Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού"

Transcript

1

2

3 Πρόλογος Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού βιβλίου Άλγεβρας της Αʹ τάξης του Γενικού Λυκείου, που θα διδάσκεται από το σχολικό έτος Είναι ένα σημαντικό βοήθημα για τους μαθητές, αλλά και οι συνάδελφοι καθηγητές θα βρουν πλούσιο υλικό για το έργο τους. Κάθε ενότητα περιλαμβάνει: Θεωρία, γραμμένη με κάθε λεπτομέρεια. Παραδείγματα και εφαρμογές για όλες τις περιπτώσεις. Ασκήσεις Αʹ και Βʹ ομάδας Στο τέλος κάθε κεφαλαίου δίνονται: Ερωτήσεις κατανόησης (Σωστού-Λάθους, πολλαπλής επιλογής, συμπλήρωσης κενού, αντιστοίχισης και σύντομης απάντησης) Γενικές ασκήσεις, κυρίως για μαθητές με αυξημένο ενδιαφέρον για τα Μαθηματικά. Διαγώνισμα με τέσσερα αντιπροσωπευτικά θέματα. Τα κεφάλαια που αναπτύσσονται είναι: Εισαγωγικό κεφάλαιο: Το λεξιλόγιο της Λογικής Σύνολα. Κεφάλαιο : Κεφάλαιο : Κεφάλαιο : Κεφάλαιο 4: Οι πραγματικοί αριθμοί (ιδιότητες πράξεων, διάταξη, απόλυτη τιμή, ρίζες) Εξισώσεις (Εξισώσεις πρώτου και δευτέρου βαθμού, διώνυμη εξίσωση). Ανισώσεις (Ανισώσεις πρώτου και δευτέρου βαθμού, ανισώσεις γινόμενο, ανισώσεις πηλίκο). Βασικές έννοιες των συναρτήσεων (Η έννοια της συνάρτησης, γραφική παράσταση συνάρτησης, μονοτονία και ακρότατα συνάρτησης, άρτιες και περιττές συναρτήσεις). òþìïçï

4 Κεφάλαιο : Μελέτη των βασικών συναρτήσεων f(x) = αx a, gx ^ h = και h(x) = αx x + βx + γ, α 0. Κεφάλαιο 6: Κεφάλαιο 7: Συστήματα (γραμμικά, και μη γραμμικά). Τριγωνομετρία (τριγωνομετρικοί αριθμοί γωνίας, τριγωνομετρικές ταυτότητες και αναγωγή στο ο τεταρτημόριο) Στο τέλος του βιβλίου γίνεται μια επανάληψη με όλη τη θεωρία σε ερωτήσεις και κατάλληλα επιλεγμένες επαναληπτικές ασκήσεις. To βιβλίο συνοδεύεται από CD, το οποίο περιέχει: Απαντήσεις ή υποδείξεις για όλες τις ερωτήσεις και ασκήσεις του παρόντος βιβλίου. Λύσεις των ασκήσεων του σχολικού βιβλίου. Με ευχαρίστηση θα δεχθώ οποιαδήποτε υπόδειξη που θα μπορούσε να συμβάλλει στη βελτίωση αυτού του βιβλίου. Ιούνιος 00 Θανάσης Ξένος 6. Ûîï : Íìçåâòá ʹ ùëåýïù

5 Περιεχόμενα ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε. Το Λεξιλόγιο της Λογικής... 9 Ε. Σύνολα... ΚΕΦΑΛΑΙΟ : Οι Πραγματικοί Αριθμοί.. Οι πράξεις και οι ιδιότητές τους..... Διάταξη πραγματικών αριθμών Απόλυτη τιμή πραγματικού αριθμού Ρίζες πραγματικών αριθμών Ερωτήσεις κατανόησης ου κεφαλαίου Γενικές ασκήσεις ου κεφαλαίου Διαγώνισμα ου κεφαλαίου ΚΕΦΑΛΑΙΟ ο: Εξισώσεις.. Εξισώσεις ου Βαθμού Η εξίσωση x ν = α..... Εξισώσεις ου Βαθμού... Ερωτήσεις κατανόησης ου κεφαλαίου... 4 Γενικές ασκήσεις ου κεφαλαίου... 6 Διαγώνισμα ου κεφαλαίου... 9 ΚΕΦΑΛΑΙΟ ο: Ανισώσεις.. Ανισώσεις ου βαθμού Ανισώσεις ου βαθμού Ανισώσεις γινόμενο & ανισώσεις πηλίκο... 6 Ερωτήσεις κατανόησης ου κεφαλαίου... 7 Γενικές ασκήσεις ου κεφαλαίου Διαγώνισμα ου κεφαλαίου ΚΕΦΑΛΑΙΟ 4ο: Βασικές Έννοιες των Συναρτήσεων 4.. Η έννοια της συνάρτησης Γραφική παράσταση συνάρτησης... 8 åòéåøþíåîá 7

6 4.. Η Συνάρτηση f (x) = αx+β Κατακόρυφη και οριζόντια μετατόπιση καμπύλης Μονοτονία Ακρότατα Συμμετρίες συνάρτησης... Ερωτήσεις κατανόησης 4 ου κεφαλαίου... Γενικές ασκήσεις 4 ου κεφαλαίου... Διαγώνισμα 4 ου κεφαλαίου... ΚΕΦΑΛΑΙΟ ο: Μελέτη Βασικών Συναρτήσεων.. Μελέτη της συνάρτησης: f(x) = αx... 7 a.. Μελέτη της συνάρτησης: f(x) = x..... Μελέτη της συνάρτησης: f(x) = αx +βx+γ... 9 Ερωτήσεις κατανόησης ου κεφαλαίου Γενικές ασκήσεις ου κεφαλαίου... Διαγώνισμα ου κεφαλαίου... ΚΕΦΑΛΑΙΟ 6ο: Συστήματα 6.. Γραμμικά συστήματα Μη γραμμικά συστήματα... 7 Ερωτήσεις κατανόησης 6 ου κεφαλαίου... 8 Γενικές ασκήσεις 6 ου κεφαλαίου... 8 Διαγώνισμα 6 ου κεφαλαίου ΚΕΦΑΛΑΙΟ 7ο: Τριγωνομετρία 7.. Τριγωνομετρικοί αριθμοί γωνίας Βασικές τριγωνομετρικές ταυτότητες Αναγωγή στο ο τεταρτημόριο... 0 Ερωτήσεις κατανόησης 7 ου κεφαλαίου... Γενικές ασκήσεις 7 ου κεφαλαίου... 4 Διαγώνισμα 7 ου κεφαλαίου... 6 ΕΠΑΝΑΛΗΨΗ Ερωτήσεις θεωρίας... 7 Ασκήσεις επανάληψης Ûîï : Íìçåâòá ʹ ùëåýïù

