РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА"

Transcript

1 РЕШЕНИ ЗАДАЦИ СА РАНИЈЕ ОДРЖАНИХ КЛАСИФИКАЦИОНИХ ИСПИТА 006. Задатак. Одредити вредност израза: а) : за, и 69 0, ; б) 9 а) Како је за 0 и 0 дати израз идентички једнак изразу,, : : то је за дате вредности, и 69 0, вредност израза. б) Задатак. Решити једначину:. Дата једначина еквивалентна је једначини тј.

2 . Увођењем смене добијамо тј. 0 0, односно. Дакле, решење полазне једначине је 0. Задатак. Доказати идентитет: sin sin g. sin sin За k важи: sin sin sin sin cos sin sin sin sin cos sin sin cos cos g. sin cos cos cos Задатак., одакле је Ако се број страница правилног многоугла смањи за један, број његових дијагонала смањи се за осам. Који је то многоугао? Према услову задатка важи: D n 8 Dn n n n n 8 n n 6 n n n 0 n 0. Задатак. Написати једначину праве која на координатним осама одсеца једнаке одсечке и додирује кружницу y 8.

3 Једначину праве можемо написати у сегментном облику q y p. Како је q p то је p y p y. Права n k y додирује кружницу r y ако је n k r. Како је 8 r, k и p n, то је 6 p p 6, па су једначине праве : 6 y : и 6 y :. 00. Задатак. Вредност израза једнака је: а) ; б) ; в) ; г) ; д). ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( Одговор: в) Задатак. Упрошћен израз : има облик: а) ; б) ; в) ; г) ; д) 0.

4 - ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( : ) ( : Одговор: в) Задатак. Решења квадратне једначине 0 задовољавају неједнакост за а),0 ; б), ; в), ; г), ; д) 0,. На основу Виетових правила је и, 0 0,,, па дата неједнакост добија облик:, 6 Одговор: в) Задатак. Збир решења једначине је: а) 0; б) ; в) ; г) ; д) 6. Дата једначина еквивалентна је једначини

5 6 Увођењем смене Висока техничка школа струковних студија , једначина се трансформише у 0 6 0, чија су решења /, 8,. Заменом добијамо 8 или, односно или па је или. Дакле и. Отуда је. Одговор: в) Задатак. Производ решења једначине а) 9 ; б) ; в) ; г) ; д) -. је: Нека је 0. Дата једначина еквивалентна је једначини. Усвjањем смене, једначина добија облик 0 чија су решења и, па је 9 или, односно 9. Одговор: в) Задатак 6. Израз cos sin sin идентички је једнак: а) cos( ) ; б) cos sin ; в) sin( ) ; г) ; д) 0.

6 cos sin (cos sin ) (cos sin cos sin sin sin cos (cos sin ) ( sin cos ) ( sin cos ) cos sin. Задатак. ) Одговор: б) У правоуглом троуглу једна катета је Површина тог троугла је: 8 c а друга је c краћа од хипотенузе. а) 0 c ; б) 60 c ; в) 80 c ; г) 8 c ; д) 6 c. Ако су и катетете, а c хипотенуза правоуглог троугла, онда је 8 c, c. Применом Питагорине теореме добијамо: c ( c ) 8 c c c c 68 c c. Отуда, c, па је 8 P P P 60 c. Одговор: б) Задатак 8. У купу, чији је осни пресек једнакостранични троугао, уписана је лопта запремине. Запремина купе је: а) 0 ; б) 0 ; в) ; г) ; д) ниједан од ових одговора. Нека је s изводница купе, r полупречник основе, H висина купе, а R полупречник лопте. Како је осни пресек једнакостраничан троугао, то је r s и s H, а R H тј. 6

7 s R. Запремина лопте је V R, па је R, одакле је R. Тада је 6 s тј. s, а r 6 s, r, H 6. Запремина купе је V r H V 6 V. Одговор: г) Задатак 9. Услов да права k y 0 додирује елипсу y вредности: је да параметар k има а) k ; б) k ; в) k 0 ; г) k 6 д) ниједан од ових одговора. y Права y k n додирује елипсу ако је k може записати у облику y k и елипса y то је: k k k k k 6. n. Како се дата права 6 Одговор: г) Задатак 0. Тринаести члан аритметичког низа -, -6, -0,... је: а) 0; б) -0; в) -6; г) 00; д) ниједан од ових одговора. Како је и 6 ( ), то је ( ) 0. Одговор: б)

8 Задатак. Вредност израза је: ) ; ) ; в) + ; г) -. За, 0 0, Одговор: а) Задатак. Производ решења једначине је: ) ; б) ; в) 0 ; г). Дата једначина може се представити у облику:

9 је Висока техничка школа струковних студија Увођењем смене, добија се: 0 чија су решења и 9, одакле и, или.,, па је производ решења Задатак. Решења једначине sin cos ) k ; б) k, 6 в) су: k ; 6 k ; г) k, k, k. 6 6 Одговор: г) Како је cos sin, то се заменом добија квадратна једначина: sin sin sin 0 sin 0 sin 0 sin k, k, 6 k 6 Одговор: г) Задатак. Површина ромба чије се дијагонале разликују за 8 не мења се ако се краћа дијагонала продужи за, а дужа скрати за. Та површина је: ) 0 ; б) 60 ; в) 0 ; г) 00. Означимо дужине дијагонала са и. Према условима задатка добијамо следећи систем: 9

10 Тражена површина је 0 0 P. Одговор: а) Задатак. Угао између изводнице и висине праве кружне купе је 0 60, а разлика њихових дужина је 0. Запремина купе је: ) 000 ; б) 00 ; в) ; г) 00. r s r s r s H H H H s H s s H 0, sin 60, sin , 0 0,, cos V V H r V Одговор: а) 009. Задатак. Вредност израза је: а) ; б) ; в) 0 ; г) -. H s r 60 o 0 o

11 За 0, 0, Одговор: а) Задатак. Решења једначине су : а) или 0 ; б) или 9 ; в) или ; г) или 6. Једначина има смисла за 0 и. Како је, и, то је дата једначина еквивалентна са. Увођењем смене, добија се: 9 0, Одакле је 9 или. Одговор: б)

12 Задатак. Ако је sin 8 и оштар угао, онда је вредност израза cos sin једнака: а) ; б) ; в) ; г). 89 Како је cos cos Задатак. cos sin и sin sin то је 8 sin 6 89 cos sin sin cos 89. sin Одговор: в) У једнакокраком троуглу збир трећине угла при врху и половине једног од углова на 0 основици износи 8. Углови тог троугла су: а) 6,6,08 ; б) 0,0,0 ; в) ,0,00 ; г) ,,. Нека су и углови на основици, а угао при врху. Тада је: Дакле, 6 Одговор: г) Задатак. Три броја образују растући аритметички низ.њихов збир је, а збир њихових квадрата је. То су бројеви : а) -,, ; б) 0, 6, 9 ; в), 6, 8 ; г),,.

