Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους
|
|
- Αμάρανθος Δημητρίου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει και δεύτερος τρόπος παραγοντοποίησης: ) Άθροισμα δυνάμεων με ίδιο περιττό εκθέτη (ΠΡΟΣΟΧΗ! ισχύει ΜΟΝΟ για περιττούς εκθέτες): ) Το διώνυμο του Νεύτωνα: Μερικές χρήσιμες παρατηρήσεις στο διώνυμο του Νεύτωνα Οι δυνάμεις του α ξεκινούν από το ν και ελαττώνονται κατά ένα μέχρι να γίνουν 0, ενώ οι δυνάμεις του β ξεκινούν από το 0 και αυξάνουν κατά ένα μέχρι να γίνουν ν Σε κάθε όρο το άθροισµα των εκθετών του α και του β είναι σταθερό και ίσο µε ν Το πλήθος των όρων του αναπτύγματος είναι ίσο µε ν+ 4 Οι όροι του αναπτύγµατος που ισαπέχουν από τα άκρα έχουν ίσους συντελεστές Αν ο ν είναι άρτιος αριθµός, τότε το πλήθος των όρων του αναπτύγματος είναι περιττός αριθµός και υπάρχει ένας µόνο µεσαίος όρος που έχει τον µεγαλύτερο συντελεστή και οι εκθέτες των α και β είναι ίσοι 6 Αν ο ν είναι περιττός αριθµός, τότε το πλήθος των όρων του αναπτύγµατος είναι άρτιος αριθµός και υπάρχουν δύο µεσαίοι όροι που έχουν τον ίδιο συντελεστή, που είναι και ο µεγαλύτερος του αναπτύγµατος 7 Στο ανάπτυγµα όλοι οι όροι έχουν θετικό πρόσηµο, ενώ στο ανάπτυγµα το πρόσηµο των όρων είναι εναλλάξ θετικό και αρνητικό 8 Κάθε συντελεστής προκύπτει αν λάβουµε το γινόµενο του συντελεστή επί τον εκθέτη του προηγούµενου όρου και διαιρέσουµε µε τον αριθµό που δηλώνει την τάξη του προηγούµενου όρου 4) Ταυτότητα του Lagrange για τέσσερεις όρους: y y y ) Ταυτότητα του Euler: Εφαρμογή της ταυτότητας του Euler: ή 0 6) Εφαρμογές ταυτοτήτων:,,, 4 4 7) Να αποδείξετε ότι: (α β) + (β γ) + (γ α) = (α β)(β γ)(γ α) 8) Να κάνετε γινόμενο παραγόντων την παράσταση: 9) Αν ν: φυσικός αριθμός να δείξετε ότι ο αριθμός είναι πολλαπλάσιο του 6 0) Δίνονται οι μη μηδενικοί ακέραιοι α, β, για τους οποίους ισχύει: α Να αποδείξετε ότι ή β Αν ο αριθμός είναι πολλαπλάσιο του, να υπολογίσετε την τιμή της παράστασης ) Να παραγοντοποιήσετε τις παραστάσεις:
2 Μέθοδος απόδειξης: «απαγωγή σε άτοπο» Η μέθοδος αυτή δουλεύει ως εξής: Ισχυριζόμαστε ότι «δεν ισχύει το συμπέρασμα» Δεχόμαστε δηλαδή ότι ισχύει το αντίθετο του συμπεράσματος Προχωρούμε κάνοντας λογικές πράξεις χρησιμοποιώντας τα δεδομένα της άσκησης Αν φτάσουμε σε κάτι λάθος τότε απορρίπτουμε τον αρχικό μας ισχυρισμό ότι δηλαδή «δεν ισχύει το συμπέρασμα», άρα δεχόμαστε ότι «ισχύει το συμπέρασμα» Με τη μέθοδο της απαγωγής σε άτοπο να αποδείξετε ότι: ) αν ο ακέραιος α είναι άρτιος τότε το α είναι άρτιος, ) αν ο ακέραιος