ВЕЉКО ПЕТРОВИЋ СОМБОР,.... Хомогена кугла

Διαβάστε περισσότερα

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила. Вектори 1 Вектори vs. скалари Векторске величине се описују интензитетом и правцем Примери: Померај, брзина, убрзање, сила. Скаларне величине су комплетно описане само интензитетом Примери: Температура,

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности,

Διαβάστε περισσότερα

ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ -

ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ - ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ - ЦЕНЕ ПРОИЗВОДЊЕ И ДИСТРИБУЦИЈЕ ВОДЕ И ЦЕНЕ САКУПЉАЊА, ОДВОђЕЊА И ПРЕЧИШЋАВАЊА ОТПАДНИХ ВОДА НА НИВОУ ГРУПАЦИЈЕ ВОДОВОДА

Διαβάστε περισσότερα

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: Њутнови закони 1 Динамика Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе: када су објекти довољно велики (>димензија атома) када се крећу брзином много мањом

Διαβάστε περισσότερα

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016.

ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 2 (13Е013ЕП2) октобар 2016. ЕНЕРГЕТСКИ ПРЕТВАРАЧИ (3Е03ЕП) октобар 06.. Батерија напона B = 00 пуни се преко трофазног полууправљивог мосног исправљача, који је повезан на мрежу 3x380, 50 Hz преко трансформатора у спрези y, са преносним

Διαβάστε περισσότερα

ОДРЕЂИВАЊЕ ДИМЕНЗИЈА ШАХТНОГ ПРЕЛИВА ЕМПИРИЈСКИМ ЈЕДНАЧИНАМА

ОДРЕЂИВАЊЕ ДИМЕНЗИЈА ШАХТНОГ ПРЕЛИВА ЕМПИРИЈСКИМ ЈЕДНАЧИНАМА UDK: 67.83/53.533 Originalni naučni rad ОДРЕЂИВАЊЕ ДИМЕНЗИЈА ШАХТНОГ ПРЕЛИВА ЕМПИРИЈСКИМ ЈЕДНАЧИНАМА Љубодраг САВИЋ, Радомир KAПОР, Владан КУЗМАНОВИЋ, Бојан МИЛОВАНОВИЋ Универзитет у Београду Грађевински

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ

Смер: Друмски саобраћај. Висока техничка школа струковних студија у Нишу ЕЛЕКТРОТЕХНИКА СА ЕЛЕКТРОНИКОМ Испит из предмета Електротехника са електроником 1. Шест тачкастих наелектрисања Q 1, Q, Q, Q, Q 5 и Q налазе се у теменима правилног шестоугла, као на слици. Познато је: Q1 = Q = Q = Q = Q5 = Q ; Q 1,

Διαβάστε περισσότερα

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези Регулциј електромоторних погон 8 ЛАБОРАТОРИЈСКА ВЕЖБА Здтк вежбе: Изрчунвње фктор појчњ мотор нпонским упрвљњем у отвореној повртној спрези Увод Преносн функциј мотор којим се нпонски упрвљ Кд се з нулте

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv

Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv Стручни рад UDK:621.317.42:621.317.32:621.311.42 BIBLID: 0350-8528(2016),26 p.151-163 doi:10.5937/zeint26-12319 Испитивања електричних и магнетских поља у околини трансформаторских станица 110/x kv Маја

Διαβάστε περισσότερα

Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије

Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзија Једна од централних идеја рачунарства Метода која решавање проблема своди на решавање проблема мање димензије Рекурзивна функција (неформално) је функција која у својој дефиницији има позив те

Διαβάστε περισσότερα

1. Функција интензитета отказа и век трајања система

1. Функција интензитета отказа и век трајања система f(t). Функција интензитета отказа и век трајања система На почетку коришћења неког система јављају се откази који као узрок имају почетне слабости или пропуштене дефекте у току производње и то су рани

Διαβάστε περισσότερα

МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање

МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ. Осиловање МЕХАНИЧКЕ ОСЦИЛАЦИЈЕ Понедељак, 29. децембар, 2010 Хуков закон Период и фреквенција осциловања Просто хармонијско кретање Просто клатно Енергија простог хармонијског осцилатора Веза са униформним кретањем

Διαβάστε περισσότερα

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1

КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 КАТЕДРА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ И ПОГОНЕ ЛАБОРАТОРИЈА ЗА ЕНЕРГЕТСКЕ ПРЕТВАРАЧЕ ЕНЕРГЕТСКИ ПРЕТВАРАЧИ 1 Лабораторијска вежба број 1 МОНОФАЗНИ ФАЗНИ РЕГУЛАТОР СА ОТПОРНИМ И ОТПОРНО-ИНДУКТИВНИМ ОПТЕРЕЋЕЊЕМ

Διαβάστε περισσότερα

C кплп (Кпндензатпр у кплу прпстпперипдичне струје)