13 Нека су то бројеви,,. Тада је: Како је низ растући, то је 0. Дакле, 6 и тражени бројеви су -,,. Одговор: а) 00. Задатак. Вредност израза : је: а) ; б) ; в) ; г). Како је и, дати израз добија облик: :. : Одговор: б)

14 Задатак. Решење једначине је: а) ; б) ; в) ; г) 0. Уз услове да је 0, 0, 0, добија се: 0. Одговор: а) Задатак. Вредност израза cos cos је: 8 8 а) ; б) ; в) ; г). Користећи формулу за разлику квадрата и одговарајуће адиционе формуле, добија се: cos cos 8 8 cos cos. 8 sin 8 Одговор: б) Задатак. Бројеви:,, аритметичког низа за: представљају три узастопна члана а) ; б) ; в) ; г).

15 Како је код аритметичког низа разлика два суседна члана константна, то је : Увођењем смене, 0, добија се квадратна једначина 0, чија су решења:,. Дакле,. Задатак. Одговор: а) Обим већег дијагоналног пресека правилне шестостране призме је c. Висина призме је за c краћа од основне ивице. Површина те призме је: а) c ;б) c ; в) ( ) c ; г) 6 c. Обележимо основну ивицу призме са ивисину са H. Већи дијагонални пресек призме је правоугаоник страница и а -, одакле је обим једнак: O ( ) ( ) c H c. Како је површина шестостране призме једнака вредности долази до решења: P 6H, то се заменом добијених P 8 ( ) c. Одговор: в)

16 0. Задатак. Вредност израза : а) ; б) - ; ц) 00 ; д) -00. је: Задатак. : : 6 6 Одговор: б) Производ решења једначине 6 6 je: а) ; б) 6; ц) ; д) -6. Примењујући правила о промени основе логаритма и о логаритму количника, добија се једначина облика: Увођењем смене добија се: Како су решења дате једначине 8 и то је њихов производ. Одговор: а) 6

17 Задатак. Упрошћен израз cos sin sin je: а) ; б) cos sin ; ц) cos sin ; д). sin Koристећи формулу за разлику кубова, основни тригонометријски идентитет cos и формулу sin sin cos добија се: cos sin sin cos sin cos cos sin sin sin cos cos sin sin cos cos sin cos Задатак. Висина хипотенузе дели хипотенузу на одсечке дужина кружнице датог правоуглог троугла је: а) 0 c ; б) 00 c ; ц) c ; д) c. sin Одговор: ц) 9c и 6 c. Обим уписане Како су одсечци хипотенузе дати то је хипотенуза c 9 c 6 c c. Висина је поделила дати троугао на два правоугла троугла, у којима се применом Питагорине теореме могу изразити катете датог троугла. 9 hc и 6 hc. Како је c и c c 9 6 h, одакле је c c то се сабирањем ових једнакости добија c h, па је 0 c и c. Како је полупречник уписане кружнице правоуглог троугла c r то је r c, па је обим уписане кружнице O r 0 c. Одговор: а)

18 Задатак. Основна ивица правилне четворостране пирамиде је M 60 c. Запремина те пирамиде је : 6c, а површина омoтача а) 8 c ; б) 60 c ; ц) 6 c ; д) Како је омотач правилне четворостране пирамиде h 0 c. M h 60 c и 6 c, то је апотема c. Из правоуглог троугла који повезује апотему, висину пирамиде и полупречник уписане кружнице основе пирамиде, jе H h полупречник уписане кружнице једнак половини странице, Тражена запремина пирамиде је: V BH H 6 8 c. r, а како је у основи квадрат, то је 6 r c c то је H c. Одговор: а) 0. Задатак. y y Вредност израза y y y 6 6 y y je: ) ) ) y ) y Растављајући имениоце на чиниоце, израз постаје : y y 6 y y y y y y y y 6 y y y y y y y y y y y y y 8 6 y 0 0 y y 6 y y y y y, y 6 y y y 6 y y y y y Одговор: ) 8

19 Задатак. Висока техничка школа струковних студија Збир решења једначине 8 је : За 0 0 и вредности израза ) ) ) ) 6, дата једначина еквивалентна је једначини 0, увођењем смене, добија се квадратна једначина 0, чија су решења,, одакле су решења полазне једначине,. s На основу особина логаритама s и s је s 8,, Отуда је : 8 Одакле је збир решења дате једначине и вредности датог израза. Одговор: ) Задатак. Решења једначине sin 0 на интервалу π 0, су: ),,, ), 6 6 ),,, ), Дата једначина еквивалентна је једначини : sin, одакле је sin sin Решења ових једначина су : π π π π kπ lπ и π sπ,oдакле је : π kπ π lπ π π π sπ и k, l,, s Z Kако решења треба одредити на интервалу 0, π то је π 9 π 9 9 π π. 9 9 Одговор: )

20 Задатак. Збир првих 0 парних природних бројева је : ) 0 ) 0 ) 80 ) Како парни природни бројеви чине аритметички низ, где је ралика свака два суседна члана и први члан то се из формуле за првих n чланова аритметичког низа n S n добија n 0 S Одговор: ) Задатак. Хипотенуза правоуглог троугла је, а један оштар угао 0. Запремина тела које настаје ротацијом троугла око хипотенузе је : ) ) ) ) 6 Ротацијом троугла око хипотенузе настаје тело које се састоји од две купе спојене базама.отуда је запремина тако добијеног тела: V V V r πh r πh r π H H Како је збир висина ове две купе једнак хипотенузи датог троугла то је r πc. Полупречник основа купа је висина датог троугла која одговара хипотенузи и може се chc израчунати из обрасца за површину правоуглог троугла: P. Kко се у правоуглом 0

21 троуглу наспрам угла од 0 налази катета једнака половини хипотенузе то је, а на основу Питагорине теореме, п је r h. Kоначно запремина тела биће једнака : V r πc π π. c Одговор: ) 0. je: Задатак. Вредност израза + + А) ; Б) ; В) ; Г). + + = = = = ( 0, ). Одговор: Г) Задатак. Производ решења једначине + + = 8 je: А) -9 ; Б) ; В) -6 ; Г) = = 8. Како је + =, тј. = +, увођењм смене + = једначина постаје + = = 0. Решења ове једначине су = = +, = +, те је = =. Отуда, решења полазне једначине су =, =, те је њихов производ = 9.