α είναι περιττός τότε το α είναι περιττός, 4) αν και, τότε, ) αν * και, τότε, 6) ο αριθμός είναι άρρητος, 7) αν 4, τότε Με τη μέθοδο του αντιπαραδείγματος να αποδείξετε ότι: 8) για κάθε αριθμό α είναι ψευδής, 9) για οποιουσδήποτε αριθμούς α και β είναι ψευδής άλλες ασκήσεις στις ταυτότητες και στις πράξεις 0) Αν για τους αριθμούς, y ισχύουν y 4 και y, να βρείτε το λ, το και το y ) Αν οι αριθμοί α, β είναι ανάλογοι των αριθμών, τότε: α) γράψτε την ισότητα των λόγων που προκύπτει β) Αν ο κάθε λόγος του (α) ερωτήματος είναι λ, να εκφράσετε σε σχέση με το λ τους λόγους 6, 6 ) α) Να αποδείξετε ότι το γινόμενο δύο διαδοχικών ακεραίων είναι άρτιος αριθμός β) Να αποδείξετε ότι το τετράγωνο ενός περιττού ακεραίου μπορεί να γραφεί στη μορφή 8λ +, όπου λ κάποιος ακέραιος γ) Να αποδείξετε ότι το τετράγωνο ενός περιττού ακεραίου δεν διαιρείται με το 8 ) Να αποδείξετε ότι το γινόμενο δύο διαδοχικών άρτιων αυξημένο κατά ένα ισούται με το τετράγωνο του περιττού ακεραίου που βρίσκεται μεταξύ αυτών 4) Να αποδείξετε ότι το γινόμενο δύο διαδοχικών περιττών αυξημένο κατά ένα ισούται με το τετράγωνο του άρτιου ακεραίου που βρίσκεται μεταξύ αυτών ) Αν 4 4 A 6 6, να υπολογίσετε την τιμή της παράστασης: 6) Να υπολογίσετε την τιμή των παραστάσεων: B ( )( ) ( )( ) ( )(, ) ( )( ) ( )( ) ( )( ) 7) Να απλοποιήσετε τις παρακάτω παραστάσεις: 6 6, y E, Z 9 4 y y, H, ) Αν α + β + γ αβ βγ γα = 0, να αποδείξετε ότι α = β = γ 9) Να αποδείξετε ότι το γινόμενο τεσσάρων διαδοχικών ακεραίων αυξημένο κατά είναι τέλειο τετράγωνο ενός ακεραίου αριθμού 0) Αν, να δείξετε ότι
3 διάταξη πραγματικών αριθμών ) Κατασκευάστε μερικά ορθογώνια με διαστάσεις y, που να έχουν άθροισμα ίσο με 0 cm (Για παράδειγμα: 9 cm και y cm ή 8 cm και y cm ή ή cm και y cm ) α Διαπιστώστε ότι: Τα εμβαδά τους είναι όλα μικρότερα ή ίσα των cm Τα εμβαδά των τετραγώνων με πλευρές τις διαγώνιες των ορθογωνίων είναι μεγαλύτερα ή ίσα των 0 cm β Αποδείξτε ότι τα παραπάνω συμπεράσματα ισχύουν για κάθε ορθογώνιο με διαστάσεις y, των οποίων το άθροισμα είναι ίσο με 0 cm,ακολουθώντας τα επόμενα βήματα: Εκφράστε το y συναρτήσει του Εκφράστε το εμβαδόν του ορθογωνίου συναρτήσει του και αποδείξτε ότι αυτό είναι μικρότερο ή ίσο των cm Εκφράστε το εμβαδόν του τετραγώνου με πλευρά τη διαγώνιο του ορθογωνίου συναρτήσει του και αποδείξτε ότι αυτό είναι μεγαλύτερο ή των 0 cm ) Αν 0, να διατάξετε από το μικρότερο προς το μεγαλύτερο τους αριθμούς:,, 0,,,, ) Ελέγξτε αν καθεμιά από τις παρακάτω προτάσεις είναι σωστή (Σ) ή