Ο ρόλος των αναπαραστατικών μέσων στην επίλυση προβλήματος
|
|
- ΓαпїЅα Λίγεια Αγγελόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΔΙΑΤΜΗΜΑΤΙΚΟ ΔΙΑΠΑΝΕΠΙΣΤΗΜΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΜΑΘΗΜΑ: ΕΙΔΙΚΑ ΘΕΜΑΤΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΔΙΔΑΣΚΟΝΤΕΣ: Μ. ΤΖΕΚΑΚΗ Ο ρόλος των αναπαραστατικών μέσων στην επίλυση προβλήματος ΕΙΣΗΓΗΤΕΣ: Ασπρούλη Μαρία 691 Διαμαντοπούλου Ελευθερία 697 Καπλάνη Θεοδώρα 699 Παπαδόπουλος Φώτης 708 Στογιάννου Γεωργία 719 Τόνα Μαγδαληνή 696 Θεσσαλονίκη, 2017 ΠΕΡΙΕΧΟΜΕΝΑ ΘΕΩΡΗΤΙΚΕΣ ΑΝΑΦΟΡΕΣ 1. Arcavi, A. (2003). The Role of Visual Representations in the Learning οf Mathematics. Educational Studies in Mathematic, 52: Booth, R. D.L., & Thomas, M.O.J. (2000). Visualization in Mathematics Learning: Arithmetic Problem-solving and Student Difficulties. Journal of Mathematical Behavior, 18 (2):
2 Καπλάνη Θεοδώρα 699 Στογιάννου Γεωργία 719 Τόνα Μαγδαληνή The Role of Visual Representations in the Learning οf Mathematics Arcavi, A. (2003) 3 Στόχος Να καθορίσει την οπτικοποίηση, να αναλύσει και να δώσει αρκετά παραδείγματα, τα οποία αντανακλούν τους πολλούς διαφορετικούς και πλούσιους ρόλους που διαδραματίζει στην μάθηση και διεξαγωγή των μαθηματικών. 4 2
3 Seeing the unseen Όραση: κεντρική για τον άνθρωπο σημαντική πηγή πληροφόρησης Οπτικοποίηση: προσφέρει μια μέθοδο για να «βλέπεις αυτό που δε φαίνεται» (seeing the unseen), προχωρά πέρα από την αίσθηση της όρασης Έτσι, θέτουμε ερωτήσεις γι αυτό που αφηρημένο Π.χ. η τεχνολογία βοηθά ως μέσο να προηγουμένως κόσμο, χωρίς ξεπεράσουμε δε βλέπαμε τα όρια και της όρασης, καμιά ηλεκτρονική της σκέψης, αναπτύσσουμε τεχνολογία που της μάθησης την κατανόησή και της επίλυσης μπορεί προβλήματος να «δει» 5 μας Αναφέρεται σε έναν πιο για μας Μπορεί να αναπτύξει οπτικά μέσα για να «βλέπουμε» καλύτερα τις μαθηματικές ιδέες και περιεχόμενα Αφού τα μαθηματικά βασίζονται στην οπτικοποίηση για την ερμηνεία και επεξεργασία αντικειμένων και ποσοτήτων Seeing the unseen Η οπτικοποίηση είναι η ικανότητα, η διαδικασία και το προϊόν της δημιουργίας, της χρήσης και της ερμηνείας των εικόνων, των διαγραμμάτων στο μυαλό μας, στο χαρτί ή με τη βοήθεια των τεχνολογικών εργαλείων με σκοπό την απεικόνιση και μετάδοση πληροφοριών, αναπτύσσοντας τις προηγούμενες άγνωστες ιδέες και εξελίσσοντας την κατανόησή μας (Zimmermann & Cunningham, 1991) and Hershkowitz et al.,1989). 6 3
4 «Ένα διάγραμμα αξίζει όσο χίλιες+ λέξεις» Εκστρατεία του Ναπολέοντα-1812 Charles Joseph Minard Τα γραφήματα αποκαλύπτουν πληροφορίες με μεγαλύτερη ακρίβεια: Δισδιάστατη και μη γραμμική απεικόνιση πληροφοριών Οργάνωση των πληροφοριών σε ομάδες που ερμηνεύονται με μια ματιά 7 Παραδείγματα Η ιδιότητα (mediant property) των θετικών κλασμάτων: a/b < a+c/b+d < c/d (Flegg, Hay & Moss, 1985) Η οπτικοποίηση μπορεί να συνοδεύει την συμβολική ανάπτυξη της απόδειξης Ένας τρόπος να (προσ)φέρουμε τη γεωμετρία ως βοήθεια στις «καθαρά» συμβολικές ιδιότητες 8 4
5 Παραδείγματα Φανταστείτε ένα σχοινί γύρω από την περιφέρεια της γης (6.400 km σε ακτίνα). Κάποιος προτείνει να τοποθετήσουμε ένα σχοινί σε πόλους των 1,8 μέτρων (Papert, 1980) 2π(R+h)-2πR Η οπτικοποίηση εδώ εξυπηρετεί να προσαρμόσουμε τις λανθασμένες διαισθήσεις μας και να τις εναρμονίσουμε με την αδιαφανή και παγερή ορθότητα του συμβολικού επιχειρήματος 9 Παραδείγματα Ποιο είναι το κοινό χαρακτηριστικό της οικογένειας των γραμμικών εξισώσεων της μορφής: f(x)=bx+b; f(x)=bx+b= b(x+1) f( 1)=0 Ένας ακόμη ρόλος της οπτικοποίησης σε ένα συμβολικό περιεχόμενο, είναι όταν μια εικονική λύση σε ένα πρόβλημα μας εμπλέκει σε έννοιες και σημασίες που εύκολα προσπερνιούνται μια απλή συμβολική λύση 10 από 5
6 Παραδείγματα «Αποδείξεις χωρίς λόγια» Οι οπτικές μορφές αναπαράστασης μπορεί να είναι σημαντικές έως και νόμιμα στοιχεία της απόδειξης (Barwise and Etchemendy, 1991) 1 4 +(1 4 )2 + ( 1 4 )3 + = 1 3 (Mabry, 1999) 11 Παραδείγματα Πόσα σπίρτα χρειάζονται για να κατασκευαστεί το ακόλουθο nxn τετράγωνο; 2n (n+1) Η οπτικοποίηση οργανώνει τα δεδομένα σε δομές με νόημα που μας οδηγούν ακόμη σε μια αναλυτική εξέλιξη της λύσης (Fischbein, 1987) ( n) 2 Μπορεί να είναι όμως και κάτι παραπάνω, μπορεί να υπάρξει από μόνη της ως μια αναλυτική διαδικασία που να παράγει λύσεις γενικές και τυπικές 12 6