22 Одговор: А) Задатак. Број решења једначине = на интервалу (0, ) je : А) ; Б) 0 ; В) ; Г). = + = 0 = 0 ( ) = 0 + = 0 Решења последње једначине по су - и, а како је, то је =. Отуда је = + = + (, Ζ ), те је = + = + (, Ζ). Како се траже решења на интервалу (0, ) то је = =. Дакле број решења дате једначине на интервалу (0, ) je. Одговор: Г) Задатак. Површина кружног прстена, део између описаног и уписаног круга правилног шестоугла странице, je. Површина тог шестоугла (у ) је :, =. А) ; Б) ; В) ; Г) 6. Означимо са, полупречник описаног и уписаног круга респективно. Тада је = Како је површина кружног прстена ( ) =, то је =, одакле је =. Тражена површина шестоугла је = 6 =. Одговор: А) Задатак. Запремина праве призме чија је основа ромб је 0 пресека су 60 и 80. Површина те призме је :. Површине дијагоналних А) ; Б) ; В) 80 ; Г) 8. Нека су, дијагонале ромба, =, = површине дијагоналних пресека призме висине. Површина основе =. Запремина ове призме је =

23 , одакле је =, те је =, а одатле заменом датих вредности добијамо = 0. Из = = = = 6, = = = 8 Како је = + то је =. Tражена површина призме је = + = +, одакле је = 8. Одговор: Г) Задатак. Вредност израза je: А) ; Б) 6 ; В) ; Г) 0. На основу формуле за квадрат збира + + = и формуле за разлику квадрата следи да је + = = 6 = = + + = Како је и то је = + = = + + = + + = + = = = = 8 = = 0. Одговор: Г) Задатак. Производ решења једначине = je: А) Б) ; В) ; Г) 0.

24 Како је = за за > то је за дата једначина еквивалентна једначини: ( ) = ( ). Отуда је 9 = 6, односно =. За > дата једначина еквивалентна је једначини: ( ) = ( ), одакле је 9 = 6, те је =. Како су решења дате једначине = и = то је њихов производ =. Одговор: А) Задатак. Збир решења једначине + = на интервалу (, ] je : А) ; Б) ; В) 6 ; Г) 8. Дата једначина еквивалентна је са = Како је = s то је s = 0, тј. = 0. Одатле је = 0 =, те је = = + = +,,,. Зато је = = + = +,,,. Kако се траже решења на интервалу (0, ], то је = = = =, а одатле је њихов збир једнак 8. Одговор: Г) Задатак. Oко круга пречника описан је једнакокраки трапез, површине. Збир нумеричких вредности обима и површине овог трапеза је: А) ; Б) 6 ; В) ; Г) 6. Нека су и основице, крак, а h висина датог трапеза. Приметимо да је пречник једнак висини. Како је дати трапез тангентни четвороугао, то је збир основица једнак збиру кракова тј. + =. Како је површина трапеза = h, то знајући површину и висину можемо одредити збир основица, тј. + = = =. Како је обим једнакокраког трапеза = + +, то је = 68, отуда је збир нумеричких вредности обима и површине 68+=. Одговор: А)

25 је : Задатак. Запремина ваљка је 80. Површин осног пресека је 0. Површина тог ваљка А) 8 ; Б) 90 ; В) 80 ; Г) 60. Означимо са полупречник основе ваљка и са висину. Како је површина осног пресека = = = 60. Запремина ваљка је =, тј 80 = = 60, одакле је = и = = = 0. Површина ваљка је = ( + ) = ( + 0) = 8. Одговор: А) Задатак. У скупу целих бројева збир решења једначине + = je: А) ; Б) 0 ; В) ; Г). 0. Како је =,, < и + = +,, то може припадати следећим, < интервалима (, -) ;, ;, ). Разликујемо три случаја: ) <, ) - <, ). < - < ) За (, ) дата једначина еквивалентна је једначини ( ) = =, па једначина у овом случају нема решења. ) За, дата једначина постаје ( + ) = = = =. ) За, ) дата једначина еквивалентна је једначини ( + ) = = = =. Дакле, = и = су решења полазне једначине, па је збир решења -+=. Задатак. Ako je =, =, тада je једнако: Одговор: Г)

26 А) ; Б) ; В) ; Г). На основу особина логаритама добија се: = = = = = ( ) = ( ) = Одговор: А) Задатак. Вредност израза + je: А) ; Б) ; В) ; Г). се: Користећи формулу за разлику квадрата и одговарајуће тригоно-метријске идентитете добија + = = = + = + = +. Одговор: Г) Задатак. Збир прва четри члана аритметичког низа једнак је, а следећа једнак је 8. Број чланова овог низа које треба сабрати да би се добио збир је: А) 0 ; Б) ; В) 0 ; Г) 6. Према условима задатка = и = + =. Из формуле за збир првих чланова аритметичког низа = ( + ( ) ) и датих услова добија се следећи систем линеарних једначина ( + ( ) ) = ( + (8 ) ) = 0 тј. + 6 = = 0. Овај систем има решења = и =. Ако је број првих чланова низа чији је збир, онда је + ( ) =, односно 0 = 0. Решавањем квадратне једначине добија се = 0. Одговор: А) Задатак. Ако су А =, =, две странице троугла ABC и збир висина h и h једнак је трећој висини h ( = + ), тада је страница овог троугла једнака: А) ; Б) ; В) ; Г). 6

27 Како је површина троугла = = =, то је h =, h =, h = и како за висине овог троугла важи = + добија се = +, одакле следи = + =, те је =. Одговор: А)

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ: Ваљак ВАЉАК P=B + M V= B H B= r p M=rp H Pосн.пресека = r H. Површина омотача ваљка је π m, а висина ваљка је два пута већа од полупрчника. Израчунати запремину ваљка. π. Осни пресек ваљка је квадрат површине

Διαβάστε περισσότερα

10.3. Запремина праве купе

10.3. Запремина праве купе 0. Развијени омотач купе је исечак чији је централни угао 60, а тетива која одговара том углу је t. Изрази површину омотача те купе у функцији од t. 0.. Запремина праве купе. Израчунај запремину ваљка

Διαβάστε περισσότερα

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде математик за VIII разред основне школе 4. Прво наћи дужину апотеме. Како је = 17 cm то је тражена површина P = 18+ 4^cm = ^4+ cm. 14. Основа четворостране пирамиде је ромб чије су дијагонале d 1 = 16 cm,

Διαβάστε περισσότερα

ПРИЈЕМНИ ИСПИТ. Јун 2003.