λανθασμένη (Λ) α Αν y τότε y y 0 Σ Λ β Αν τότε Σ Λ γ Αν τότε Σ Λ δ Αν 0 y τότε y Σ Λ ε Αν 0 y και (φυσικοί) τότε y Σ Λ 4) Για τους πραγματικούς αριθμούς α, β ισχύουν:, < α <, και, β, Κάθε παράσταση της πρώτης στήλης ανήκει σε ένα μόνο διάστημα της δεύτερης στήλης Συνδέστε με μία γραμμή κάθε παράσταση της πρώτης στήλης με το αντίστοιχο διάστημα της δεύτερης στήλης: Στήλη Α Στήλη Β 4,9 4,9 4,,6 0, 4 0, 4 ) Έστω α, β, δύο πραγματικοί αριθμοί ώστε α 0, β > α Να διατάξετε από τον μικρότερο προς τον μεγαλύτερο τους αριθμούς: β +, α, β +, α +, β, α, β 6) Έστω α, β, δύο πραγματικοί αριθμοί ώστε α, β > α Να διατάξετε από τον μικρότερο προς τον μεγαλύτερο τους αριθμούς:,,, β, α,,,, α, β
4 7) Δίνονται οι πραγματικοί αριθμοί α, β με α < β α Να δείξετε ότι 0 β Να δείξετε ότι 0 γ Να τοποθετήσετε από τον μικρότερο στο μεγαλύτερο τους αριθμούς δ Να δείξετε ότι ο αριθμός, α, β βρίσκεται στο μέσο του διαστήματος [α, β] 8) α Δύο θετικοί και αντίστροφοι αριθμοί έχουν άθροισμα (Επιλέξτε την σωστή απάντηση) Α: μεγαλύτερο ή ίσο του Β: μικρότερο του Γ: μικρότερο ή ίσο του Δ: δεν μπορούμε να γνωρίζουμε β Δύο αρνητικοί και αντίστροφοι αριθμοί έχουν άθροισμα (Επιλέξτε την σωστή απάντηση) Α: μεγαλύτερο ή ίσο του Β: μεγαλύτερο του Γ: μικρότερο ή ίσο του Δ: δεν μπορούμε να γνωρίζουμε γ Αν α, β, γ τρεις αρνητικοί πραγματικοί αριθμοί, να δείξετε ότι: 6 Πότε ισχύει το ίσον; δ Αν α, β, γ τρεις θετικοί πραγματικοί αριθμοί, να δείξετε ότι: 6 Πότε ισχύει το ίσον; 9) Αν, να δείξετε ότι : 40) Αν 0, να δείξετε ότι: 4) Αν 0, να δείξετε ότι: 4) Να δείξετε ότι για κάθε, ισχύουν: α 4 0 β 0 γ 0 δ 0 ε 4 6 Πότε ισχύει η ισότητα; 4) Να βρείτε τους πραγματικούς αριθμούς, y ώστε να ισχύει: α y 0 4y 9 β y y γ 44) Αν, 0 και, να δείξετε ότι: y 4y α β (πότε ισχύει το =;) γ (πότε ισχύει το =;) 4) Αν,9, και 0, y 0,8, να εκτιμήσετε την περίμετρο του παρακάτω σχήματος: 4
5 απόλυτη τιμή πραγματικού αριθμού ασκήσεις απ την τράπεζα θεμάτων 46) α) Να λύσετε την ανίσωση β) Να λύσετε την ανίσωση γ) Να παραστήσετε τις λύσεις των δυο προηγούμενων ανισώσεων στον ίδιο άξονα των πραγματικών αριθμών Με τη βοήθεια του άξονα, να προσδιορίσετε το σύνολο των κοινών τους λύσεων και να το αναπαραστήσετε με διάστημα ή ένωση διαστημάτων 47) Αν ο πραγµατικός αριθµός ικανοποιεί τη σχέση, τότε: α) να δείξετε ότι, β) να δείξετε ότι η τιµή της παράστασης είναι ανεξάρτητη του 48) ίνεται η παράσταση, µε, για τους οποίους ισχύει και Να δείξετε ότι: α) β) 49) Για τους πραγµατικούς αριθµούς ισχύει ότι και α) Να αποδειχθεί ότι