7 Συμπεράσματα Η οπτικοποίηση δεν αποτελεί πλέον ένα μόνο παράγοντα απεικόνισης, αλλά αναγνωρίζεται ως σύμμαχος του συλλογισμού, της επίλυσης προβλήματος κι ακόμη της απόδειξης πολιτισμικές Όμως, παρατηρούνται 3 δυσκολίες: γνωστικές κοινωνικές ΑΠΣ: Επαναξιολογήσουν τη φύση της και τον ρόλο της ως κεντρικό στην μαθηματική εκπαίδευση Τη δέχονται ή όχι; Πιο εύκολο ή πιο δύσκολο; Π.χ. μεταφορά γνώσης-αλλοίωση 13 Not all that tempts your wand ering eyes and heedless hearts, is lawful prize; Nor all, that glisters, gold. (Archavi A., 2003) Ευχαριστούμε Δεν ξέρουμε τι βλέπουμε, βλέπουμε ότι ξέρουμε Goethe 14 7
8 Ασπρούλη Μαρία 691 Διαμαντοπούλου Ελευθερία 697 Παπαδόπουλος Φώτης Visualization in Mathematics Learning: Arithmetic Problemsolving and Student Difficulties Booth, R. D.L. & Thomas, M.O.J. (2000) 15 Θεωρητικό πλαίσιο (1) Χωρική ικανότητα: κατανόηση, διαχείριση, οργάνωση και ερμηνεία οπτικών συσχετίσεων ή αναπαράσταση, μετασχηματισμός, δημιουργία και ανάκληση συμβολικών, μη λεκτικών πληροφοριών (Tartre, 1990b Linn & Petersen, 1985) Οπτική εικόνα (visual imagery): γνωστικό σχήμα που απεικονίζει οπτικές και χωρικές πληροφορίες (Presmeg, 1986) 16 8
9 Θεωρητικό πλαίσιο (2) Μ α θ η μ ατ ι κ ά οπτική φύση της γεωμετρίας διαγράμματα πίνακες αριθμοί & πράξεις αξία θέσης ψηφίου Χ ω ρ ι κ ή ι κ α ν ότ ητ α νοεροί υπολογισμοί & οργάνωση πληροφοριών στην επίλυση προβλήματος 17 Θεωρητικό πλαίσιο (3) Brown και Wheatley (1989): Συντελεστική πληροφορίες, δεδομένα και στρατηγικές επίλυσης απομνημονεύονται, χωρίς καμία αλληλοσύνδεση μεταξύ τους Συσχετιστική χωρική η γνώση έχει δομηθεί με νόημα και είναι εκ φύσεως Fennema και Tartre (1985): Ομάδα 1 Χωρική ικανότητα Λεκτική ικανότητα Υψηλή χωρική ικανότητα ίδια ικανότητα επίλυσης Ομάδα 2 Χωρική ικανότητα Λεκτική ικανότητα διαφορετική στρατηγική 18 9
10 Θεωρητικό πλαίσιο (4) Μαθησιακά στυλ (learning styles): Αναλυτική (λεκτική) μάθηση Γεωμετρική (οπτική) μάθηση Αρμονική μάθηση (Brumby, 1982 & Krutetskii, 1976) 19 Θεωρητικό πλαίσιο (5) Πιθανές αρνητικές επιπτώσεις Οι μαθητές που προτιμούν να σκέφτονται οπτικά έχουν πιο χαμηλή επίδοση στα Μαθηματικά (Lean και Clements, 1981). Οι μαθητές με χαμηλές επιδόσεις στη Γεωμετρία επέλεγουν περισσότερο οπτικές παρά αναλυτικές στρατηγικές (Battista, 1990). Μια εικόνα ή ένα διάγραμμα μπορεί να οδηγήσει τον μαθητή να λαμβάνει υπόψη του μη σχετικές ή ψευδής πληροφορίες (Presmeg,1986). Οι ατέλειες ενός σχεδίου, μπορούν να δυσκολέψουν την επίλυση ενός έργου (Laborde, 1993a)
11 Θεωρητικό πλαίσιο (6) Ψυχολογικές συνιστώσες Piaget και Inhelder (1971) σχηματική φύση των νοερών εικόνων (schematic nature of mental imagery) Thomas (1988, 1995) μοντέλο της γνωστικής ενσωμάτωσης (model of cognitive integration) δυο ποιοτικά διαφορετικοί τρόποι σκέψης (αναλυτικός και ολιστικός) μπορούν να αλληλεπιδρούν σαν δυο διαφορετικά στοιχεία μια ενοποιημένης σκέψης πολυπλευρος (versatile) μαθητής: αυτός που κατάφερνει να κατασκευάσει νοερά σχήματα τόσο στα ανώτερα όσο και στα χαμηλότερα γνωστικά επίπεδα, συνδυάζοντας αμφίδρομες εσωτερικές διασυνδέσεις. (Tall & Thomas, 1991) 21 ΜΕΘΟΔΟΛΟΓΙΑ Ερευνητική Μέθοδος: ΕΡΕΥΝΗΤΙΚΟ ΠΡΟΒΛΗΜΑ: Διερεύνηση της χωρικής οπτικοποίησης και της συσχέτισής της με την επίδοση μαθητών με μαθησιακές δυσκολίες κατά την επίλυση αριθμητικών προβλημάτων 1 ο ΕΕ: Ποια η αξία αυτής της συσχέτισης για τους ίδιους τους μαθητές; 2ο ΕΕ: Ποια η επίδραση των αναπαραστατικών μορφών (προφορικός λόγος, εικόνα, διάγραμμα) στην επίδοση των μαθητών κατά την επίλυση αριθμητικών προβλημάτων; ΔΕΙΓΜΑ: 31 μαθητές 14 αγόρια 18 κορίτσια ετών Με μαθησιακές δυσκολίες 22 11
12 ΜΕΘΟΔΟΛΟΓΙΑ ΕΡΕΥΝΗΤΙΚΑ ΕΡΓΑΛΕΙΑ PAT (Progressive Achievement Test in Mathematics) 7 τεστ αξιολόγησης της χωρικής αντίληψης Συνέντευξη & Παρατήρηση κατά την επίλυση 6 αριθμητικών προβλημάτων (με αύξουσας δυσκολίας 3 μέρη το καθένα αξιοποίηση αναπαραστατικών μορφών: γλώσσα, εικόνες, διαγράμματα) ΕΡΕΥΝΗΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ 2 ομάδες 17 μαθητές ΧΑΜΗΛΗΣ χωρικής αντίληψης 15 μαθητές ΜΕΤΡΙΑΣ χωρικής αντίληψης 2 ώρες απασχόλησης του κάθε συμμετέχοντος για την ολοκλήρωση όλων των τεστ-αριθμητικών προβλημάτων ΑΡΧΗ: παρέχεται μόνο το λεκτικό πρόβλημα ΣΤΗ ΣΥΝΕΧΕΙΑ: η εικονική & η διαγραμματική αναπαράσταση του αρχικού προβλήματος ΤΕΛΟΣ: ζητείται να αιτιολογήσουν αν τους βοήθησαν οι αναπαραστατικές μορφές στη διαδικασία επίλυσης 23 ΑΠΟΤΕΛΕΣΜΑΤΑ Καμία διαφορά στις επιδόσεις μεταξύ των ομάδων όταν ζητούνταν η ανάπτυξη από τους ίδιους τους μαθητές μιας εικόνας ή ενός διαγράμματος για την ενίσχυση της επίλυσης των προβλημάτων. Οι της ΜΕΤΡΙΑΣ χωρικής ικανότητας λύτες παρουσίασαν σημαντικά υψηλότερες επιδόσεις κατά την επίλυση όλων των προβλημάτων όποια κι αν ήταν η αναπαραστατική μορφή του αριθμητικού προβλήματος (47% έναντι 27%)