C кплп (Кпндензатпр у кплу прпстпперипдичне струје) C кплп (Кпндензатпр у кплу прпстпперипдичне струје) i u За кплп са слике на крајевима кпндензатпра ппзнате капацитивнпсти C претппставићемп да делује ппзнат прпстпперипдичан наппн: u=u m sin(ωt + ϴ). Услед

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април 2016. Суботица, СРБИЈА УПОРЕДНА АНАЛИЗА ЕЛАСТИЧНЕ И ЕЛАСТО- ПЛАСТИЧНЕ НОСИВОСТИ ПОПРЕЧНОГ ПРЕСЕКА Аљоша Филиповић 1 Љубо Дивац

Διαβάστε περισσότερα

УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ

УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Тематско поглавље 5.2 УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Проф. др Велиборка Богдановић Грађевинско-архитектонски факултет Универзитета у Нишу УСЛОВИ ГРАЂЕВИНСКЕ ФИЗИКЕ Пример прорачуна топлотно-заштитних својстава

Διαβάστε περισσότερα

Енергетски трансформатори рачунске вежбе

Енергетски трансформатори рачунске вежбе 16. Трофазни трансформатор снаге S n = 400 kva има временску константу загревања T = 4 h, средњи пораст температуре после једночасовног рада са номиналним оптерећењем Â " =14 и максимални степен искоришћења

Διαβάστε περισσότερα

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА

4. ЗАКОН ВЕЛИКИХ БРОЈЕВА 4. Закон великих бројева 4. ЗАКОН ВЕЛИКИХ БРОЈЕВА Аксиоматска дефиниција вероватноће не одређује начин на који ће вероватноће случајних догађаја бити одређене у неком реалном експерименту. Зато треба наћи

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ПРЕДМЕТА ОСНОВИ МЕХАНИКЕ ФЛУИДА Студент: Број индекса: Оверио: Нови Сад 014 1. СТРУЈАЊЕ ТЕЧНОСТИ 1.1 Опис лабораторијског постројења Лабораторијска вежба урадиће се на лабораторијском

Διαβάστε περισσότερα

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика

Штампарске грешке у петом издању уџбеника Основи електротехнике, 1. део, Електростатика Штампарске грешке у петом издању уџбеника Основи електротехнике део Страна пасус први ред треба да гласи У четвртом делу колима променљивих струја Штампарске грешке у четвртом издању уџбеника Основи електротехнике

Διαβάστε περισσότερα

Од површине троугла до одређеног интеграла

Од површине троугла до одређеног интеграла Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.i.ac.rs/mii Математика и информатика (4) (5), 49-7 Од површине троугла до одређеног интеграла Жарко Ђурић Париске комуне 4-/8, Врање

Διαβάστε περισσότερα

Површине неких равних фигура

Површине неких равних фигура Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.ni.ac.rs/mii Математика и информатика 3() (5), -6 Површине неких равних фигура Жарко Ђурић Париске комуне 4-/8, Врање zarkocr@gmail.com

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА 4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству. април 06. Суботица, СРБИЈА АНАЛИЗA СТАБИЛНОСТИ ВЕРТИКАЛНОГ ЗАСЕКА ПРИМЕНОМ МЕХАНИКЕ ЛОМА Предраг Митковић Никола Обрадовић Драгослав Шумарац

Διαβάστε περισσότερα

T. max Т / [K] p /[ 10 Pa] 1,01 1,23 1,74 2,39 3,21 4,42 5,87 7,74 9,35 11,60

T. max Т / [K] p /[ 10 Pa] 1,01 1,23 1,74 2,39 3,21 4,42 5,87 7,74 9,35 11,60 II РАЗРЕД 49. РЕПУБЛИЧКО ТАКМИЧЕЊЕ ИЗ ФИЗИКЕ УЧЕНИКА СРЕДЊИХ ШКОЛА ШКОЛСКЕ /. ГОДИНЕ Друштво Физичара Србије Министарство просвете и науке Републике Србије ЗАДАЦИ ФИЗИЧКИ ФАКУЛТЕТ БЕОГРАД 9.4... Малу плочицу,

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

Нивелмански инструмент (нивелир) - конструкција и саставни делови, испитивање и ректификација нивелира, мерење висинских разлика техничким нивелманом

Нивелмански инструмент (нивелир) - конструкција и саставни делови, испитивање и ректификација нивелира, мерење висинских разлика техничким нивелманом висинских техничким нивелманом Страна 1 Радна секција: 1.. 3. 4. 5. 6. Задатак 1. За нивелмански инструмент нивелир са компензатором серијски број испитати услове за мерење висинских : 1) Проверити правилност

Διαβάστε περισσότερα

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год.