ПРИЈЕМНИ ИСПИТ. Јун 2003. Природно-математички факултет 7 ПРИЈЕМНИ ИСПИТ Јун 00.. Одредити све вредности параметра m за које су оба решења једначине x x + m( m 4) = 0 (a) реална; (b) реална и позитивна. Решење: (а) [ 5, + (б) [

Διαβάστε περισσότερα

1.2. Сличност троуглова

1.2. Сличност троуглова математик за VIII разред основне школе.2. Сличност троуглова Учили смо и дефиницију подударности два троугла, као и четири правила (теореме) о подударности троуглова. На сличан начин наводимо (без доказа)

Διαβάστε περισσότερα

КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z

КОМПЛЕКСНИ БРОЈЕВИ. Формуле: 1. Написати комплексне бројеве у тригонометријском облику. II. z i. II. z КОМПЛЕКСНИ БРОЈЕВИ z ib, Re( z), b Im( z), z ib b b z r b,( ) : cos,si, tg z r(cos i si ) r r k k z r (cos i si ), z r (cos i si ) z r (cos i si ), z r (cos i si ) z z r r (cos( ) i si( )), z z r (cos(

Διαβάστε περισσότερα

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве в) дијагонала dd и страница aa квадрата dd = aa aa dd = aa aa = није рац. бр. нису самерљиве г) страница aa и пречник RR описаног круга правилног шестоугла RR = aa aa RR = aa aa = 1 јесте рац. бр. јесу

Διαβάστε περισσότερα

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА 1. Допуни шта недостаје: а) 5m = dm = cm = mm; б) 6dm = m = cm = mm; в) 7cm = m = dm = mm. ПОЈАМ ПОВРШИНЕ. Допуни шта недостаје: а) 10m = dm = cm = mm ; б) 500dm = a

Διαβάστε περισσότερα

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ

ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Универзитет у Крагујевцу Машински факултет Краљево ЗБИРКА РЕШЕНИХ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ИЗ МАТЕМАТИКЕ Краљево, март 011. године 1 Публикација Збирка решених задатака за пријемни испит из математике

Διαβάστε περισσότερα

6.5 Површина круга и његових делова

6.5 Површина круга и његових делова 7. Тетива је једнака полупречнику круга. Израчунај дужину мањег одговарајућег лука ако је полупречник 2,5 сm. 8. Географска ширина Београда је α = 44 47'57", а полупречник Земље 6 370 km. Израчунај удаљеност

Διαβάστε περισσότερα

ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC

ТРОУГАО. права p садржи теме C и сече страницу. . Одредити највећи угао троугла ако је ABC ТРОУГАО 1. У троуглу АВС израчунати оштар угао између: а)симетрале углова код А и В ако је угао код А 84 а код С 43 б)симетрале углова код А и В ако је угао код С 40 в)између симетрале угла код А и висине

Διαβάστε περισσότερα

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ ТРАПЕЗ Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце Ментор :Криста Ђокић, наставник математике Власотинце, 2011. године Трапез

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4

МАТЕМАТИЧКИ ЛИСТ 2016/17. бр. LI-4 МАТЕМАТИЧКИ ЛИСТ 06/7. бр. LI-4 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 50 4 = 00; б) 0 5 = 650; в) 0 6 = 6; г) 4 = 94; д) 60 : = 0; ђ) 0 : = 40; е) 648 :

Διαβάστε περισσότερα

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x, Већи број: 1 : 4x + 1, (4 бода) Њихов збир: 1 : 5x + 1, Збир умањен за остатак: : 5x = 55, 55 : 5 = 11; 11 4 = ; + 1 = 45; : x = 11. Дакле, први број је 45

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2015.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2015. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2 8. ПИТАГОРИНА ЈЕДНАЧИНА х + у = z Један од најзанимљивијих проблема теорије бројева свакако је проблем Питагориних бројева, тј. питање решења Питагорине Диофантове једначине. Питагориним бројевима или

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2016. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-5 МАТЕМАТИЧКИ ЛИСТ 014/15. бр. XLIX-5 РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред 1. а) 70 - седамсто три; б) двесто осамдесет два 8.. а) 4, 54, 54, 45, 504, 54. б)

Διαβάστε περισσότερα

5.2. Имплицитни облик линеарне функције

5.2. Имплицитни облик линеарне функције математикa за VIII разред основне школе 0 Слика 6 8. Нацртај график функције: ) =- ; ) =,5; 3) = 0. 9. Нацртај график функције и испитај њен знак: ) = - ; ) = 0,5 + ; 3) =-- ; ) = + 0,75; 5) = 0,5 +. 0.

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2014. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2013.

ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ. Крагујевац, 2013. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНИВЕРЗИТЕТА У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ Крагујевац, 0. ФАКУЛТЕТ ИНЖЕЊЕРСКИХ НАУКА УНУВЕРЗИТЕТА У КРАГУЈЕВЦУ Издавач: ФАКУЛТЕТ ИНЖЕЊЕРСКИХ

Διαβάστε περισσότερα

Примена првог извода функције

Примена првог извода функције Примена првог извода функције 1. Одреди дужине страница два квадрата тако да њихов збир буде 14 а збир површина тих квадрата минималан. Ре: x + y = 14, P(x, y) = x + y, P(x) = x + 14 x, P (x) = 4x 8 Први

Διαβάστε περισσότερα

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА . колоквијум. Наставни колоквијум Задаци за вежбање У свим задацима се приликом рачунања добија само по једна вредност. Одступање појединачне вредности од тачне вредности је апсолутна грешка. Вредност

Διαβάστε περισσότερα

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ 8.. Линеарна једначина с две непознате Упознали смо појам линеарног израза са једном непознатом. Изрази x + 4; (x 4) + 5; x; су линеарни изрази. Слично, линеарни

Διαβάστε περισσότερα

2.3. Решавање линеарних једначина с једном непознатом

2.3. Решавање линеарних једначина с једном непознатом . Решимо једначину 5. ( * ) + 5 + Провера: + 5 + 0 5 + 5 +. + 0. Број је решење дате једначине... Реши једначину: ) +,5 ) + ) - ) - -.. Да ли су следеће једначине еквивалентне? Провери решавањем. ) - 0