13 Και οι 2 ομάδες προτιμούσαν να μην αξιοποιούν ούτε τα δοθέντα διαγράμματα & εικόνες, ούτε αυτά που σχεδίαζαν οι ίδιοι οι μαθητές. Οι της ΧΑΜΗΛΗΣ χωρικής ικανότητας λύτες προτιμούσαν να απαντούν γραπτώς/λεκτικά, λόγω της δυσκολίας νοητικής επεξεργασίας των δεδομένων Δοσμένης της διαγραμματικής αναπαράστασης του εκάστοτε προβλήματος φάνηκε ότι επωφελούνταν κατά την διαδικασία επίλυσης περισσότερο οι της ΜΕΤΡΙΑΣ χωρικής ικανότητας λύτες. Όσο πιο αναπτυγμένη η χωρική ικανότητα των λυτών, τόσο διευκολύνεται η ανάπτυξη της ικανότητας ερμηνείας των δεδομένων μιας διαγραμματικής αναπαράστασης ενός προβλήματος. 25 ΣΥΜΠΕΡΑΣΜΑΤΑ Διαφορές στην ικανότητα των μαθητών κατά την επεξεργασία των μαθηματικών έργων με εικόνες ή και με διαγράμματα. Υπάρχει σαφής διάκριση μεταξύ εικονογραφημένου σχεδίου που συνδέεται πιο εύκολα με την πραγματικότητα και μιας τυποποιημένης μορφής διάγραμμα. Το διάγραμμα απαιτεί ερμηνευτική νοητική επεξεργασία. Το μαθηματικό πρόβλημα απαιτεί επίσης ερμηνεία
14 ΣΥΜΠΕΡΑΣΜΑΤΑ Υπάρχουν στάδια αναπαραστάσεων για να φτάσει κάποιος προοδευτικά στην αφαίρεση φωτογραφίες, ρεαλιστικά σχέδια, αναπαραστατικά σχέδια, διαγράμματα, γραφήματα, αριθμοί- με σειρά από το πιο ανταποκρινόμενο στον πραγματικό κόσμο προς την πιο αφηρημένη μορφή. Τα διαγράμματα μπορεί να δείχνουν τη σχέση μεταξύ αντικειμένων ή γεγονότων και ενδέχεται να μην παρουσιάζουν ολόκληρο το αντικείμενο, ενώ εστιάζουν την προσοχή του αναγνώστη σε συγκεκριμένη πτυχή της σχέσης. Η έρευνα έδειξε αδυναμία ορισμένων μαθητών να ολοκληρώσουν τα ερμηνευτικά βήματα που απαιτούνται στην επίλυση προβλημάτων. Απαραίτητη η γνωστική ολοκλήρωση του προηγούμενου επιπέδου, επιβεβαιώνει και ο Mason (), έτσι ώστε από την απλή εξέταση μιας εικόνας να μεταβεί κάποιος στην αφαίρεση των βασικών δεδομένων. 27 ΣΥΜΠΕΡΑΣΜΑΤΑ Πρέπει να εξασκηθούν οι μαθητές στην επεξεργασία εικόνων. Δύο διαφορετικοί τομείς: α) η ικανότητα μετάφρασης του λεκτικού προβλήματος σε εικονική ή διαγραμματική αναπαράσταση και β) η ικανότητα ερμηνείας της συνάφειας ενός διαγράμματος ή εικόνας με το λεκτικό πρόβλημα. Η διαδικασία εννοιολογικής κατανόησης ενός διαγράμματος είναι πιο δύσκολη από τις λεκτικές πληροφορίες διότι μεσολαβούν περισσότερα βήματα και δεξιότητες. Τα αποτελέσματα της έρευνας αυτής εξηγούν πολλές μαθηματικές δυσκολίες των μαθητών και τις δυσκολίες της οπτικής παρουσίασης πληροφοριών. Θα πρέπει αυτές να συνοδεύονται από ρητές λεκτικές εξηγήσεις και περιγραφές των αντικειμένων έτσι ώστε να μπορούν να οικοδομηθούν οι απαραίτητοι γνωστικοί δεσμοί
15 Ασπρούλη, Διαμαντοπούλου, Καπλάνη, Παπαδόπουλος, Στογιάννου, Τόνα 29 15
Ο ρόλος των αναπαραστάσεων στην επίλυση προβλήματος
Ο ρόλος των αναπαραστάσεων στην επίλυση προβλήματος Μητροσούδης Απόστολος ΑΜ 945 Παπαϊωάννου Ιωάννα ΑΜ 927 Παπλωματά Χρυσούλα ΑΜ 930 Τσάκου Ελένη ΑΜ 942 Χατζησάββα Ελένη ΑΜ 938 Οπτικοποίηση (Visualization)
Διαβάστε περισσότεραΟπτικές Aναπαραστάσεις και πόστερ. Βασιλική Σπηλιωτοπούλου
Οπτικές Aναπαραστάσεις και πόστερ Βασιλική Σπηλιωτοπούλου Το περιβάλλον της διδασκαλίας των Θετικών Επιστημών Μέσα εργαλεία της διδασκαλίας των Θετικών Επιστημών Το γνωστικό και αισθητικό περιβάλλον των
Διαβάστε περισσότεραΤρόποι αναπαράστασης των επιστημονικών ιδεών στο διαδίκτυο και η επίδρασή τους στην τυπική εκπαίδευση
Τρόποι αναπαράστασης των επιστημονικών ιδεών στο διαδίκτυο και η επίδρασή τους στην τυπική εκπαίδευση Κ. Χαλκιά Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών 2 Το διαδίκτυο: αποτελεί ένα νέο διδακτικό
Διαβάστε περισσότεραΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ Κατερίνα Σάλτα ΔιΧηΝΕΤ 2017-2018 ΘΕΜΑΤΑ ΕΡΕΥΝΑΣ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΧΗΜΕΙΑΣ Διεπιστημονικότητα Ιστορία & Φιλοσοφία της Χημείας Γλωσσολογία Χημεία Διδακτική της Χημείας Παιδαγωγική Ψυχολογία
Διαβάστε περισσότεραΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ
Διαβάστε περισσότεραΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ
ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Τι είναι Μαθηματικά; Ποια είναι η αξία τους καθημερινή ζωή ανάπτυξη λογικής σκέψης αισθητική αξία και διανοητική απόλαυση ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΤΟ ΑΠ ΤΟΥ ΔΗΜΟΤΙΚΟΥ
Διαβάστε περισσότεραΟ πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
Διαβάστε περισσότεραΑνάπτυξη Χωρικής Αντίληψης και Σκέψης
Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Clements & Sarama, 2009; Sarama & Clements, 2009 Χωρική αντίληψη και σκέψη Προσανατολισμός στο χώρο Οπτικοποίηση (visualization) Νοερή εικονική αναπαράσταση Νοερή
Διαβάστε περισσότεραΕννοιολογική χαρτογράφηση: Διδακτική αξιοποίηση- Αποτελέσματα για το μαθητή
Το λογισμικό της εννοιολογικής χαρτογράυησης Inspiration Η τεχνική της εννοιολογικής χαρτογράφησης αναπτύχθηκε από τον καθηγητή Joseph D. Novak, στο πανεπιστήμιο του Cornell. Βασίστηκε στις θεωρίες του
Διαβάστε περισσότερα1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία
1. Οι Τεχνολογίες της Πληροφορίας και των Επικοινωνιών στην εκπαιδευτική διαδικασία Ο διδακτικός σχεδιασμός (instructional design) εμφανίσθηκε στην εκπαιδευτική διαδικασία και στην κατάρτιση την περίοδο
Διαβάστε περισσότεραΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΧΗΜΕΙΑΣ Κατερίνα Σάλτα ΔιΧηΝΕΤ 2017-2018 Σύνθεση της βιβλιογραφίας Εννοιολογική κατανόηση των μαθητών Επίλυση προβλημάτων Αποτελεσματικές διδακτικές στρατηγικές Επίλυση Προβλημάτων και Χρήση
Διαβάστε περισσότεραΠΕΡΙ ΦΥΣΗΣ ΚΑΙ ΜΑΘΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ. Μαρία Καλδρυμίδου
ΠΕΡΙ ΦΥΣΗΣ ΚΑΙ ΜΑΘΗΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΕΝΝΟΙΩΝ Μαρία Καλδρυμίδου μάθηση των μαθηματικών εννοιών από τις επιδόσεις των μαθητών και τον εντοπισμό και την κατηγοριοποίηση των λαθών τους στην αναζήτηση θεωρητικών
Διαβάστε περισσότεραO μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική Δέσποινα Πόταρη Πανεπιστήμιο Πατρών Η έννοια της δραστηριότητας Δραστηριότητα είναι κάθε ανθρώπινη δράση που έχει ένα κίνητρο και ένα
Διαβάστε περισσότεραΤι μαθησιακός τύπος είναι το παιδί σας;
Για τους γονείς και όχι μόνο από το Τι μαθησιακός τύπος είναι το παιδί σας; Ακουστικός, οπτικός ή μήπως σφαιρικός; Ανακαλύψτε ποιος είναι ο μαθησιακός τύπος του παιδιού σας, δηλαδή με ποιο τρόπο μαθαίνει
Διαβάστε περισσότεραΜάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου
Βασίλειος Κωτούλας vaskotoulas@sch.gr h=p://dipe.kar.sch.gr/grss Αρχαιολογικό Μουσείο Καρδίτσας Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου Η Δομή της εισήγησης 1 2 3 Δυο λόγια για Στόχοι των Ερευνητική
Διαβάστε περισσότεραΗ ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση
Διαβάστε περισσότεραΕπιμόρφωση Μαθηματικών Ρόδος 2017
Επιμόρφωση Μαθηματικών Ρόδος 2017 Διδακτική Ευκλείδειας Γεωμετρίας Διδασκαλία με χρήση Geogebra Δραστηριότητες Κώστας Μαλλιάκας, Μαθηματικός 1 ο Γενικό Λύκειο Ρόδου Βενετόκλειο kmath1967@gmail.com Διδασκαλία
Διαβάστε περισσότεραΓεωµετρικές έννοιες και µετρήσεις µεγεθών. (ή, διαφορετικά, αντίληψη του χώρου)
Γεωµετρικές έννοιες και µετρήσεις µεγεθών (ή, διαφορετικά, αντίληψη του χώρου) αντιλήψεις παιδιών (κι όχι µόνο) τι είναι γεωµετρία; Όταν αντιμετωπίζω προβλήματα γεωμετρίας νιώθω σαν να κάνω ένα είδος μεταγνωστικής
Διαβάστε περισσότεραTHE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION
THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S
Διαβάστε περισσότερα«Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή»
Ψηφιακό σχολείο: Το γνωστικό πεδίο των Μαθηματικών «Ψηφιακά δομήματα στα μαθηματικά ως εργαλεία μάθησης για το δάσκαλο και το μαθητή» ΕΛΕΝΗ ΚΑΛΑΪΤΖΙΔΟΥ Πληροφορικός ΠΕ19 (1 ο Πρότυπο Πειραματικό Γυμνάσιο
Διαβάστε περισσότεραΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ
ΘΕΩΡΊΕς ΜΆΘΗΣΗς ΚΑΙ ΜΑΘΗΜΑΤΙΚΆ ΔΟΜΕΣ Δομή Ομάδας Σύνολο Α και μια πράξη η πράξη είναι κλειστή ισχύει η προσεταιριστική ιδότητα υπάρχει ουδέτερο στοιχείο υπάρχει αντίστροφο στοιχείο ισχύει η αντιμεταθετική
Διαβάστε περισσότεραΜαθηµατική. Μοντελοποίηση
Μαθηµατική Μοντελοποίηση Μοντελοποίηση Απαιτητική οικονοµία και αγορά εργασίας Σύνθετες και περίπλοκες προβληµατικές καταστάσεις Μαθηµατικές και τεχνολογικές δεξιότητες Επίλυση σύνθετων προβληµάτων Μαθηµατικοποίηση
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
Διαβάστε περισσότεραΑναλυτικό Πρόγραμμα Μαθηματικών