7 Εισαγωγικό Κεφάλαιο Ε. Το λεξιλόγιο της Λογικής Η συνεπαγωγή Αν Ρ και Q είναι δύο ισχυρισμοί, έτσι ώστε, αν αληθεύει ο Ρ να αληθεύει και ο Q, τότε λέμε ότι ο Ρ συνεπάγεται τον Q και συμβολικά γράφουμε Ρ & Q. Ο ισχυρισμός «Ρ & Q» ονομάζεται συνεπαγωγή, ο Ρ ονομάζεται υπόθεση της συνεπαγωγής και ο Q συμπέρασμα αυτής. Ο συμβολισμός Ρ & Q διαβάζεται επίσης «αν Ρ, τότε Q». συνεπαγωγή: Ρ & Q (υπόθεση) (συμπέρασμα) Για παράδειγμα, έχουμε ) x = & x = 4 ) α = β & α = β ) α = β & α ν = β ν Αν αληθεύει η συνεπαγωγή «Ρ& Q», τότε αληθεύει και η συνεπαγωγή «όχι Q & όχι Ρ», που είναι γνωστή ως νόμος της αντιθετοαντιστροφής. Πράγματι, αν δεν αληθεύει ο ισχυρισμός Q, τότε δεν μπορεί να αληθεύει και ο Ρ. Για παράδειγμα, γνωρίζουμε ότι, αν ένα τρίγωνο είναι ισοσκελές, τότε έχει δύο γωνίες ίσες. Επίσης, αν ένα τρίγωνο δεν έχει δύο γωνίες ίσες, τότε δεν είναι ισοσκελές... Æï ìåêéìþçéï ôè ïçéëü 9

8 Η ισοδυναμία ή διπλή συνεπαγωγή Αν αληθεύουν συγχρόνως οι συνεπαγωγές Ρ & Q και Q & Ρ, τότε λέμε ότι ο Ρ είναι ισοδύναμος με τον Q και συμβολικά γράφουμε Ρ + Q. Ο ισχυρισμός «Ρ + Q» ονομάζεται ισοδυναμία και διαβάζουμε «Ρ ισοδυναμεί Q» ή «Ρ αν και μόνο αν Q». Ρ + Q σημαίνει Ρ & Q και Q & P Αν ισχύει μια συνεπαγωγή Ρ & Q, δε σημαίνει ότι ισχύει και η αντίστροφη συνεπαγωγή Q & Ρ. Για παράδειγμα, ενώ ισχύει η συνεπαγωγή α = β & α = β, αν έχουμε α = β, τότε δε σημαίνει απαραίτητα ότι α = β, αφού μπορεί να είναι α = β. Χαρακτηριστικά παραδείγματα ισοδυναμιών είναι τα παρακάτω. ) α = β + α + γ = β + γ ) a = b a = b ) α = β + α = β ή α = β 4) α = β + α = β ) Ένα τρίγωνο ΑΒΓ είναι ισόπλευρο, αν και μόνο αν οι γωνίες του είναι ίσες. Διάζευξη και σύζευξη ισχυρισμών Αν αληθεύει ένας τουλάχιστον από τους ισχυρισμούς Ρ και Q, τότε λέμε ότι αληθεύει ο ισχυρισμός «Ρ ή Q», που λέγεται διάζευξη των Ρ και Q. Τέτοια παραδείγματα είναι τα εξής: ) α β = 0 + α = 0 ή β = 0 ) x = 4 + x = ή x = ) α + β > 0 + α 0 ή β 0 4) x = x + x x = 0 + x(x ) = 0 + x = 0 ή x =. 0. Ûîï : Íìçåâòá ʹ ùëåýïù éóáçöçéëþ ºåæÀìáéï

9 Αν αληθεύουν συγχρόνως δύο ισχυρισμοί Ρ και Q, τότε λέμε ότι αληθεύει ο ισχυρισμός «Ρ και Q», που λέγεται σύζευξη των Ρ και Q. Τέτοια παραδείγματα είναι τα εξής: ) α β 0 + α 0 και β 0 ) α + β = 0 + α = 0 και β = 0 ) α β + α β και α β 4) x = και x > 0 + x = ) α = β και αβ 0 + α = β Η άρνηση του ισχυρισμού «Ρ ή Q» είναι ο ισχυρισμός «όχι Ρ και όχι Q», ενώ η άρνηση του ισχυρισμού «Ρ και Q» είναι ο ισχυρισμός «όχι Ρ ή όχι Q». Για παράδειγμα, ο ισχυρισμός αβ = 0 σημαίνει α = 0 ή β = 0, ενώ ο ισχυρισμός αβ 0 σημαίνει α 0 και β 0. Ερωτήσεις κατανόησης. Χαρακτήρισε με Σ (Σωστό) ή Λ (Λάθος) καθεμιά από τις παρακάτω συνεπαγωγές και ισοδυναμίες. α) x = 0 + x = 0 β) x = 9 + x = γ) α = β & α = β δ) α = β & α = β ε) αβ 0 + α 0 ή β 0 στ) α + β = 0 + α = 0 ή β = 0 ζ) (x ) (x ) (x ) = 0 + x = ή x = ή x = η) α < & α < θ) (α ) > 0 + α > ι) x < και y < & xy < ια) x < + x < ιβ) x = x + x = 0 ή x = ιγ) x x & x.. Æï ìåêéìþçéï ôè ïçéëü

10 . Από τις συνεπαγωγές Ρ & Q και Q & R, προκύπτει η συνεπαγωγή Ρ & R;. Γράψε την άρνηση για καθεμιά από τις ακόλουθες προτάσεις. α) x και y... β) x = ή y =... γ) α > 0 ή β > 0... δ) α 0 και β Εξήγησε γιατί ισχύουν οι παρακάτω συνεπαγωγές και ισοδυναμίες. α) α > & α + > β) α = β και αβ 0 + α = β γ) α = φυσικός αριθμός & α = ακέραιος αριθμός δ) (α ) + (β + ) 0 + α ή β.. Βρες όλες τις ισοδυναμίες που υπάρχουν ανάμεσα σ έναν ισχυρισμό του πίνακα Αʹ και σ έναν ισχυρισμό του πίνακα Βʹ. Πίνακας Αʹ α) x x = 0 β) x x γ) α = και α < 0 δ) x = 4 και x(x ) = 0 ε) (x ) > 0 Πίνακας Βʹ ) x ) x = ) x = 0 ή x = 4) α =. Ûîï : Íìçåâòá ʹ ùëåýïù éóáçöçéëþ ºåæÀìáéï