Διαβάστε περισσότερα

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МАШИНСКИ ФАКУЛТЕТ У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ

УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МАШИНСКИ ФАКУЛТЕТ У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ УНИВЕРЗИТЕТ У КРАГУЈЕВЦУ МАШИНСКИ ФАКУЛТЕТ У КРАГУЈЕВЦУ ПРОГРАМ ИЗ МАТЕМАТИКЕ И ПРИМЕРИ ЗАДАТАКА ЗА ПРИЈЕМНИ ИСПИТ ПРОГРАМ ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ АЛГЕБРА Природни, цели, рационални, ирационални

Διαβάστε περισσότερα

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23

6.3. Паралелограми. Упознајмо још нека својства паралелограма: ABD BCD (УСУ), одакле је: а = c и b = d. Сл. 23 6.3. Паралелограми 27. 1) Нацртај паралелограм чији је један угао 120. 2) Израчунај остале углове тог четвороугла. 28. Дат је паралелограм (сл. 23), при чему је 0 < < 90 ; c и. c 4 2 β Сл. 23 1 3 Упознајмо

Διαβάστε περισσότερα

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница.

6.7. Делтоид. Делтоид је четвороугао који има два пара једнаких суседних страница. 91.*Конструиши трапез у размери 1:200, ако је дато: = 14 m, = 6 m, = 8 m и β = 60. 92.*Ливада има облик трапеза. Нацртај је у размери 1:2000, ако су јој основице 140 m и 95 m, један крак 80 m, и висина

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4

МАТЕМАТИЧКИ ЛИСТ 2014/15. бр. XLIX-4 МАТЕМАТИЧКИ ЛИСТ 0/5. бр. XLIX- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ III разред. а) 70 5 = 50; б) 0 = 80; в) 0 = 9; г) 5 = 850; д) 60 : = 0; ђ) 0 : 8 = 0; е) 86 : = ;

Διαβάστε περισσότερα

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ 7.1. ДИОФАНТОВА ЈЕДНАЧИНА ху = n (n N) Диофантова једначина ху = n (n N) има увек решења у скупу природних (а и целих) бројева и њено решавање није проблем,

Διαβάστε περισσότερα

4.4. Тежиште и ортоцентар троугла

4.4. Тежиште и ортоцентар троугла 50. 1) Нацртај правоугли троугао и конструиши његову уписану кружницу. ) Конструиши једнакокраки троугао чија је основица = 6 m и крак = 9 m, а затим конструиши уписану и описану кружницу. Да ли се уочава

Διαβάστε περισσότερα

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3

МАТЕМАТИЧКИ ЛИСТ 2017/18. бр. LII-3 МАТЕМАТИЧКИ ЛИСТ 07/8. бр. LII- РЕЗУЛТАТИ, УПУТСТВА ИЛИ РЕШЕЊА ЗАДАТАКА ИЗ РУБРИКЕ ЗАДАЦИ ИЗ МАТЕМАТИКЕ . III разред. Обим правоугаоника је 6cm + 4cm = cm + 8cm = 0cm. Обим троугла је 7cm + 5cm + cm =

Διαβάστε περισσότερα

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао

61. У правоуглом троуглу АВС на слици, унутрашњи угао код темена А је Угао ЗАДАЦИ ЗА САМОСТАЛНИ РАД Задаци за самостлни рад намењени су првенствено ученицима који се припремају за полагање завршног испита из математике на крају обавезног основног образовања. Задаци су одабрани

Διαβάστε περισσότερα

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( )

I Тачка 1. Растојање две тачке: 2. Средина дужи y ( ) ( ) 2. II Права 1. Једначина прамена правих 2. Једначина праве кроз две тачке ( ) Шт треба знати пре почетка решавања задатака? АНАЛИТИЧКА ГЕОМЕТРИЈА У РАВНИ I Тачка. Растојање две тачке:. Средина дужи + ( ) ( ) + S + S и. Деоба дужи у односу λ: 4. Површина троугла + λ + λ C + λ и P

Διαβάστε περισσότερα

Математика Тест 3 Кључ за оцењивање

Математика Тест 3 Кључ за оцењивање Математика Тест 3 Кључ за оцењивање ОПШТЕ УПУТСТВО ЗА ОЦЕЊИВАЊЕ Кључ за оцењивање дефинише начин на који се оцењује сваки поједини задатак. У општим упутствима за оцењивање дефинисане су оне ситуације

Διαβάστε περισσότερα

6.2. Симетрала дужи. Примена

6.2. Симетрала дужи. Примена 6.2. Симетрала дужи. Примена Дата је дуж АВ (слика 22). Тачка О је средиште дужи АВ, а права је нормална на праву АВ(p) и садржи тачку О. p Слика 22. Права назива се симетрала дужи. Симетрала дужи је права

Διαβάστε περισσότερα

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова

4. Троугао. (II део) 4.1. Појам подударности. Основна правила подударности троуглова 4 Троугао (II део) Хилберт Давид, немачки математичар и логичар Велики углед у свету Хилберту је донело дело Основи геометрије (1899), у коме излаже еуклидску геометрију на аксиоматски начин Хилберт Давид

Διαβάστε περισσότερα

МАТЕМАТИКА. Актив наставника математике чине: Милијана Ђорђевић, Горица Пераић, Тијана Златковић (на породиљском одсуству) мења је Виолета Мирчић.

МАТЕМАТИКА. Актив наставника математике чине: Милијана Ђорђевић, Горица Пераић, Тијана Златковић (на породиљском одсуству) мења је Виолета Мирчић. МАТЕМАТИКА Актив наставника математике чине: Милијана Ђорђевић, Горица Пераић, Тијана Златковић (на породиљском одсуству) мења је Виолета Мирчић Школско такмичење је одржано 01 02 2014 Учествопвало је

Διαβάστε περισσότερα

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Висока техничка школа струковних студија у Нишу предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА Садржај предавања: Систем

Διαβάστε περισσότερα

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ

I Линеарне једначине. II Линеарне неједначине. III Квадратна једначина и неједначина АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? АЛГЕБАРСКЕ ЈЕДНАЧИНЕ И НЕЈЕДНАЧИНЕ I Линеарне једначине Линеарне једначине се решавају по следећем шаблону: Ослободимо се разломка Ослободимо се заграде Познате

Διαβάστε περισσότερα

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда ОБЛАСТИ: ) Тачка ) Права Jov@soft - Март 0. ) Тачка Тачка је дефинисана (одређена) у Декартовом координатном систему са своје две коодринате. Примери: М(5, ) или М(-, 7) или М(,; -5) Jov@soft - Март 0.