Αναλυτικό Πρόγραμμα Μαθηματικών Σχεδιασμός... αντιμετωπίζει ενιαία το πλαίσιο σπουδών (Προδημοτική, Δημοτικό, Γυμνάσιο και Λύκειο), είναι συνέχεια υπό διαμόρφωση και αλλαγή, για να αντιμετωπίζει την εξέλιξη,
Διαβάστε περισσότεραBELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS
BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS Effandi Zakaria and Norulpaziana Musiran The Social Sciences, 2010, Vol. 5, Issue 4: 346-351 Στόχος της
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ» ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Μαριάννα Τζεκάκη Παρουσίαση των άρθρων:
Διαβάστε περισσότεραΠαιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων
Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,
Διαβάστε περισσότεραΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΧΑΡΤΟΓΡΑΦΙΑΣ ΧΑΡΤΟΓΡΑΦΙΑ ΧΑΡΤΗΣ ΧΡΗΣΗ ΗΜΙΟΥΡΓΙΑ. β. φιλιππακοπουλου 1
ΧΑΡΤΟΓΡΑΦΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ ΧΑΡΤΗΣ ΓΕΩΓΡΑΦΙΚΟΣ ΧΩΡΟΣ ΗΜΙΟΥΡΓΙΑ ΧΡΗΣΗ β. φιλιππακοπουλου 1 Αναλυτικό Πρόγραµµα 1. Εισαγωγή: Μια επιστηµονική προσέγγιση στη χαρτογραφική απεικόνιση και το χαρτογραφικό σχέδιο
Διαβάστε περισσότερα«ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ» Μάθημα 6 «Βασικές μέθοδοι ποιοτικής & μικτής έρευνας»
«ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΕΘΟΔΟΛΟΓΙΑ ΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ» Μάθημα 6 «Βασικές μέθοδοι ποιοτικής & μικτής έρευνας» Τα θέματά μας Μέθοδοι ποιοτικής έρευνας «Φαινομενολογία» «Εθνογραφία» «Θεμελιωμένη Θεωρία» o
Διαβάστε περισσότεραΣτ Τάξη. Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1
Ενδεικτική Οργάνωση Ενοτήτων Στ Τάξη Α/Α Μαθηματικό περιεχόμενο Δείκτες Επιτυχίας Ώρες Διδ. 1 ENOTHTA 1 15 Αρ3.1 Απαγγέλουν, διαβάζουν, γράφουν και αναγνωρίζουν ποσότητες αριθμών Επανάληψη μέχρι το 1 000
Διαβάστε περισσότερα«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ «ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Διδάσκουσες:
Διαβάστε περισσότεραΣχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές
Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Φοιτητής: Σκαρπέντζος Γεώργιος Καθηγήτρια: Κολέζα Ευγενία ΠΕΡΙΕΧΟΜΕΝΑ Βασικές θεωρίες σχεδιασμού της διδασκαλίας Δραστηριότητες και κατανόηση εννοιών
Διαβάστε περισσότεραΝα φύγει ο Ευκλείδης;
Να φύγει ο Ευκλείδης; Σωτήρης Ζωιτσάκος Βαρβάκειο Λύκειο Μαθηματικά στα ΠΠΛ Αθήνα 2014 Εισαγωγικά Dieudonné: «Να φύγει ο Ευκλείδης». Douglas Quadling: «Ο Ευκλείδης έχει φύγει, αλλά στο κενό που άφησε πίσω
Διαβάστε περισσότεραΜεταγνωστικές διαδικασίες και κοινωνική αλληλεπίδραση μεταξύ των μαθητών στα μαθηματικά: ο ρόλος των σχολικών εγχειριδίων
Μεταγνωστικές διαδικασίες και κοινωνική αλληλεπίδραση μεταξύ των μαθητών στα μαθηματικά: ο ρόλος των σχολικών εγχειριδίων Πέτρος Χαβιάρης & Σόνια Καφούση chaviaris@rhodes.aegean.gr; kafoussi@rhodes.aegean.gr
Διαβάστε περισσότεραΕφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης)
Πανεπιστήµιο Αιγαίου Παιδαγωγικό Τµήµα ηµοτικής Εκπαίδευσης Μιχάλης Σκουµιός Εφαρµοσµένη ιδακτική των Φυσικών Επιστηµών (Πρακτικές Ασκήσεις Β Φάσης) Παρατήρηση ιδασκαλίας και Μοντέλο Συγγραφής Έκθεσης
Διαβάστε περισσότεραΗ διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος
Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ
Διαβάστε περισσότεραΑΝΙΧΝΕΥΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΙΔΟΣΗΣ (ΑΔΜΕ) ΓΙΑ ΜΑΘΗΤΕΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ. Σ. Παπαϊωάννου, Α. Μουζάκη Γ. Σιδερίδης & Π. Σίμος
ΑΝΙΧΝΕΥΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΙΔΟΣΗΣ (ΑΔΜΕ) ΓΙΑ ΜΑΘΗΤΕΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ Σ. Παπαϊωάννου, Α. Μουζάκη Γ. Σιδερίδης & Π. Σίμος ΜΑΘΗΜΑΤΙΚΑ Αναπόσπαστο μέρος της ανθρώπινης δραστηριότητας Βασικό στοιχείο
Διαβάστε περισσότεραΗ παρατήρηση της τάξης των μαθηματικών και ο αναστοχασμός ως εργαλεία επαγγελματικής μάθησης και ανάπτυξης
ΔΠΘ/ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Εργαστήρια Διδακτικής των Μαθηματικών (Ε εξάμηνο, 2017-18) Η παρατήρηση της τάξης των μαθηματικών και ο αναστοχασμός ως εργαλεία
Διαβάστε περισσότεραΜαθηματικά για Διδασκαλία III
Μαθηματικά για Διδασκαλία III Μαριάννα Τζεκάκη Απαραίτητα στον εκπαιδευτικό Μαθηματικό περιεχόμενο γνώση Ζητήματα των στόχων της διδασκαλίας των μαθηματικών μάθησης και του σχετικού μαθηματικού περιεχομένου
Διαβάστε περισσότεραΜαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών. Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε.