11 Κεφάλαιο : Εξισώσεις. Εξισώσεις ου βαθμού Μια εξίσωση της μορφής αx + β = 0 επιλύεται ως εξής: Η εξίσωση γράφεται αx = β. i) Αν α 0, τότε έχει ακριβώς μια λύση (ή ρίζα), την x = -b. a ii) Αν α = 0 και β 0, η εξίσωση είναι αδύνατη (δεν έχει καμιά λύση). iii) Αν α = 0 και β = 0, η εξίσωση επαληθεύεται για κάθε πραγματικό αριθμό x (είναι ταυτότητα ή αόριστη). Αν στην εξίσωση αx + β = 0 οι συντελεστές α και β δεν είναι συγκεκριμένοι αριθμοί, αλλά γράμματα, τότε η εξίσωση αυτή ονομάζεται παραμετρική και τα γράμματα ονομάζονται παράμετροι. Η διαδικασία για την εύρεση του πλήθους των ριζών της εξίσωσης, ονομάζεται διερεύνηση. Για παράδειγμα, ας θεωρήσουμε την εξίσωση λ (x ) λ = x +, λœ με παράμετρο λ. Η εξίσωση γράφεται λ x λ λ = x + + λ x x = λ + λ + + x(λ ) = λ + λ + + x(λ )(λ + ) = λ + λ +. Αν λ και λ, η εξίσωση έχει ακριβώς μια λύση, την l + l+ ^l + lh + ^l+ h ll ^ + h+ ^l+ h x = = = ^l- h^l+ h ^l- h^l+ h ^l- h^l+ h ^l l l = + h^ + h + =. ^l- h^l+ h l - Αν λ =, η εξίσωση γράφεται 0x = 6 και είναι αδύνατη. Αν λ =, η εξίσωση γράφεται 0x = 0 και είναι ταυτότητα... êéóñóåé ïù âáõíïà 99

12 Πολλές εξισώσεις, με κατάλληλη διαδικασία, ανάγονται σε εξισώσεις ου βαθμού. Οι εξισώσεις με βαθμό ν λύνονται με παραγοντοποίηση του ου μέλους και χρήση της ιδιότητας α β = 0 + α = 0 ή β = 0. Για παράδειγμα, η εξίσωση x = 9x γράφεται x 9x = 0 + x(x 9) = 0 + x(x )(x + ) = 0 + x = 0 ή x = ή x =. Μια κλασματική εξίσωση λύνεται με απαλοιφή παρονομαστών, αφού γίνουν και οι απαιτούμενοι περιορισμοί. Για παράδειγμα, θα λύσουμε την εξίσωση η οποία γράφεται x x+ - x- = - - x x x+ - x- = - ^x-h^x+ h και ορίζεται όταν x και x. To E.K.Π. των παρονομαστών είναι (x )(x + ), οπότε η εξίσωση γράφεται. x x x x. x x. x - + x x- = ^ h^ h ^ h^ h ^ h^ h ^x- h^x+ h + (x ) (x + ) = x + x x = x + x = x + x x = 0 + x( x) = 0 + x = 0 ή x =. Αλλά, η λύση x = απορρίπτεται. Άρα, η εξίσωση έχει λύση μόνο την x = 0. Για να λύσουμε μια εξίσωση της μορφής f(x) = g(x), όπου f(x), g(x) παραστάσεις με τον άγνωστο x, εφαρμόζουμε την ιδιότητα α = β + α = β ή α = β. Για παράδειγμα, η εξίσωση x = x + γράφεται x = x + ή x = x + x x = + ή x + x = 4 + x = 6 ή x =. Με τον ίδιο τρόπο μπορεί να λυθεί και μια εξίσωση της μορφής f(x) = g(x), με τον περιορισμό g(x) 0., 00. Ûîï : Íìçåâòá ʹ ùëåýïù ºåæÀìáéï : êéóñóåé

13 Σχόλιο: Όταν ζητείται η επίλυση μιας εξίσωσης με άγνωστο τον x, δε σημαίνει ότι η εξίσωση αυτή είναι μια ισότητα που αληθεύει, αλλά ζητάμε να βρούμε τον άγνωστο x, ώστε να αληθεύει η ισότητα. Γι αυτό, η επίλυση μιας εξίσωσης αποτελείται από ισοδύναμα βήματα και επομένως ο σωστός συμβολισμός ανάμεσα στα διαδοχικά βήματα είναι «+» και όχι «&». Φυσικά, το ίδιο συμβαίνει και με την επίλυση ανισώσεων και συστημάτων. Παραδείγματα και εφαρμογές. Να λυθεί η εξίσωση λ (λx ) 4λ(x + ) = 4, για τις διάφορες πραγματικές τιμές της παραμέτρου λ. Λύση: Η εξίσωση γράφεται: λ x λ 4λx 4λ = 4 + λ x 4λx = λ + 4λ λx(λ 4) = (λ + ) + λ(λ )(λ + )x = (λ + ) Αν λ 0, λ και λ, η εξίσωση έχει ακριβώς μια λύση, την ^l+ h l+ x = =. ll ^ -h^l+ h ll ^ -h Αν λ = 0, η εξίσωση γράφεται 0x = 4 και είναι αδύνατη. Αν λ =, η εξίσωση γράφεται 0x = 6 και είναι αδύνατη. Αν λ =, η εξίσωση γράφεται 0x = 0 και είναι ταυτότητα.. Να διερευνηθεί και να λυθεί η εξίσωση με παραμέτρους λ, μ Œ. lx - m x + x = l -,.. êéóñóåé ïù âáõíïà 0

14 Λύση: Κάνουμε, πρώτα, απαλοιφή παρονομαστών και η εξίσωση γράφεται:. lx. x. x 6 - m + 6 = 6l lx - m + x = 6l - x ^ h + λx μ + x = 6λ x + λx + x + x = μ + 6λ + λx + x = μ + 6λ + (λ + )x = μ + 6λ () Η () έχει ακριβώς μια λύση, όταν λ + 0, δηλαδή l -. Η λύση της τότε είναι η m+ 6 l x =. l + Η () είναι αδύνατη, όταν λ + = 0 και μ + 6λ 0, δηλαδή l=- και. m+ 6 b- l 0 l=- και μ 0 l=- και m. Η () είναι ταυτότητα, όταν λ + = 0 και μ + 6λ = 0, δηλαδή l=- και m=.. Να λυθούν οι εξισώσεις: α) x x = x β) x x 4x + = 0 γ) (x 4) = (x + 4x + 4)(x + 4) Λύση: Μεταφέρουμε όλους τους όρους στο ο μέλος και κάνουμε παραγοντοποίηση. α) x x x + = 0 + x (x ) (x ) = 0 + (x ) (x ) = 0 + (x ) (x + ) = 0 + x = ή x =. β) x x 4x + = 0 + x (x ) 4(x ) = 0 + (x ) (x 4) = 0 + (x ) (x ) (x + ) = 0 + x = ή x = ή x =. γ) [(x )(x + )] = (x + ) (x + 4) + (x ) (x + ) (x + ) (x + 4) = 0 + (x + ) [(x ) (x + 4)] = 0 + (x + ) (x 4x + 4 x 4) = 0 + (x + ) (x 9x) = 0 + (x + ) x(x 9) = 0 + x = ή x = 0 ή x = Ûîï : Íìçåâòá ʹ ùëåýïù ºåæÀìáéï : êéóñóåé