Διαβάστε περισσότερα

Скрипта ријешених задатака са квалификационих испита 2010/11 г.

Скрипта ријешених задатака са квалификационих испита 2010/11 г. Скрипта ријешених задатака са квалификационих испита 00/ г Универзитет у Бањој Луци Електротехнички факултет Др Момир Ћелић Др Зоран Митровић Иван-Вања Бороја Садржај Квалификациони испит одржан 9 јуна

Διαβάστε περισσότερα

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије

ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА, са додатком теорије ГРАЂЕВИНСКА ШКОЛА Светог Николе 9 Београд ЗБИРКА ЗАДАТАКА ИЗ МАТЕМАТИКЕ СА РЕШЕНИМ ПРИМЕРИМА са додатком теорије - за II разред IV степен - Драгана Радовановић проф математике Београд СТЕПЕНОВАЊЕ И КОРЕНОВАЊЕ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису. ЛИНЕАРНА ФУНКЦИЈА 5.. Функција = a + b Функционалне зависности су веома значајне и са њиховим применама често се сусрећемо. Тако, већ су нам познате директна и обрнута пропорционалност ( = k; = k, k ),

Διαβάστε περισσότερα

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је: Пример 1. III Савијање правоугаоних плоча За правоугаону плочу, приказану на слици, одредити: a) израз за угиб, b) вредност угиба и пресечних сила у тачки 1 ако се користи само први члан реда усвојеног

Διαβάστε περισσότερα

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5

< < < 21 > > = 704 дана (15 бодова). Признавати било који тачан. бодова), па је тражена разлика 693 (5 бодова), а тражени збир 907(5 05.03.011 - III РАЗРЕД 1. Нацртај 4 праве a, b, c и d, ако знаш да је права а нормална на праву b, права c нормалана на b, а d паралелнa са а. Затим попуни табелу стављајући знак (ако су праве нормалне)

Διαβάστε περισσότερα

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ 2.1. МАТЕМАТИЧКИ РЕБУСИ Најједноставније Диофантове једначине су математички ребуси. Метод разликовања случајева код ових проблема се показује плодоносним, јер је раздвајање

Διαβάστε περισσότερα

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm 1 Два тачкаста наелектрисања 1 400 p и 100p налазе се у диелектрику релативне диелектричне константе ε на међусобном растојању ( 1cm ) као на слици 1 Одредити силу на наелектрисање 3 100p када се оно нађе:

Διαβάστε περισσότερα

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2

АНАЛИТИЧКА ГЕОМЕТРИЈА. - удаљеност између двије тачке. 1 x2 АНАЛИТИЧКА ГЕОМЕТРИЈА d AB x x y - удаљеност између двије тачке y x x x y s, y y s - координате средишта дужи x x y x, y y - подјела дужи у заданом односу x x x y y y xt, yt - координате тежишта троугла

Διαβάστε περισσότερα

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. КРУГ У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице. Архимед (287-212 г.п.н.е.) 6.1. Централни и периферијски угао круга Круг

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 013/014. година ТЕСТ

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим.

IV разред. 1. Дешифруј ребус A + BA + CBA + DCBA = Иста слова замени једнаким цифрама, а различита различитим. IV разред 1. Дешифруј ребус A + BA + CBA + DCBA = 2016. Иста слова замени једнаким цифрама, а различита различитим. 2. Производ два броја је 2016. Ако се један од њих повећа за 7, производ ће бити 2457.

Διαβάστε περισσότερα

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ. VI Савијање кружних плоча Положај сваке тачке кружне плоче је одређен са поларним координатама и ϕ слика 61 Диференцијална једначина савијања кружне плоче је: ( ϕ) 1 1 w 1 w 1 w Z, + + + + ϕ ϕ K Пресечне

Διαβάστε περισσότερα

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1

1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 1. 2. МЕТОД РАЗЛИКОВАЊА СЛУЧАЈЕВА 1 Метод разликовања случајева је један од најексплоатисанијих метода за решавање математичких проблема. У теорији Диофантових једначина он није свемогућ, али је сигурно

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2011/2012. година ТЕСТ 1 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити.

Сваки задатак се бодује са по 20 бодова. Израда задатака траје 150 минута. Решење сваког задатка кратко и јасно образложити. IV разред 1. Колико ће година проћи од 1. јануара 2015. године пре него што се први пут догоди да производ цифара у ознаци године буде већи од збира ових цифара? 2. Свако слово замени цифром (различита

Διαβάστε περισσότερα

Електронски курс о обртним телима за трећи разред средње школе

Електронски курс о обртним телима за трећи разред средње школе Математички факултет Универзитет у Београду Електронски курс о обртним телима за трећи разред средње школе -мастер рад- Ментор: Студент: доц. др Мирослав Марић Данијела Максимовић 1097/2012 Београд, 2015.

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 014/01. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 01/01. година ТЕСТ

Διαβάστε περισσότερα

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом).

ТАНГЕНТА. *Кружница дели раван на две области, једну, спољашњу која је неограничена и унутрашњу која је ограничена(кружницом). СЕЧИЦА(СЕКАНТА) ЦЕНТАР ПОЛУПРЕЧНИК ТАНГЕНТА *КРУЖНИЦА ЈЕ затворена крива линија која има особину да су све њене тачке једнако удаљене од једне сталне тачке која се зове ЦЕНТАР КРУЖНИЦЕ. *Дуж(OA=r) која

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ОЦЕЊИВАЊЕ ОБАВЕЗНО ПРОЧИТАТИ ОПШТА УПУТСТВА 1. Сваки

Διαβάστε περισσότερα

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ

ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Универзитет у Источном Сарајеву Електротехнички факултет НАТАША ПАВЛОВИЋ ЗБИРКА РИЈЕШЕНИХ ЗАДАТАКА ИЗ МАТЕМАТИКЕ ЗА ПРИЈЕМНИ ИСПИТ Источно Сарајево,. године ПРЕДГОВОР Збирка задатака је првенствено намијењена

Διαβάστε περισσότερα

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ предмет: ОСНОВИ МЕХАНИКЕ студијски програм: ЗАШТИТА ЖИВОТНЕ СРЕДИНЕ И ПРОСТОРНО ПЛАНИРАЊЕ ПРЕДАВАЊЕ БРОЈ 2. Садржај предавања: Систем сучељних сила у равни

Διαβάστε περισσότερα

Семинарски рад из линеарне алгебре

Семинарски рад из линеарне алгебре Универзитет у Београду Машински факултет Докторске студије Милош Живановић дипл. инж. Семинарски рад из линеарне алгебре Београд, 6 Линеарна алгебра семинарски рад Дата је матрица: Задатак: a) Одредити

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Тест Математика Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 00/0. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

САДРЖАЈ ПОЛОЖАЈ ТАЧКЕ, ПРАВЕ И РАВНИ ПРЕМА СФЕРИ И СФЕРЕ ПРЕМА СФЕРИ...4 ИЗВОЂЕЊЕ ОБРАСЦА ЗА P СФЕРЕ И ЊЕНИХ ДИЈЕЛОВА ПОМОЋУ ИНТЕГРАЛА...