Μαθηματικά: Οι τάσεις στη διδακτική και τα Προγράμματα Σπουδών Πέτρος Κλιάπης Σχολικός Σύμβουλος Π.Ε. Στάσεις απέναντι στα Μαθηματικά Τι σημαίνουν τα μαθηματικά για εσάς; Τι σημαίνει «κάνω μαθηματικά»;
Διαβάστε περισσότεραΠαιδαγωγικές εφαρμογές Η/Υ. Μάθημα 1 ο
Παιδαγωγικές εφαρμογές Η/Υ Μάθημα 1 ο 14/3/2011 Περίγραμμα και περιεχόμενο του μαθήματος Μάθηση με την αξιοποίηση του Η/Υ ή τις ΤΠΕ Θεωρίες μάθησης Εφαρμογή των θεωριών μάθησης στον σχεδιασμό εκπαιδευτικών
Διαβάστε περισσότεραΜεθοδολογία Εκπαιδευτικής Έρευνας στη ΜΕ
Μεθοδολογία Εκπαιδευτικής Έρευνας στη ΜΕ Χ Α Ρ Α Λ Α Μ Π Ο Σ Σ Α Κ Ο Ν Ι Δ Η Σ, Δ Π Θ Μ Α Ρ Ι Α Ν Ν Α Τ Ζ Ε Κ Α Κ Η, Α Π Θ Α. Μ Α Ρ Κ Ο Υ, Δ Π Θ Α Χ Ε Ι Μ Ε Ρ Ι Ν Ο 2 0 17-2018 2 ο παραδοτέο 8/12/2016
Διαβάστε περισσότεραΑ ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.
Γεωμετρία Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική απόδειξη. Οι
Διαβάστε περισσότεραΕκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015
Εκπαίδευση Ενηλίκων: Εμπειρίες και Δράσεις ΑΘΗΝΑ, Δευτέρα 12 Οκτωβρίου 2015 Μάθηση και γνώση: μια συνεχής και καθοριστική αλληλοεπίδραση Αντώνης Λιοναράκης Στην παρουσίαση που θα ακολουθήσει θα μιλήσουμε
Διαβάστε περισσότεραΓράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα
Διαβάστε περισσότεραΔιδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο
Διδακτική των Φυσικών Επιστημών Ενότητα 2: Βασικό Εννοιολογικό Πλαίσιο Χρυσή Κ. Καραπαναγιώτη Τμήμα Χημείας Αντικείμενο και Αναγκαιότητα Μετασχηματισμός της φυσικοεπιστημονικής γνώσης στη σχολική της εκδοχή.
Διαβάστε περισσότεραΗ Εκπαίδευση στην εποχή των ΤΠΕ
Η Εκπαίδευση στην εποχή των ΤΠΕ «Ενσωμάτωση και αξιοποίηση των εννοιολογικών χαρτών στην εκπαιδευτική διαδικασία μέσα από μία δραστηριότητα εποικοδομητικού τύπου» Δέγγλερη Σοφία Μουδατσάκη Ελένη Λιόβας
Διαβάστε περισσότεραΘεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ
Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της
Διαβάστε περισσότεραΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.
Διαβάστε περισσότεραΑνάλυση των δραστηριοτήτων κατά γνωστική απαίτηση
Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες
Διαβάστε περισσότεραΧωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 3: Τοπολογικές και προβολικές σχέσεις στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Βασικές σχέσεις
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.
Διαβάστε περισσότεραΕρωτήµατα. Πώς θα µπορούσε η προσέγγιση των εθνικών επετείων να αποτελέσει δηµιουργική διαδικασία µάθησης και να ενεργοποιήσει διαδικασίες σκέψης;
ΕΘΝΙΚΕΣ ΓΙΟΡΤΕΣ Παραδοχές Εκπαίδευση ως μηχανισμός εθνικής διαπαιδαγώγησης. Καλλιέργεια εθνικής συνείδησης. Αίσθηση ομοιότητας στο εσωτερικό και διαφοράς στο εξωτερικό Αξιολόγηση ιεράρχηση εθνικών ομάδων.
Διαβάστε περισσότεραΔιδακτικές Τεχνικές (Στρατηγικές)
Διδακτικές Τεχνικές (Στρατηγικές) Ενδεικτικές τεχνικές διδασκαλίας: 1. Εισήγηση ή διάλεξη ή Μονολογική Παρουσίαση 2. Συζήτηση ή διάλογος 3. Ερωταποκρίσεις 4. Χιονοστιβάδα 5. Καταιγισμός Ιδεών 6. Επίδειξη
Διαβάστε περισσότεραΠεριεχόμενα. Προλογικό Σημείωμα 9
Περιεχόμενα Προλογικό Σημείωμα 9 1 ο ΚΕΦΑΛΑΙΟ 1.1. Εισαγωγή 14 1.2 Τα βασικά δεδομένα των Μαθηματικών και οι γνωστικές απαιτήσεις της κατανόησης, απομνημόνευσης και λειτουργικής χρήσης τους 17 1.2.1. Η
Διαβάστε περισσότεραΔραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού
Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Πέτρος Κλιάπης kliapis@sch.gr 1 Ο Ρόλος του εκπαιδευτικού Αξιολογεί την αρχική μαθηματική κατάσταση κάθε παιδιού, ομαδοποιεί τα παιδιά σύμφωνα με
Διαβάστε περισσότερατων βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών μοντέλων.
Θεωρίες Μάθησης και ιδακτικές Στρατηγικές Εισαγωγή γή στις βασικές έννοιες 11/4/2011 Σκοπός του 3 ου μαθήματος Η συνοπτική παρουσίαση των βασικών αρχών των θεωριών μάθησης και των πιο γνωστών τους διδακτικών
Διαβάστε περισσότεραΠάρεδρος ε.θ του Τμήματος Επιμόρφωσης και Αξιολόγησης του Παιδαγωγικού Ινστιτούτου
Κασιμάτη Αικατερίνη Πάρεδρος ε.θ του Τμήματος Επιμόρφωσης και Αξιολόγησης του Παιδαγωγικού Ινστιτούτου H έννοια του αριθμού Θεωρητικό Πλαίσιο Στην ικανότητα του παιδιού για αρίθμηση στηρίζεται η ανάπτυξη
Διαβάστε περισσότεραΣΤΡΑΤΗΓΙΚΕΣ ΜΑΘΗΣΗΣ ΜΑΘΗΤΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ: ΤΑΞΙΝΟΜΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΚΑΔΗΜΑΪΚΗΣ ΕΠΙΤΥΧΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΟΣ
ΣΤΡΑΤΗΓΙΚΕΣ ΜΑΘΗΣΗΣ ΜΑΘΗΤΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ: ΤΑΞΙΝΟΜΗΣΗ ΚΑΙ ΣΧΕΣΗ ΑΚΑΔΗΜΑΪΚΗΣ ΕΠΙΤΥΧΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑΣ ΕΠΙΛΥΣΗΣ ΠΡΟΒΛΗΜΑΤΟΣ STEPHEN J. PAPE & CHUANG WANG Μάθημα: Ειδικά Θέματα ΔτΜ Διδάσκουσα: Μ. Τζεκάκη
Διαβάστε περισσότεραΓεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr
Γεωργία Ε. Αντωνέλου Επιστημονικό Προσωπικό ΕΕΥΕΜ Μαθηματικός, Msc. antonelou@ecomet.eap.gr Θεμελίωση μιας λύσης ενός προβλήματος από μια πολύπλευρη (multi-faceted) και διαθεματική (multi-disciplinary)
Διαβάστε περισσότερα3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών
3. Περιγράμματα Μαθημάτων Προγράμματος Σπουδών Στην ενότητα αυτή παρουσιάζονται τα συνοπτικά περιγράμματα των μαθημάτων που διδάσκονται στο Πρόγραμμα Σπουδών, είτε αυτά προσφέρονται από το τμήμα που είναι
Διαβάστε περισσότεραΕπιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού. Νοέμβρης 2012 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.