15 4. Να λυθούν οι κλασματικές εξισώσεις: α) x = και β) + - = + 4x + 4 x + x x x x Λύση: α) Η εξίσωση γράφεται = ^x+ h x + και ορίζεται για κάθε x. Πολλαπλασιάζουμε τα μέλη της με (x + ) και έχουμε: x. x. ^ + h = ^ + h ^x + h x + + = (x + ) + x + 4 = + x =-. β) Κάνουμε ομώνυμα σε κάθε παρονομαστή και απλά τα σύνθετα κλάσματα. x+ + x- - x - 9 = x x x 6x = x + x - ^x- h^x+ h (x, x και x 0). x x x. 6x + ^ - h^ + h x x x x x+ + ^ - h^ + h x- - ^ - h^ + h = ^x- h^x+ h = (x )(x + ) + x(x ) + (x + ) 6x = (x 9) + x x + x + 9 6x = x 8 + x + 9 6x x + 8 = 0 + x 6x + 7 = 0 + x + 6x 7 = 0 Η τελευταία εξίσωση έχει διακρίνουσα Δ = β 4αγ = = 44 6 και λύσεις x = = και x. = - - = -9 Δεκτή, όμως, είναι μόνο η λύση x = 9... êéóñóåé ïù âáõíïà 0

16 . Να λυθούν οι εξισώσεις: α) x = β) x = x 7 γ) x + x = 0 και δ) x + = x. Λύση: α) x = + x = ή x = + x = ή x = + x= ή x =. 7 β) Για να έχει λύση η εξίσωση αυτή, πρέπει x 7 0, δηλαδή x. Με τον περιορισμό αυτό έχουμε: x = x 7 ή x = x x x = 7 ή x + x = x = 6 ή x =. Από τις λύσεις αυτές μόνο η x = 6 είναι δεκτή, γιατί μόνο αυτή ικανοποιεί 7 τον περιορισμό x. γ) x + = x + (x + ) = (x ) ή (x + ) = (x ) + x + 6 = x ή x + 6 = x + + x = ή δ) x + = x + x + = x ή x + = x - x =. 7 + x + = x () ή x + = + x () Η () έχει λύση όταν x 0, δηλαδή x. Τότε έχουμε: () + x + = x ή x + = + x + x = ή = (αδύνατη). Η () έχει λύση όταν + x 0, δηλαδή x. Τότε έχουμε: () + x + = x ή x + = x + = (αδύνατη) ή x =-. Άρα, η εξίσωση έχει λύσεις τις x = και x = Ûîï : Íìçåâòá ʹ ùëåýïù ºåæÀìáéï : êéóñóåé

17 6. Να λυθεί η εξίσωση x + x =. Λύση: (Θα εργαστούμε όπως στο παράδειγμα της.). Στο διπλανό πίνακα δίνεται το πρόσημο των x + και x. Αν x <, τότε x + = x και x = x +, οπότε η εξίσωση γράφεται ( x ) ( x + ) = + x + x = + x = και η λύση αυτή απορρίπτεται, αφού εξαρχής πήραμε x <. Αν x <, η εξίσωση γράφεται (x + ) ( x + ) = + x + + x = + x = (δεκτή). Αν x, η εξίσωση γράφεται (x + ) (x ) = + x + x + = + x = (δεκτή). Άρα, η εξίσωση έχει λύσεις τους αριθμούς και. 7. Να λυθεί η εξίσωση x+ = x +. Λύση: Η εξίσωση ορίζεται όταν x + 0, δηλαδή x. Η εξίσωση ισοδύναμα γράφεται: ^ 6 6 x+ h = ^ x+ h (υψώνουμε στην έκτη για να αποφύγουμε και τις δύο ρίζες) + (x + ) = (x + ) + (x + ) (x + ) = 0 + (x + ) [(x + ) ] = 0 + (x + ) x = 0 + x = ή x = ή x = 0. Και οι δύο λύσεις είναι δεκτές, αφού ικανοποιούν τον περιορισμό x... êéóñóåé ïù âáõíïà 0

18 8. Σ ένα διαγωνισμό δόθηκαν για απάντηση 0 ερωτήσεις. Κάθε σωστή απάντηση βαθμολογείται με 4 μόρια, ενώ για κάθε λανθασμένη απάντηση αφαιρείται μισό μόριο. Αν ένας εξεταζόμενος έχει συγκεντρώσει 7 μόρια, πόσες σωστές απαντήσεις είχε; Λύση: Έστω x το πλήθος των σωστών απαντήσεων, οπότε το πλήθος των λανθασμένων απαντήσεων είναι 0 x. Από τις σωστές απαντήσεις συγκεντρώνει 4 x μόρια, ενώ από τις λανθασμένες, αφαιρούνται. 0 - x ^ h μόρια. Έτσι, έχουμε την εξίσωση 4x x = 7, ^ h η οποία γράφεται.. 4x x = x x = x = 96 + x = 44. ^ h Άρα, ο εξεταζόμενος αυτός είχε 44 σωστές απαντήσεις. 9. Ένα αυτοκίνητο κάνει μια συγκεκριμένη διαδρομή με μέση ταχύτητα 00 km/h. Ένα δεύτερο αυτοκίνητο ξεκινά λεπτά αργότερα για να κάνει την ίδια διαδρομή με μέση ταχύτητα 0 km/h. Σε πόση ώρα το δεύτερο αυτοκίνητο θα φτάσει το πρώτο και σε πόση απόσταση από το σημείο εκκίνησης; Λύση: Έστω ότι ο ζητούμενος χρόνος είναι t ώρες. Το ο αυτοκίνητο κινείται t + 4 ώρες ( λεπτά = 4 της ώρας). Τα δύο αυτοκίνητα διανύουν την ίδια απόσταση και σύμφωνα με τον τύπο S = υt έχουμε. 00 at+. 4 k = 0 t + 00t+ = 0t + 0t = + t = ώρες = ώρα και λεπτά. 4 Η απόσταση του σημείου συνάντησης από το σημείο εκκίνησης είναι. S = 0 4 =0 km. 06. Ûîï : Íìçåâòá ʹ ùëåýïù ºåæÀìáéï : êéóñóåé