β) Να βρεθεί µεταξύ ποιων αριθµών βρίσκεται ο γ) Να βρεθεί µεταξύ ποιων αριθµών βρίσκεται η παράσταση δ) Να βρεθεί µεταξύ ποιων αριθµών βρίσκεται η παράσταση 0) α) Να βρείτε τους πραγµατικούς αριθµούς για τους οποίους ισχύει β) Θεωρούµε πραγµατικό αριθµό που η απόστασή του από το 4 στον άξονα των πραγµατικών αριθµών είναι µικρότερη από i) Να αποδείξετε ότι η απόσταση του τριπλάσιου του αριθµού αυτού από το 4 είναι µεγαλύτερη του και µικρότερη του ii) Να βρείτε µεταξύ ποιων ορίων περιέχεται η τιµή της απόστασης του από το ) ίνεται η παράσταση, α) Να δείξετε ότι: i) για τότε, ii) για τότε β) Αν, να δείξετε ότι ) ίνονται οι πραγµατικοί αριθµοί και για τους οποίους ισχύει η ανίσωση α) Να αποδείξετε ότι το είναι µεταξύ των β) Αν επιπλέον, να υπολογίσετε την τιµή της παράστασης Να αιτιολογήσετε την απάντησή σας είτε γεωµετρικά είτε αλγεβρικά ) Για κάθε πραγµατικό αριθµό µε την ιδιότητα : α) να γράψετε τις παραστάσεις και χωρίς απόλυτες τιµές, β) να υπολογίσετε την τιµή της παράστασης 4) ίνεται η παράσταση α) Για, να δείξετε ότι β) Για, να δείξετε ότι η παράσταση έχει σταθερή τιµή (ανεξάρτητη του ), την οποία και να προσδιορίσετε ) Σε έναν άξονα τα σηµεία Α, Β και Μ αντιστοιχούν στους αριθµούς και αντίστοιχα α) Να διατυπώσετε τη γεωµετρική ερµηνεία των παραστάσεων και β) Αν ισχύει, i) Ποια γεωµετρική ιδιότητα του σηµείου Μ αναγνωρίζετε; Να αιτιολογήσετε την απάντησή σας
6 ii) Με χρήση του άξονα, να προσδιορίσετε τον πραγµατικό αριθµό που παριστάνει το σηµείο Μ Να επιβεβαιώσετε µε αλγεβρικό τρόπο την απάντησή σας 6) ίνονται οι παραστάσεις και, όπου ο είναι πραγµατικός αριθµός α) Για κάθε να αποδείξετε ότι β) Υπάρχει ώστε να ισχύει ; Να αιτιολογήσετε την απάντησή σας 7) Για τον πραγµατικό αριθµό ισχύει α) Να αποδείξετε ότι β) Αν να αποδείξετε ότι η παράσταση είναι ανεξάρτητη του 8) ίνεται πραγµατικός αριθµός για τον οποίο ισχύει α) Να αποδείξετε ότι β) Να απλοποιήσετε την παράσταση 9) ίνονται πραγµατικοί αριθµοί, για τους οποίους ισχύει α) Να αποδείξετε ότι β) Να απλοποιήσετε την παράσταση 60) ίνονται τα σηµεία Α, Β και Μ που παριστάνουν στον άξονα των πραγµατικών αριθµών τους αριθµούς και αντίστοιχα, µε α) Να διατυπώσετε τη γεωµετρική ερµηνεία των παραστάσεων και β) Με τη βοήθεια του άξονα να δώσετε τη γεωµετρική ερµηνεία του αθροίσµατος γ) Να βρείτε την τιµή της παράστασης γεωµετρικά δ) Να επιβεβαιώσετε αλγεβρικά το προηγούµενο συµπέρασµα 6) ίνεται ένας πραγµατικός αριθµός που ικανοποιεί τη σχέση α) Να αποδώσετε την παραπάνω σχέση λεκτικά