Επιμόρφωση Εκπαιδευτικών Α Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)
Διαβάστε περισσότεραΜεθοδολογία Εκπαιδευτικής Ερευνας στη ΜΕ
Μεθοδολογία Εκπαιδευτικής Ερευνας στη ΜΕ ΧΑΡΑΛΑΜΠΟΣ ΣΑΚΟΝΙΔΗΣ, ΔΠΘ ΜΑΡΙΑΝΝΑ ΤΖΕΚΑΚΗ, ΑΠΘ Α ΧΕΙΜΕΡΙΝΟ 201 6-2017 2 ο παραδοτέο Περιεχόμενο 1. Εισαγωγή: το θέμα και η σημασία του, η σημασία διερεύνησης του
Διαβάστε περισσότεραΚύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής
Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των
Διαβάστε περισσότεραΠαρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας. Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013
Παρακολούθηση Διδασκαλίας στη βάση του Δυναμικού Μοντέλου Εκπαιδευτικής Αποτελεσματικότητας Μαργαρίτα Χριστοφορίδου 28 Νοεμβρίου 2013 Σκοπός τη σημερινής παρουσίασης: αναγνώριση της παρατήρησης ως πολύτιμη
Διαβάστε περισσότεραΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την
1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν
Διαβάστε περισσότεραΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. Προλογικό σημείωμα της Επιμελήτριας... 11 Εισαγωγή... 13
βιβλιο_layout 1 20/6/2014 4:43 πμ Page 5 ΠΕΡΙΕΧΟΜΕΝΑ Προλογικό σημείωμα της Επιμελήτριας... 11 Εισαγωγή... 13 ΚΕφAλαιο 1: Ένα μοντέλο αναγνωστικής κατανόησης Η εξέλιξη της έννοιας «αναγνωστική κατανόηση»...
Διαβάστε περισσότεραΕπιμόρφωση εκπαιδευτικών ΠΕ70. Όλγα Κασσώτη
Αξιοποίηση λογισμικού εννοιολογικής χαρτογράφησης στα πλαίσια της θεωρίας μάθησης εποικοδομισμού /κοινωνικού κονστρουκτιβισμού (social constructivism) Επιμόρφωση εκπαιδευτικών ΠΕ70 Όλγα Κασσώτη Λογισμικά
Διαβάστε περισσότεραΔιαφοροποιημένη Διδασκαλία. Ε. Κολέζα
Διαφοροποιημένη Διδασκαλία Ε. Κολέζα Τι είναι η διαφοροποιημένη διδασκαλία; Είναι μια θεώρηση της διδασκαλίας που βασίζεται στην προϋπόθεση ότι οι δάσκαλοι πρέπει να προσαρμόσουν τη διδασκαλία τους στη
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10. Αρ2.7 Ανακαλύπτουν, διατυπώνουν και εφαρμόζουν τα κριτήρια διαιρετότητας του 2, 5 και του 10.
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας αντικείμενα,
Διαβάστε περισσότεραΝοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.
Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)
Διαβάστε περισσότεραΠΡΑΚΤΙΚΕΣ ΜΑΘΗΜΑΤΙΚΩΝ
Συγγραφική ομάδα: Δεληγιάννη Ελένη Μάκη-Παναούρα Γεωργία Παντζιαρά Μαριλένα Παπαριστοδήμου Έφη Σιακαλλή Μύρια Χειμωνή Μαρία ΠΡΑΚΤΙΚΕΣ ΜΑΘΗΜΑΤΙΚΩΝ Επιμόρφωση Εκπαιδευτικών Νέο Πρόγραμμα Σπουδών Μαθηματικών
Διαβάστε περισσότεραΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΕΣ ΕΦΑΡΜΟΓΕΣ Η/Υ ΘΕΜΑΤΑ ΕΝΟΤΗΤΑΣ ΣΙΑΣΙΑΚΟΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ ΕΝΟΤΗΤΑΣ «ΠΑΙΔΑΓΩΓΙΚΗ
Διαβάστε περισσότεραΕπιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ
ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών
Διαβάστε περισσότεραΤα Διδακτικά Σενάρια και οι Προδιαγραφές τους. του Σταύρου Κοκκαλίδη. Μαθηματικού
Τα Διδακτικά Σενάρια και οι Προδιαγραφές τους του Σταύρου Κοκκαλίδη Μαθηματικού Διευθυντή του Γυμνασίου Αρχαγγέλου Ρόδου-Εκπαιδευτή Στα προγράμματα Β Επιπέδου στις ΤΠΕ Ορισμός της έννοιας του σεναρίου.
Διαβάστε περισσότεραΤροχιές μάθησης. learning trajectories. Διδάσκων: Κωνσταντίνος Π. Χρήστου. Παιδαγωγικό Τµήµα Νηπιαγωγών. επ. Κωνσταντίνος Π.