19 Ασκήσεις Α ομάδας. Να λυθούν οι εξισώσεις: α. 9(8 x) 0(9 x) 4(x ) = 8x β. x+ 4 x- 4 x- - = + 7 y+ 4 y- γ. - y = δ. t- - t 4 + t + = v ε ^ - vh+ v- = v+ - ^ h y+ y+ y- y στ. - b + l = ζ. 4 x - 4 b - l - x 7 x 9 ^ - h = : - ^ h D η. ^x+ h^x+ 4h- x- x+ - x- = 0 ^ h^ h ^ h y - θ. y + y 4 ^ + h = b l +.. Να λυθούν οι παρακάτω εξισώσεις με παράμετρο λœ. α. λx + λ + = x δ. λ (x ) = x λ β. (λ )x = λ ε. γ. λx + 8x = (λ )x + 0 x+ l lx- l - 4l+ = +. Να λυθούν οι παρακάτω εξισώσεις με παραμέτρους α και β. x + ab α. αx + α = βx + β δ. ax - = -b β. α x α = β x x x β ε. - = a-b ab 0 a b ^ h x x γ. + = ab 0 a b ^ h.. êéóñóåé ïù âáõíïà 07

20 4. Να λυθούν οι εξισώσεις: α. x = x στ. (x x + ) = 4(x ) β. x = x ζ. x + x = 0 γ. x + x + x = 0 η. x 4 = 0 δ. x 4 + 4x = 4x θ. x x x + = 0 ε. (x ) = ( x) ι. (x + )(x ) = (x + )(x ).. Να λυθούν οι κλασματικές εξισώσεις: α. x x = δ. x - x 9 + = - 4 x + x - β. γ. x - + = x + x x x 6 + x+ x+ - x ε. - = - x x + x - x - x - x =- στ. x x x + x + 6 =. x + 6. Να λυθούν οι εξισώσεις: α. x = στ. x = 4 x β. x + = x ζ. x + = γ. x + x - 4 x - 4 x - = η. = + x + δ. x = 6 x θ. x- + - x- - =. 4 ε. x = x 7. Να βρεθεί ο αριθμός του οποίου το μισό, αυξημένο κατά 0, είναι κατά 40 μικρότερο από το διπλάσιο του αριθμού. 8. Ένας πατέρας είναι μεγαλύτερος από το γιό του κατά 0 χρόνια και πριν χρόνια το άθροισμα των ηλικιών τους ήταν. Να βρεθούν οι ηλικίες τους. 9. Να χωρισθεί ο αριθμός 7 σε δύο προσθετέους έτσι, ώστε ο μεγαλύτερος αν διαιρεθεί με το μικρότερο, να δίνει πηλίκο και υπόλοιπο Ûîï : Íìçåâòá ʹ ùëåýïù ºåæÀìáéï : êéóñóåé

21 0. Το άθροισμα των ψηφίων ενός διψήφιου αριθμού είναι 4. Αν εναλλάξουμε τη θέση των ψηφίων του, τότε προκύπτει αριθμός κατά 8 μεγαλύτερος. Να βρεθεί ο αριθμός αυτός.. Το ύψος ενός ορθογωνίου είναι τα της βάσης. Αν αυξήσουμε τη βάση κατά cm, τότε η περίμετρός του γίνεται cm. Να βρεθούν οι διαστάσεις του ορθογωνίου.. Δανείστηκε κάποιος από δύο τράπεζες α και β με επιτόκια 8% και 9% αντίστοιχα. Να βρεθούν τα ποσά που δανείστηκε, αν γνωρίζουμε ότι σ ένα χρόνο πλήρωσε συνολικό τόκο Να βρεθούν δύο αριθμοί που διαφέρουν κατά και το άθροισμα των αντιστρόφων τους είναι Πόσο καθαρό οινόπνευμα πρέπει να προσθέσουμε σ ένα λίτρο οινόπνευμα περιεκτικότητας 0%, ώστε να πάρουμε οινόπνευμα περιεκτικότητας 40%;. Ένας εργάτης τελειώνει μόνος του ένα συγκεκριμένο έργο σε 8 ώρες. Ένας δεύτερος εργάτης για το ίδιο έργο αποδίδει % λιγότερο από τον πρώτο. Αν εργαστούν και οι δύο μαζί, αλλά ο δεύτερος ξεκινήσει να δουλεύει μια ώρα αργότερα από τον πρώτο, σε πόσες ώρες θα τελειώσει το έργο; 6. Ένα αυτοκίνητο πηγαίνει από την πόλη Α στην πόλη Β με ταχύτητα 00 km/h. Επιστρέφει αμέσως από την πόλη Β στην πόλη Α με ταχύτητα 80 km/h και ο χρόνος για τις δύο διαδρομές είναι 9 ώρες. Να βρεθεί η απόσταση των δύο πόλεων. Ασκήσεις Β ομάδας. Να λυθούν οι παρακάτω εξισώσεις με παραμέτρους λ, μ Œ. α. λ(λ x ) + = λx(λ 6) β. (x ) + x + (x + ) = x(x λ + ) γ. [(λ + ) x + ] = [(λ ) x ] + (λx ) δ. (λ + x)( + μx) λ( + μ) = λ μ + μx.. êéóñóåé ïù âáõíïà 09

22 ε. (x λ)(x μ) = (x μ)(x λ) στ. ζ. lx mx + - = (λμ 0) m l m x l m x + = - (λμ 0) l m l m. Να βρεθούν οι τιμές των παραμέτρων α και β, ώστε η εξίσωση ^ax - bh = a- bx + 4x- 4 4 ^ h ^ h να αληθεύει για κάθε xœ.. Αν οι α, β, γ είναι διαφορετικοί ανά δύο, να εξετασθεί αν έχει λύσεις η εξίσωση x x x + + =. ^a-bh^a-gh ^b-ah^b-gh ^g-ah^g-bh 4. Να λυθούν οι εξισώσεις: α. x x + = 0 β. x 4 + x + x = 0 γ. x = x δ. x = x.. Να λυθούν οι εξισώσεις: α. 0 x- 8 + x- 6 + x+ 6 + x+ 8 = δ. x x 8 x + x 9 = x x - 6 x - x- 7 β. γ. 0 x- + x- + x+ + x+ = ε. x - x - x - 6 x - 0 x - x - x = x - 6 -x-x x - x + = + στ.. y y - 7 y - y = x - x - x+ 6. Να λυθούν οι εξισώσεις: α. x + x = ε. x- = -x β. x + x x + 4 = 0 στ. x + = x+ γ. x + x + x + = 8 ζ. x = x- δ. d(x, ) d(x, ) = η. ^x- h = x. 0. Ûîï : Íìçåâòá ʹ ùëåýïù ºåæÀìáéï : êéóñóåé