β) Με χρήση του άξονα των πραγµατικών αριθµών, να παραστήσετε σε µορφή διαστήµατος το σύνολο των δυνατών τιµών του γ) Να γράψετε τη σχέση µε το σύµβολο της απόλυτης τιµής και να επιβεβαιώσετε µε αλγεβρικό τρόπο το συµπέρασµα του ερωτήµατος (β) δ) Να χρησιµοποιήσετε το συµπέρασµα του ερωτήµατος (γ) για να δείξετε ότι ερωτήσεις Σωστού Λάθους 6) Οι παρακάτω προτάσεις μπορεί να είναι σωστές ή λάθος Να γράψετε στο τέλος της κάθε πρότασης Σ αν αυτή είναι σωστή ή Λ αν είναι λάθος i Αν ένας αρνητικός πραγματικός αριθμός τότε: ii Ισχύει ( ) και iii Για οποιονδήποτε πραγματικό αριθμό ισχύει: 0 και 0 iv Για οποιονδήποτε πραγματικό αριθμό ισχύει: v Αν τότε πρέπει = 00 vi Ο μοναδικός ακέραιος αριθμός για τον οποίο ισχύει: είναι το vii Αν α αρνητικός αριθμός τότε ισχύει: viii Αν α, β δύο αρνητικοί αριθμοί με α < β τότε i Ο αριθμός α απέχει από την αρχή του άξονα περισσότερο απ ότι απέχει ένας άλλος αριθμός β τότε θα ισχύει α > β Αν α + β = 0 τότε 6
7 ρίζες ασκήσεις απ την τράπεζα θεμάτων 6) ίνεται η παράσταση α) Να βρείτε για ποιες τιµές του ορίζεται η παράσταση β) Αν, να δείξετε ότι 64) ίνεται η παράσταση α) Να βρείτε για ποιες τιµές του ορίζεται η παράσταση β) Αν, να δείξετε ότι 6) ίνεται η παράσταση α) Να βρείτε για ποιες τιµές του ορίζεται η παράσταση β) Αν, να δείξετε ότι 66) ίνονται οι αριθµοί και α) Να δείξετε ότι β) Να διατάξετε σε αύξουσα σειρά τους αριθµούς και 67) ίνεται η παράσταση α) Για ποιες τιµές του ορίζεται η παράσταση ; Να αιτιολογήσετε την απάντησή σας β) Να αποδείξετε ότι η παράσταση είναι σταθερή, δηλαδή ανεξάρτητη του 68) α) Να δείξετε ότι β) Να συγκρίνετε τους αριθµούς και 69) ίνεται η παράσταση α) Για ποιες τιµές του ορίζεται η παράσταση ; Να αιτιολογήσετε την απάντησή σας και να γράψετε το σύνολο των δυνατών τιµών του σε µορφή διαστήµατος β) Για,να αποδείξετε ότι 70) ίνεται η παράσταση α) Να βρεθούν οι τιµές που πρέπει να πάρει το, ώστε η παράσταση να έχει νόηµα πραγµατικού αριθµού β) Αν, να αποδείξετε ότι παράσταση είναι σταθερή, δηλαδή ανεξάρτητη του 7) ίνονται οι αριθµητικές παραστάσεις και α) Να δείξετε ότι β) Να συγκρίνετε τους αριθµούς και Να αιτιολογήσετε την απάντησή σας 7) ίνονται οι παραστάσεις: και, όπου πραγµατικός αριθµός α) Για ποιες τιµές του ορίζεται η παράσταση ; β) Για ποιες τιµές του ορίζεται η παράσταση ; γ) Nα δείξετε ότι, για κάθε, ισχύει 7) Αν είναι, και, τότε: α) Να αποδείξετε ότι β) Να συγκρίνετε τους αριθµούς 74) Αν είναι,, τότε: α) Να αποδείξετε ότι β) Να υπολογίσετε την τιµή της παράστασης 7) Στον πίνακα της τάξης σας είναι γραµµένες οι παρακάτω πληροφορίες (προσεγγίσεις):,,, α) Να επιλέξετε έναν τρόπο, ώστε να αξιοποιήσετε τα παραπάνω δεδοµένα (όποια θεωρείτε κατάλληλα) και να υπολογίσετε µε προσέγγιση εκατοστού τους αριθµούς: 7