САДРЖАЈ ПОЛОЖАЈ ТАЧКЕ, ПРАВЕ И РАВНИ ПРЕМА СФЕРИ И СФЕРЕ ПРЕМА СФЕРИ...4 ИЗВОЂЕЊЕ ОБРАСЦА ЗА P СФЕРЕ И ЊЕНИХ ДИЈЕЛОВА ПОМОЋУ ИНТЕГРАЛА... САДРЖАЈ ОБРТНЕ ПОВРШИ... БРТНА ТИЈЕЛА... СФЕРА И ЛОПТА..... ПОЛОЖАЈ ТАЧКЕ, ПРАВЕ И РАВНИ ПРЕМА СФЕРИ И СФЕРЕ ПРЕМА СФЕРИ...4 ОСОБИНЕ СФЕРНИХ ФИГУРА........5 ПОВРШИНА СФЕРЕ...8 ПОВРШИНА ДИЈЕЛОВА СФЕРЕ ПОВРШИНА

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 011/01. година ТЕСТ МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Анализа Петријевих мрежа

Анализа Петријевих мрежа Анализа Петријевих мрежа Анализа Петријевих мрежа Мере се: Својства Петријевих мрежа: Досежљивост (Reachability) Проблем досежљивости се састоји у испитивању да ли се може достићи неко, жељено или нежељено,

Διαβάστε περισσότερα

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја. СЛУЧАЈНА ПРОМЕНЉИВА Једнодимензионална случајна променљива X је пресликавање у коме се сваки елементарни догађај из простора елементарних догађаја S пресликава у вредност са бројне праве Први корак у дефинисању

Διαβάστε περισσότερα

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c

6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c 6. ЛИНЕАРНА ДИОФАНТОВА ЈЕДНАЧИНА ах + by = c Ако су а, b и с цели бројеви и аb 0, онда се линеарна једначина ах + bу = с, при чему су х и у цели бројеви, назива линеарна Диофантова једначина. Очигледно

Διαβάστε περισσότερα

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x) ДИФЕРЕНЦИЈАЛНЕ ЈЕДНАЧИНЕ Штa треба знати пре почетка решавања задатака? Врсте диференцијалних једначина. ДИФЕРЕНЦИЈАЛНА ЈЕДНАЧИНА КОЈА РАЗДВАЈА ПРОМЕНЉИВЕ Код ове методе поступак је следећи: раздвојити

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 0/06. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

TAЧКАСТА НАЕЛЕКТРИСАЊА

TAЧКАСТА НАЕЛЕКТРИСАЊА TЧКАСТА НАЕЛЕКТРИСАЊА Два тачкаста наелектрисања оптерећена количинама електрицитета и налазе се у вакууму као што је приказано на слици Одредити: а) Вектор јачине електростатичког поља у тачки А; б) Електрични

Διαβάστε περισσότερα

Предмет: Задатак 4: Слика 1.0

Предмет: Задатак 4: Слика 1.0 Лист/листова: 1/1 Задатак 4: Задатак 4.1.1. Слика 1.0 x 1 = x 0 + x x = v x t v x = v cos θ y 1 = y 0 + y y = v y t v y = v sin θ θ 1 = θ 0 + θ θ = ω t θ 1 = θ 0 + ω t x 1 = x 0 + v cos θ t y 1 = y 0 +

Διαβάστε περισσότερα

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима 50. Нацртај било које унакрсне углове. Преношењем утврди однос унакрсних углова. Какво тврђење из тога следи? 51. Нацртај угао чија је мера 60, а затим нацртај њему унакрсни угао. Колика је мера тог угла?

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола i i i Милка Потребић др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Од површине троугла до одређеног интеграла

Од површине троугла до одређеног интеграла Природно-математички факултет, Универзитет у Нишу, Србија http://www.pmf.i.ac.rs/mii Математика и информатика (4) (5), 49-7 Од површине троугла до одређеног интеграла Жарко Ђурић Париске комуне 4-/8, Врање

Διαβάστε περισσότερα

Атлетичар Лука Бора Драгиша Горан Дејан Перица Резултат у секундама 12,86 12,69 12,84 12,79 12,85 12,77

Атлетичар Лука Бора Драгиша Горан Дејан Перица Резултат у секундама 12,86 12,69 12,84 12,79 12,85 12,77 ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2014/2015. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА РАД Тест који треба да решиш има 20 задатака. За рад је предвиђено 120 минута. Задатке не мораш

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ У ОСНОВНОМ ОБРАЗОВАЊУ И ВАСПИТАЊУ школска 017/018. година ТЕСТ МАТЕМАТИКА

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, вежбе, Универзитет у Београду Електротехнички факултет, 7. Теорија електричних кола Милка Потребић Др Милка Потребић, ванредни професор,

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ПРОБНИ ЗАВРШНИ ИСПИТ школска 016/017. година ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Διαβάστε περισσότερα

Ротационо симетрична деформација средње површи ротационе љуске

Ротационо симетрична деформација средње површи ротационе љуске Ротационо симетрична деформација средње површи ротационе љуске слика. У свакој тачки посматране средње површи, у општем случају, постоје два компонентална померања: v - померање у правцу тангенте на меридијалну

Διαβάστε περισσότερα

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре 0 6.. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре У обичном говору се често каже да су неки предмети симетрични. Примери таквих објеката, предмета, геометријских

Διαβάστε περισσότερα

ЗАПИТАЈМО СЕ... Jens Carstensen, Алија Муминагић, Данска

ЗАПИТАЈМО СЕ... Jens Carstensen, Алија Муминагић, Данска ЗАПИТАЈМО СЕ... Jens Carstensen, Алија Муминагић, Данска Сви ученици, почев од 7. разреда основне школе, упознати су са Питагорином теоремом, која гласи: Ако је троугао правоугли, површина квадрата над