Παιδαγωγικό Τµήµα Νηπιαγωγών Τροχιές μάθησης learning trajectories Διδάσκων: Κωνσταντίνος Π. Χρήστου επ. Κωνσταντίνος Π. Χρήστου τι είναι η τροχιά μάθησης Η μάθηση των μαθηματικών ακολουθεί μία τροχιά
Διαβάστε περισσότερα5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ
5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών
Διαβάστε περισσότεραΤρίτη 24 και Τετάρτη 25 Οκτωβρίου 2017
Τρίτη 24 και Τετάρτη 25 Οκτωβρίου 2017 Παιδαγωγικές προσεγγίσεις και διδακτικές πρακτικές - η σχέση τους με τις θεωρίες μάθησης Παρατηρώντας τη μαθησιακή διαδικασία Τι είδους δραστηριότητες παρατηρήσατε
Διαβάστε περισσότεραΤο νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης
ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα
Διαβάστε περισσότεραΑξιολόγηση της διαδικασίας επίλυσης προβλημάτων
Αξιολόγηση της διαδικασίας επίλυσης προβλημάτων Δ.Δ.Π.Μ.Σ. «ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩ Ν» ΜΑΘΗΜΑ: ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΔΑΚΤΙΚΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚ ΩΝ ΚΑΘΗΓΗΤΡΙΑ : ΤΖΕΚΑΚΗ Μ. Assessing Problem-Solving Thought Annette
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Διαγωνισμός Μαθηματικών ικανοτήτων ΠΥΘΑΓΟΡΑΣ ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΤΗΝ Α και Β ΤΑΞΗ ΓΥΜΝΑΣΙΟΥ Θέμα 1 ο Από τους αριθμούς 12, 13, 14, 15, 17 αυτός που έχει τους περισσότερους
Διαβάστε περισσότεραΗ αυθεντική μάθηση και αξιολόγηση. Δρ Δημήτριος Γκότζος
Η αυθεντική μάθηση και αξιολόγηση Δρ Δημήτριος Γκότζος Ορισμός αυθεντικής μάθησης Μάθηση που έχει αξία στον πραγματικό κόσμο χρησιμοποιείται για την επίλυση πραγματικών προβλημάτων και για την ολοκλήρωση
Διαβάστε περισσότεραΑπόστολος Μιχαλούδης
ΔΙΔΑΣΚΑΛΙΑ ΦΥΣΙΚΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΕΩΝ Ανάπτυξη και εφαρμογή διδακτικών προσομοιώσεων Φυσικής σε θέματα ταλαντώσεων και κυμάτων Απόστολος Μιχαλούδης υπό την επίβλεψη του αν. καθηγητή Ευριπίδη Χατζηκρανιώτη
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Παιδαγωγικό Τμήμα Νηπιαγωγών. σύμβολα αριθμών. επ. Κωνσταντίνος Π. Χρήστου. Πανεπιστήμιο Δυτικής Μακεδονίας
Παιδαγωγικό Τμήμα Νηπιαγωγών σύμβολα αριθμών επ. Κωνσταντίνος Π. Χρήστου 1 αναπαραστάσεις των αριθμών Εμπράγματες Υλικά αντικείμενα ($$$) Εικονικές (***) Λεκτικές (τρία) Συμβολικές, (3, τρία) Διαφορετικές
Διαβάστε περισσότεραΤα στάδια της αξιολόγησης στην τάξη
Τα στάδια της αξιολόγησης στην τάξη Δρ Δημήτριος Γκότζος Οι διαφάνειες αποτελούν προϊόν μελέτης και αποδελτίωσης του Ι.Ε.Π. (2017). Οδηγός Εκπαιδευτικού για την Περιγραφική Αξιολόγηση στο Δημοτικό http://iep.edu.gr/images/iep/epistimoniki_ypiresia/epist_monades/a_kyklos/evaluation/2017/2a_perigrafiki_dhmoti
Διαβάστε περισσότεραΧρυσαυγή Τριανταφύλλου
Ερευνώντας τις ερμηνείες φοιτητών και τις διδακτικές πρακτικές εκπαιδευτικών σε θέματα σχετικά με την έννοια της περιοδικότητας Χρυσαυγή Τριανταφύλλου Μεταδιδάκτωρ ερευνήτρια, ΑΣΠΑΙΤΕ Επιστημονική υπεύθυνη:
Διαβάστε περισσότεραΔιδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Η Πληροφορική στην Ελληνική Δευτεροβάθμια Εκπαίδευση - Γυμνάσιο Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΔιδακτική Προγραμματισμού. Χαρίκλεια Τσαλαπάτα 20/2/2012
Διδακτική Προγραμματισμού Χαρίκλεια Τσαλαπάτα 20/2/2012 Διδακτική προγραμματισμού Παλαιότερα, η διδασκαλία του προγραμματισμού ταυτιζόταν με τη διδακτική της πληροφορικής Πλέον Η διδακτική της πληροφορικής
Διαβάστε περισσότεραΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία
Διαβάστε περισσότεραΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ
ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ (1) ΓΕΝΙΚΑ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ ΠΡΟΠΤΥΧΙΑΚΟ ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΝAOME1372 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 10 ο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ
Διαβάστε περισσότεραΔιδακτική της Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Εισαγωγή στη Διδακτική Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΠαιδαγωγικές Εφαρμογές Η/Υ (Θεωρία) 21/03/2017. Διδάσκουσα: Αδαμαντία Κ. Σπανακά
Παιδαγωγικές Εφαρμογές Η/Υ (Θεωρία) 21/03/2017 Διδάσκουσα: Αδαμαντία Κ. Σπανακά (madspa@otenet.gr) ΠΡΟΣΔΟΚΙΕΣ ΕΡΓΑΣΙΑ ΠΡΟΟΔΟΥ MOOC Μαζικό: παρέχεται η δυνατότητα εγγραφής μεγάλου αριθμού φοιτητών από
Διαβάστε περισσότεραΜάθηση σε νέα τεχνολογικά περιβάλλοντα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάθηση σε νέα τεχνολογικά περιβάλλοντα Ενότητα 5: Εποικοδομητισμός Βασιλική Μητροπούλου-Μούρκα Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΗ ανάλυση της κριτικής διδασκαλίας. Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού. Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας
Η ανάλυση της κριτικής διδασκαλίας Περιεχόμενο ή διαδικασία? Βασικό δίλημμα κάθε εκπαιδευτικού Περιεχόμενο - η γνώση ως μετάδοση πληροφορίας Διαδικασία η γνώση ως ανάπτυξη υψηλών νοητικών λειτουργιών (
Διαβάστε περισσότεραΜαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.
Διαβάστε περισσότεραΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ
ΟΔΗΓΟΣ ΧΡΗΣΗΣ ΣΧΕΔΙΟΥ ΜΑΘΗΜΑΤΟΣ Καθηγητής/τρια: Αρ. Μαθητών/τριών : Ημερομηνία: Χρόνος: Τμήμα: Ενότητα & Θέμα Μαθήματος: Μάθημα: ΓΕΩΓΡΑΦΙΑ Απαραίτητες προϋπάρχουσες/προαπαιτούμενες γνώσεις (προηγούμενοι/προαπαιτούμενοι
Διαβάστε περισσότεραΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Παναγάκος Ιωάννης Σχολικός Σύμβουλος Δημοτικής Εκπαίδευσης Βασικοί Στόχοι ενός Προγράμματος Σπουδών Ένα πρόγραμμα σπουδών επιδιώκει να επιτύχει δύο
Διαβάστε περισσότερα