23 7. Να βρεθεί ένας διψήφιος αριθμός τέτοιος ώστε, αν εναλλάξουμε τα ψηφία του, οι δύο αριθμοί να έχουν άθροισμα ένα τετράγωνο ακεραίου. 8. Να αποδειχθεί ότι η εξίσωση: x- x- x- x x+ x+ x+ x = έχει μοναδική λύση τον αριθμό Να λυθούν οι εξισώσεις: α. λ x + x = β. x + x = λx +, όπου λ πραγματική παράμετρος. 0. Να βρεθεί αριθμός, του οποίου το τετράγωνο είναι κατά μεγαλύτερο από τον αντίστροφό του.. Αν στο ενός ακέραιου αριθμού προστεθεί ο αντίστροφος του τετραγώνου του, προκύπτει το 4. Να βρεθεί ο αριθμός αυτός.. Να λυθούν οι εξισώσεις: α. β. x-a- b x-b- g x -g- a + + = g a b ax- b a+ bx a + = a+ b a- b a + b. - b. Να λυθούν οι εξισώσεις: α. ( + ) x + = x- ε. x 6 = x + 64 β. x- = x lx l, lœ x- - + x στ. : x x+ x c m c m = - x- x- x- γ. x + x = 4 ζ. x+ x- - x = δ. x + x = η.. x- x - x - x+ x - x =.. êéóñóåé ïù âáõíïà

Στον αδελφό μου και εξαιρετικό μαθηματικό, Γιώργο Ξένο

Στον αδελφό μου και εξαιρετικό μαθηματικό, Γιώργο Ξένο www.ziti.gr Στον αδελφό μου και εξαιρετικό μαθηματικό, ιώργο Ξένο Πρόλογος Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού βιβλίου Άλγεβρας της Αʹ τάξης του ενικού Λυκείου, που

Διαβάστε περισσότερα

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας. Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΟΥ ΒΑΘΜΟΥ Α. Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων 1. ΕΡΩΤΗΣΗ Ποια εξίσωση λέγεται εξίσωση ου βαθμού

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

2ογελ ΣΥΚΕΩΝ 2ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β Λυκει(ου ο ΓΕΛ ΣΥΚΕΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ ογελ ΣΥΚΕΩΝ ογελ ΣΥΚΕΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ -4 ΠΟΛΥΩΝΥΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Επιμέλεια: ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

Διαβάστε περισσότερα

Θ. Ξένος: Άλγεβρα Α' Λυκείου (2η έκδοση) Απαντήσεις και λύσεις των ερωτήσεων & ασκήσεων

Θ. Ξένος: Άλγεβρα Α' Λυκείου (2η έκδοση) Απαντήσεις και λύσεις των ερωτήσεων & ασκήσεων Σχολικό βιβλίο Άλγεβρα Α' Λυκείου Απαντήσεις και λύσεις των ερωτήσεων & ασκήσεων Θ. Ξένος: Άλγεβρα Α' Λυκείου (η έκδοση) Απαντήσεις και λύσεις των ερωτήσεων & ασκήσεων Μπορείτε να αντιγράψετε το παρόν

Διαβάστε περισσότερα

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ

Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΜΕΡΟΣ Α.5 ΑΝΙΣΟΤΗΤΕΣ-ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ 9. 5 ΑΝΙΣΟΤΗΤΕΣ- ΑΝΙΣΩΣΕΙΣ ΜΕ ΕΝΑΝ ΑΓΝΩΣΤΟ Α. ΔΙΑΤΑΞΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΟΡΙΣΜΟΙ Εάν έχουμε δύο πραγματικούς αριθμούς α και β τότε λέμε ότι ο α είναι μεγαλύτερος

Διαβάστε περισσότερα

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές

Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές 0 Πολυωνυμικές εξισώσεις και ανισώσεις Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Για να λύσουμε μια πολυωνυμική εξίσωση P(x) 0 (ή μια πολυωνυμική ανίσωση P(x)

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ Συγγραφική ομάδα: Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας Καθηγητής Πανεπιστημίου Αθηνών Καθηγητής

Διαβάστε περισσότερα

Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού

Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού www.ziti.gr Πρόλογος Το βιβλίο αυτό είναι γραμμένο με βάση την αναμορφωμένη έκδοση του σχολικού βιβλίου Άλγεβρας Βʹ Λυκείου, που θα διδάσκεται από το σχολικό έτος 0-0. Είναι ένα σημαντικό βοήθημα για τους

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Ε.1 I. 1. α 2 = 9 α = 3 ψ p: α 2 = 9, q: α = 3 Σύνολο αλήθειας της p: Α = {-3,3}, Σύνολο αλήθειας της q: B = {3} A B 2. α 2 = α α = 1 ψ p: α 2 = α, q: α = 1 Σύνολο

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,...

Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν α 1 x+α 0 =0,με α 0,α 1,... 3 0 ΛΥΚΕΙΟ ΚΕΡΑΤΣΙΝΙΟΥ Λ. ΒΟΥΛΓΑΡΗ ΜΑΘΗΜΑΤΙΚΟΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ Πολυωνυμική εξίσωση βαθμού ν ονομάζεται κάθε εξίσωση της μορφής α ν x ν +α ν-1 x ν-1 +...+α

Διαβάστε περισσότερα

Περί εξισώσεων με ένα άγνωστο

Περί εξισώσεων με ένα άγνωστο 1 ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΧΑΝΙΩΝ 19 Φεβρουαρίου 013 ΤΑΞΗ Α Σημειώσεις Άλγεβρας Περί εξισώσεων με ένα άγνωστο Εξίσωση με ένα άγνωστο λέμε την ισότητα δύο παραστάσεων μιας μεταβλητής. Πχ f(x) = g(x) όπου x μεταβλητή

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 3ο κεφάλαιο: Εξισώσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα 1

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Φίλη μαθήτρια, φίλε μαθητή,

Φίλη μαθήτρια, φίλε μαθητή, Φίλη μαθήτρια φίλε μαθητή Η εργασία αυτή έγινε με σκοπό να συμβάλει στην κατανόηση στην εμπέδωση και στην εμβάθυνση των μαθηματικών εννοιών που αναπτύσσονται στην Άλγεβρα της Β Λυκείου. Η ύλη είναι γραμμένη

Διαβάστε περισσότερα

2.3 Πολυωνυμικές Εξισώσεις

2.3 Πολυωνυμικές Εξισώσεις . Πολυωνυμικές Εξισώσεις η Μορφή Ασκήσεων: Ασκήσεις που μας ζητούν να λύσουμε μια πολυωνυμική εξίσωση.. Να λυθούν οι εξισώσεις: i. + + + 6 = 0 ii. 7 = iii. ( + ) + 7 = 0 iv. 8 + 56 = 0 i. + + + 6 = 0 (

Διαβάστε περισσότερα

x y z xy yz zx, να αποδείξετε ότι x=y=z.

x y z xy yz zx, να αποδείξετε ότι x=y=z. ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1

Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Κεφάλαιο 3.1 Εξισώσεις 1 ου Βαθμού Επιμέλεια Σημειώσεων: Ντάνος Γιώργος ΚΕΦΑΛΑΙΟ 3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ 1 Εξίσωση πρώτου βαθμού ή πρωτοβάθμια εξίσωση με άγνωστο x ονομάζεται κάθε εξίσωση της μορφής

Διαβάστε περισσότερα

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46

Από το Γυμνάσιο στο Λύκειο Δειγματικός χώρος Ενδεχόμενα Εύρεση δειγματικού χώρου... 46 ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11 2. Σύνολα..............................................................