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год. ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br. 08039801 Reg.br. 8238022472 šif.del. 86-90 PIB 100791703 ž.račun. 840-209667-75 tel/faks: 022/ 610-511, 636-509 e-mail: info@zdravlje-sm.org.rs

Διαβάστε περισσότερα

Задатак Задатак Задатак Задатак Задатак Списак слика Литература... 86

Задатак Задатак Задатак Задатак Задатак Списак слика Литература... 86 Лист/листова: 1/86 Садржај Задатак 1.1.1... 3 Задатак 1.1.2... 5 Задатак 1.2.1... 6 Задатак 2.1... 70 Задатак 2.2... 75 Списак слика... 83 Литература... 86 4 468/09 495/09 28/08 18/09 69/09 20/11. 1.6.21

Διαβάστε περισσότερα

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни ТАЧКА. ПРАВА. РАВАН Талес из Милета (624 548. пре н. е.) Еуклид (330 275. пре н. е.) Хилберт Давид (1862 1943) 3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни Настанак геометрије повезује

Διαβάστε περισσότερα

Закони термодинамике

Закони термодинамике Закони термодинамике Први закон термодинамике Први закон термодинамике каже да додавање енергије систему може бити утрошено на: Вршење рада Повећање унутрашње енергије Први закон термодинамике је заправо

Διαβάστε περισσότερα

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год.

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год. ЗАВОД ЗА ЈАВНО ЗДРАВЉЕ СРЕМСКА МИТРОВИЦА Стари шор 47 Mat.br. 08039801 Reg.br. 8238022472 šif.del. 86-90 PIB 100791703 ž.račun. 840-209667-75 tel/faks: 022/ 610-511, 636-509 e-mail: info@zdravlje-sm.org.rs

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: МЕХАНИКА 1 студијски програми: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 3. 1 Садржај предавања: Статичка одређеност задатака

Διαβάστε περισσότερα

Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је:

Слика 1. Слика 1.1 Слика 1.2 Слика 1.3. Количина електрицитета која се налази на електродама кондензатора капацитивности C 3 је: Три кондензатора познатих капацитивности 6 nf nf и nf везани су као на слици и прикључени на напон U Ако је позната количина наелектрисања на кондензатору капацитивности одредити: а) Напон на који је прикључена

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА

4. МЕЂУНАРОДНА КОНФЕРЕНЦИЈА Савремена достигнућа у грађевинарству 22. април Суботица, СРБИЈА ЕЛАСТИЧНА ФЛЕКСИБИЛНОСТ СПОЈЕВА СА ВИСОКОВРЕДНИМ ЗАВРТЊЕВИМА Ненад Фриц 1 Драган Буђевац 2 Зоран Мишковић 3 УДК: 621.882 DOI:10.14415/konferencijaGFS 2016.011 Резиме: Еластична флексибилност, односно крутост

Διαβάστε περισσότερα

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q

Разлика потенцијала није исто што и потенцијална енергија. V = V B V A = PE / q Разлика потенцијала Разлика потенцијала између тачака A и B се дефинише као промена потенцијалне енергије (крајња минус почетна вредност) када се наелектрисање q помера из тачке A утачку B подељена са

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

ПРОЈЕКТОВАЊЕ РАМПЕ. Слика А.1 - (а) приказ рампе у основи, (б) подужни пресек рампе

ПРОЈЕКТОВАЊЕ РАМПЕ. Слика А.1 - (а) приказ рампе у основи, (б) подужни пресек рампе ПРОЈЕКТОВАЊЕ РАМПЕ Рампа представља косу подземну просторију која повезује хоризонте или откопне нивое, и тако је пројектована и изведена да омогућује кретање моторних возила. Приликом пројектовања рампе

Διαβάστε περισσότερα

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност,

Слика 1 Ако се са RFe отпорника, онда су ова два температурно зависна отпорника везана на ред, па је укупна отпорност, Температурно стабилан отпорник састоји се од два једнака цилиндрична дела начињена од различитих материјала (гвожђе и графит) У ком односу стоје отпорности ова два дела отпорника ако се претпостави да

Διαβάστε περισσότερα

Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ

Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ПОДЗЕМНИ РАДОВИ 15 (2006) 43-48 UDK 62 РУДАРСКО-ГЕОЛОШКИ ФАКУЛТЕТ БЕОГРАД YU ISSN 03542904 Стручни рад ПРИМЕНА МЕТОДЕ АНАЛИТИЧКИХ ХИЕРАРХИJСКИХ ПРОЦЕСА (АХП) КОД ИЗБОРА УТОВАРНО -ТРАНСПОРТНЕ МАШИНЕ ИЗВОД

Διαβάστε περισσότερα

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ЕЛЕКТРОТЕХНИЧКИ ФАКУЛТЕТ У БЕОГРАДУ КАТЕДРА ЗА ЕЛЕКТРОНИКУ АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ВЕЖБА БРОЈ 2 ПОЈАЧАВАЧ СНАГЕ У КЛАСИ Б 1. 2. ИМЕ И ПРЕЗИМЕ БР. ИНДЕКСА ГРУПА ОЦЕНА ДАТУМ ВРЕМЕ ДЕЖУРНИ

Διαβάστε περισσότερα