Διαβάστε περισσότερα

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА

ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВОЈИСЛАВ АНДРИЋ МАЛА ЗБИРКА ДИОФАНТОВИХ ЈЕДНАЧИНА ВАЉЕВО, 006 1 1. УВОД 1.1. ПОЈАМ ДИОФАНТОВЕ ЈЕДНАЧИНЕ У једној земљи Далеког истока живео је некад један краљ, који је сваке ноћи узимао нову жену и следећег

Διαβάστε περισσότερα

О КРУЖНИЦИ УПИСАНОЈ У ПРАВОУГЛИ ТРОУГАО

О КРУЖНИЦИ УПИСАНОЈ У ПРАВОУГЛИ ТРОУГАО О КРУЖНИЦИ УПИСАНОЈ У ПРАВОУГЛИ ТРОУГАО Ратко Тошић, Нови Сад Посматраћемо правоугли троугао АВС са правим углом код темена С. Његове странице су a, b, c, при чему су a и b катете (наспрам темена А и В

Διαβάστε περισσότερα

ЈЕДНАКОСТИ У ПРАВИЛНОМ ОСМОУГЛУ

ЈЕДНАКОСТИ У ПРАВИЛНОМ ОСМОУГЛУ ЈЕДНАКОСТИ У ПРАВИЛНОМ ОСМОУГЛУ Александар Средојевић и Драгољуб Милошевић, Горњи Милановац Нека је дат правилан осмоугао ABCDEFGH (слика 1). Уведимо ознаке: AB = a, AC = b, AD = c и AE = d. Тада важе

Διαβάστε περισσότερα

ПЕРИОДИЧНИ НИЗОВИ. Ратко Тошић, Нови Сад

ПЕРИОДИЧНИ НИЗОВИ. Ратко Тошић, Нови Сад ПЕРИОДИЧНИ НИЗОВИ Ратко Тошић, Нови Сад Пођимо од следећа два задатка: Задатак 1. Испиши недостајуће чланове низа 6,,,,,,,, 4,,,,,. ако се зна да је збир свака три узастопна члана низа једнак 15. Решење.

Διαβάστε περισσότερα

МАСТЕР РАД. Увођење полинома у старијим разредима основне школе. Математички факултет. Универзитет у Београду. Студент: Милица Петровић.

МАСТЕР РАД. Увођење полинома у старијим разредима основне школе. Математички факултет. Универзитет у Београду. Студент: Милица Петровић. Математички факултет Универзитет у Београду МАСТЕР РАД Увођење полинома у старијим разредима основне школе Студент: Милица Петровић Београд, 2016. Ментор: проф. др Александар Липковски, ред. проф. Чланови

Διαβάστε περισσότερα

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1

6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова. B Сл. 1 6. Четвороугао 6.1. Појам и основни елементи. Углови четвороугла. Централна симетрија. Врсте четвороуглова А Сл. 1 А На приложеним сликама сигурно уочаваш геометријске фигуре које су ти познате (троугао,

Διαβάστε περισσότερα

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић

Висока техничка школа струковних студија Београд Математика 2 Интервали поверења и линеарна регресија предавач: др Мићо Милетић Математика Интервали поверења и линеарна регресија предавач: др Мићо Милетић Интервали поверења Тачкасте оцене параметара основног скупа могу се сматрати као приликом обраде узорка. Њихов недостатак је

Διαβάστε περισσότερα

СВОЈСТВА И КОНСТРУКЦИЈА ПРАВИЛНИХ МНОГОУГЛОВА КОРИШЋЕЊЕМ СОФТВЕРА GEOGEBRA. Аутор: Лидија Трифуновић, професор математике ОШ ''Цар Константин'', Ниш

СВОЈСТВА И КОНСТРУКЦИЈА ПРАВИЛНИХ МНОГОУГЛОВА КОРИШЋЕЊЕМ СОФТВЕРА GEOGEBRA. Аутор: Лидија Трифуновић, професор математике ОШ ''Цар Константин'', Ниш СВОЈСТВА И КОНСТРУКЦИЈА ПРАВИЛНИХ МНОГОУГЛОВА КОРИШЋЕЊЕМ СОФТВЕРА GEOGEBRA Аутор: Лидија Трифуновић, професор математике ОШ ''Цар Константин'', Ниш Мотивација за реализацију ових наставних јединица коришћењем

Διαβάστε περισσότερα

Теорија електричних кола

Теорија електричних кола Др Милка Потребић, ванредни професор, Теорија електричних кола, предавања, Универзитет у Београду Електротехнички факултет, 07. Вишефазне електричне системе је патентирао српски истраживач Никола Тесла

Διαβάστε περισσότερα

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ЗАВРШНИ ИСПИТ НА КРАЈУ ОСНОВНОГ ОБРАЗОВАЊА И ВАСПИТАЊА школска 2010/2011. година ТЕСТ 3 МАТЕМАТИКА УПУТСТВО

Διαβάστε περισσότερα

Неколико различитих начина решавања једног геометријског задатка

Неколико различитих начина решавања једног геометријског задатка MAT-KOL (Banja Luka) XV()(00), 5-66 Неколико различитих начина решавања једног геометријског задатка Слађана Бабић Природно-математички факултет, 78000 Бања Лука Младена Стојановића, Б&Х e-mal: sladjanaac7@yahoocom

Διαβάστε περισσότερα

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ 21.11.2009. I група Име и презиме студента: Број индекса: Термин у ком студент ради вежбе: Напомена: Бира се и одговара ИСКЉУЧИВО на шест питања заокруживањем

Διαβάστε περισσότερα

Семинарски рад из методике наставе математике и рачунарства Тема: Основне геометријске конструкције помоћу програма The Geometer's SketchPad

Семинарски рад из методике наставе математике и рачунарства Тема: Основне геометријске конструкције помоћу програма The Geometer's SketchPad Универзитет у Београду Математички факултет Семинарски рад из методике наставе математике и рачунарства Тема: Основне геометријске конструкције помоћу програма The Geometer's SkethPd Студент: Марија Миленковић

Διαβάστε περισσότερα

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА ПРИЈЕМНИ ИСПИТ ЗА УЧЕНИКЕ СА ПОСЕБНИМ СПОСОБНОСТИМА ЗА ИНФОРМАТИКУ

Διαβάστε περισσότερα