Διαβάστε περισσότερα

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ

5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ 5.ΕΞΙΣΩΣΕΙΣ ΠΡΩΤΟΥ ΒΑΘΜΟΥ Για να επιλύσουμε μία παραμετρική εξίσωση ακολουθούμε τα παρακάτω βήματα: i) Βγάζω παρενθέσεις ii) Κάνω απαλοιφή παρανομαστών iii) Χωρίζω γνωστούς από αγνώστους (άγνωστος είναι

Διαβάστε περισσότερα

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων

Επίλυση εξισώσεων δευτέρου βαθμού με ανάλυση σε γινόμενο παραγόντων ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 69. ΕΞΙΣΩΣΕΙΣ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Ορισμός Ονομάζουμε εξίσωση ου βαθμού με έναν άγνωστο κάθε ισότητα που έχει την μορφή α +β+ γ = 0 με α 0 (ο είναι ο άγνωστος της εξίσωσης,

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Aλγεβρα A λυκείου α Τομος

Aλγεβρα A λυκείου α Τομος Aλγ ε β ρ α A Λυ κ ε ί ο υ Α Τό μ ο ς Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο, Θετικές Επιστήμες Άλγεβρα Α Λυκείου, Α Τόμος Παναγιώτης Γριμανέλλης Στοιχειοθεσία-σελιδοποίηση,

Διαβάστε περισσότερα

Σας εύχομαι καλή μελέτη και επιτυχία.

Σας εύχομαι καλή μελέτη και επιτυχία. ΠΡΟΛΟΓΟΣ Το βιβλίο αυτό αποτελεί συνέχεια του Α τεύχους και απευθύνεται κυρίως στους μαθητές της Α Λυκείου, αλλά και στους καθηγητές που διδάσκουν το μάθημα «Άλγεβρα και στοιχεία πιθανοτήτων» της Α Λυκείου.

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

1.2 Εξισώσεις 1 ου Βαθμού

1.2 Εξισώσεις 1 ου Βαθμού 1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ

ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ 1 4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΕΞΙΣΩΣΗΣ ΘΕΩΡΙΑ 1. Εξίσωση µε έναν άγνωστο: Ονοµάζουµε µία ισότητα η οποία περιέχει αριθµούς και ένα γράµµα που είναι ο άγνωστος της εξίσωσης.. Λύση ή ρίζα της εξίσωσης : Είναι ο αριθµός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ

3. Να δειχτει οτι α α. Ποτε ισχυει το ισον; 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ ΑΝΙΣΩΣΕΙΣ 1 Α ν ι σ ω σ η 1 ο υ β α θ μ ο υ 3. Να δειχτει οτι α + 110 0α. Ποτε ισχυει το ισον; Μορφη: αx + β > 0 με α,β. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = βα + β, Β = α β + αβ Αν α > 0

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί

Διαβάστε περισσότερα

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ. Γιώργος Μπαρακλιανός τηλ. 69377886 ( mparakgeo@gmail.com ) Κώστας Τζάλλας τηλ. 69733004 ( tzallask@gmail.com ) Παραγγελίες : τηλ. 5407604 Email : mparakgeo@gmail.com Messenger : Giorgos Mparaklianos Πρόλογος

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους

Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Εξίσωση 1 η 1 ο μέλος 2 ο μέλος

Εξίσωση 1 η 1 ο μέλος 2 ο μέλος 1 Παραδείγματα (επανάληψη) Συντελεστής του αγνώστου x. Εξίσωση 1 η 1 ο μέλος 2 ο μέλος Ε ξ ι σ ώ σ εις 1 ο υ β α θ μ ο ύ 2x + 2 = x - 1 Άγνωστος x Γνωστός Eπίλυση 1 ος τρόπος Μπορούμε να γράψουμε την εξίσωση

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1ο: ΣΥΣΤΗΜΑΤΑ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 ΣΥΣΤΗΜΑΤΑ....................................................

Διαβάστε περισσότερα

ΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)

ΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου) ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Όταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι

Όταν λύνοντας μια εξίσωση καταλήγουμε στην μορφή 0x=0,τότε λέμε ότι ΜΕΡΟΣ Α. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 9. ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ Χρήσιμες ιδιότητες πράξεων Αν αβ τότε α+γβ+γ Αν αβ τότε α-γβ-γ Αν αβ τότε α γ α β γ β Αν αβ τότε γ γ με γ 0 Η έννοια της εξίσωσης Μια ισότητα, που αληθεύει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού

Διαβάστε περισσότερα

Η εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη.

Η εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη. ΜΕΡΟΣ Α 2.1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 16 2. 1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 Η εξίσωση αx+β=0 Κάθε εξίσωση της μορφής αx+β=0 όπως για παράδειγμα οι εξισώσεις x- 2=0, 4x=-,2x-2=x+6 ονομάζεται εξίσωση 1ου βαθμού με έναν άγνωστο

Διαβάστε περισσότερα

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

2.4 ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ . ΚΛΑΣΜΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΘΕΩΡΙΑ. Κλασµατική εξίσωση : Ονοµάζουµε κλασµατική εξίσωση κάθε εξίσωση η οποία έχει τον άγνωστο σ έναν τουλάχιστον παρονοµαστή. ΣΧΟΛΙΟ ιαδικασία επίλυσης : i) Αναλύουµε τους παρονοµαστές

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ; ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,

Διαβάστε περισσότερα

Η Θεωρία που πρέπει να θυμάσαι!!!... b a

Η Θεωρία που πρέπει να θυμάσαι!!!... b a Κεφ. εξισώσεις ανισώσεις εξάσκησηεπανάληψη Τhe Ds that make a champion: Devotion, Desire, Discipline Η Θεωρία που πρέπει να θυμάσαι!!!... Μορφές Εξισώσεων Λύση ή ρίζα εξίσωσης Εξίσωση ου βαθμού ax + b

Διαβάστε περισσότερα

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ

3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ

Διαβάστε περισσότερα

1ο τεταρτημόριο x>0,y>0 Ν Β

1ο τεταρτημόριο x>0,y>0 Ν Β ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.

Διαβάστε περισσότερα

3.1 Εξισώσεις 1 ου Βαθμού

3.1 Εξισώσεις 1 ου Βαθμού 1 3.1 Εξισώσεις 1 ου Βαθμού 1. Να διερευνήσετε την εξίσωση. Ισχύει: Διακρίνουμε τώρα τις περιπτώσεις: Αν τότε: ΘΕΩΡΙΑ Απάντηση Επομένως, αν η εξίσωση έχει ακριβώς μία λύση, την. Αν, τότε η εξίσωση γίνεται,

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Β' Γενικού Λυκείου Γενικής Παιδείας Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Α1. Στο επόμενο σχήμα βλέπετε τον τριγωνομετρικό κύκλο, τους άξονες ημιτόνων, συνημιτόνων, εφαπτομένων,

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑΣ...με απάντηση

1 ΘΕΩΡΙΑΣ...με απάντηση 1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.

Διαβάστε περισσότερα

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: Γ ΘΕΩΡΙΑ ΘΕΜΑ 1 ο Α. Τι λέγεται ταυτότητα; Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες: Γ. Να αποδείξετε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ Α.1. 1) Ποιοι φυσικοί αριθμοί λέγονται άρτιοι και ποιοι περιττοί; ( σ. 11 ) 2) Από τι καθορίζεται η αξία ενός ψηφίου σ έναν φυσικό αριθμό; ( σ. 11 ) 3) Τι

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

Τάξη A Μάθημα: Άλγεβρα

Τάξη A Μάθημα: Άλγεβρα Τάξη A Μάθημα: Άλγεβρα Ερωτήσεις Θεωρίας Θέματα Εξετάσεων Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Α. Θεωρία - Αποδείξεις.. Σελ. Β. Θεωρία-Ορισμοί. Σελ.16 Γ. Ερωτήσεις Σωστού Λάθους...

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΙΚΩΝ ΕΝΝΟΙΙΩΝ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Α ΤΑΞΗΣ Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί Α. 7. 1 1. Τι είναι τα πρόσημα και πως χαρακτηρίζονται οι αριθμοί από αυτά; Τα σύμβολα

Διαβάστε περισσότερα

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ . ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τα σύνολα των αριθμών είναι τα εξής : i. Φυσικοί αριθμοί : 0,,,,......,,,,0,,,,...

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ

β=0 Η εξίσωση (λ-2)χ=2λ-4 για λ=2 είναι αδύνατη. Σ Λ Αν η εξίσωση αχ+β=0 έχει δύο διαφορετικές λύσεις τότε είναι αόριστη. Σ Λ 3. ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ 3. ΕΞΙΣΩΣΕΙΣ α 0 Η εξίσωση έχει μία μοναδική λύση την x= - αx+β=0 α=0 β 0 β=0 Η εξίσωση είναι αδύνατη, δηλαδή δεν έχει λύση. Η εξίσωση είναι αόριστη ή ταυτότητα, δηλαδή επαληθεύεται

Διαβάστε περισσότερα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Ιωάννης Σ. Μιχέλης Μαθηματικός 1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις

Διαβάστε περισσότερα

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι:

τριώνυμο Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: κεφάλαιο 4 Α τριώνυμο επίλυση της εξίσωσης δευτέρου βαθμού Η εξίσωση δευτέρου βαθμού στην πλήρη της μορφή ονομάζεται τριώνυμο, γιατί αποτελείται από τρία μονώνυμα. Η γενική μορφή της είναι: αx + βx + γ

Διαβάστε περισσότερα

Εξισώσεις πρώτου βαθμού

Εξισώσεις πρώτου βαθμού Εξίσωση ου βαθμού με ένα άγνωστο 0ρισμός Εξισώσεις πρώτου βαθμού Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή αχ=β λέγεται εξίσωση ου βαθμού με ένα άγνωστο. Σε μια εξίσωση η μεταβλητή λέγεται άγνωστος.οι

Διαβάστε περισσότερα

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;

11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης; 10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται

Διαβάστε περισσότερα

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ο Γενικό Επαναληπτικό Διαγώνισμα ΘΕΜΑ ο Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας δίπλα στο γράμμα

Διαβάστε περισσότερα

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x ΜΟΡΦΕΣ ΤΡΙΩΝΥΜΟΥ ΑΝΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Τριώνυµο λέγεται ένα πολυώνυµο της µορφής : f x = αx + βx+ γ, όπου α, β, γ R µε α. ( ) ιακρίνουσα και ρίζες του τριωνύµου f( x) = αx + βx+ γ λέγεται η διακρίνουσα και

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Πραγματικοί αριθμοί. Κεφάλαιο Οι πράξεις και οι ιδιότητές τους. = 2. Να υπολογίσετε

Πραγματικοί αριθμοί. Κεφάλαιο Οι πράξεις και οι ιδιότητές τους. = 2. Να υπολογίσετε Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους. Έστω α, β δύο πραγματικοί αριθμοί για τους οποίους ισχύει α + β = 0 και β + α την τιμή της παράστασης αβ + αβ. =. Να υπολογίσετε. Αν x y

Διαβάστε περισσότερα

0. Να λύσετε τις εξισώσεις: i) ( )( ) ( ). Να διερευνήσετε τις εξισώσεις i) ( ) ( 6) b, b 0. b. Ποιοι περιορισμοί πρέπει να ισχύουν για τα α και b ώστ

0. Να λύσετε τις εξισώσεις: i) ( )( ) ( ). Να διερευνήσετε τις εξισώσεις i) ( ) ( 6) b, b 0. b. Ποιοι περιορισμοί πρέπει να ισχύουν για τα α και b ώστ ΜΑΘΗΜΑ: Άλγεβρα ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΥΛΗ: Εξισώσεις και Ανισώσεις Πρώτου Βαθμού Απόλυτη Τιμή - Ρίζες Α. Εξισώσεις Πρώτου Βαθμού. Να λύσετε τις εξισώσεις i) 9(8 ) 0(9 ) ( ) 8 7y y i ( ) 0( ) 0 ( 0) iv) y. Να

Διαβάστε περισσότερα

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 3 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός 014 ςεδς ΘΕΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 0 ΚΕΦΑΛΑΙΟ ΕΞΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ ΔΙΩΝΥΜΕΣ ΕΞΙΣΩΣΕΙΣ ΕΞΙΣΩΣΕΙΣ Β ΒΑΘΜΟΥ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παρόν φυλλάδιο είναι ένα τμήμα μιας προσωπικής

Διαβάστε περισσότερα

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Γ Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Γ Γυμνασίου» των Δημητρίου Αργυράκη, Παναγιώτη Βουργάνα, Κωνσταντίνου Μεντή, Σταματούλας Τσικοπούλου, Μιχαήλ Χρυσοβέργη, έκδοση

Διαβάστε περισσότερα