8 β) Αν δεν υπήρχαν στον πίνακα οι προσεγγιστικές τιµές των ριζών πώς θα µπορούσατε να υπολογίσετε την τιµή της παράστασης ; 76) Να συμπληρώσετε τις παρακάτω προτάσεις: i Νιοστή ρίζα ενός πραγματικού αριθμού α ονομάζουμε τον πραγματικό αριθμό ο οποίος όταν στην ν μας δίνει τον αριθμό α Δηλαδή:, με α, ii Αν μη αρνητικός πραγματικός αριθμός και ν θετικός ακέραιος, τότε ισχύει: = iii Αν μη αρνητικός πραγματικός αριθμός και ν θετικός ακέραιος, τότε ισχύει: iv Αν μη αρνητικός πραγματικός αριθμός και ν θετικός ακέραιος, τότε ισχύει: v Αν πραγματικός αριθμός και ν θετικός ακέραιος, τότε ισχύει: = vi Αν, y μη αρνητικοί αριθμοί και ν θετικός ακέραιος, τότε ισχύει: y vii Αν, y μη αρνητικοί αριθμοί με y 0 και ν θετικός ακέραιος, τότε ισχύει: viii Αν, y μη αρνητικοί αριθμοί και ν θετικός ακέραιος, τότε ισχύει: y = = y i Αν μη αρνητικός πραγματικός αριθμός και ν, κ θετικοί ακέραιοι, τότε ισχύει: = Αν, y αρνητικοί πραγματικοί αριθμοί και ν άρτιος θετικός ακέραιος, τότε ισχύει: y i Αν μη αρνητικός πραγματικός αριθμός και ν, μ θετικοί ακέραιοι, τότε ισχύει: ii Αν ισχύει, τότε πρέπει ο να είναι πραγματικός αριθμός και ο ν να είναι ακέραιος iii Αν ισχύει, τότε πρέπει ο να είναι πραγματικός αριθμός και ο ν να είναι ακέραιος iv Ο μοναδικός μη μηδενικός πραγματικός αριθμός για τον οποίο ισχύει είναι ο αριθμός = v Αν θετικός πραγματικός αριθμός και ν, μ θετικοί ακέραιοι, με ν > μ τότε ισχύει: 77) Οι παρακάτω προτάσεις μπορεί να είναι σωστές ή λάθος Να γράψετε στο τέλος της κάθε πρότασης Σ αν αυτή είναι σωστή ή Λ αν είναι λάθος i Για οποιονδήποτε πραγματικό αριθμό ισχύει: ii iii iv Αν, y μη αρνητικοί αριθμοί, ισχύει: Αν, y αρνητικοί αριθμοί, ισχύει: Η y y ( y) y έχει νόημα μόνον εφόσον ο αριθμός είναι μη αρνητικός αριθμός v Η 8 είναι το γιατί vi Η 4 μπορεί να είναι το γιατί 4 4 vii Ισχύει ( ) viii Για οποιονδήποτε πραγματικό αριθμό ισχύει: i Για οποιονδήποτε πραγματικό αριθμό χ ισχύει: 6 8
9 78) Κάθε κλάσμα της στήλης Α, στον παρακάτω πίνακα, είναι ισοδύναμο με ένα μόνο κλάσμα της στήλης Β Να αντιστοιχίσετε τα ισοδύναμα κλάσματα Στη συνέχεια να κάνετε ρητοποίηση στα κλάσματα που υπάρχουν στις δύο τελευταίες στήλες Στήλη (Α) Στήλη (Β) Α Β 7 0 Γ Δ 7 Ε ΣΤ 7 Ζ 7 79) Στον παρακάτω πίνακα να αντιστοιχίσετε κάθε στοιχείο της στήλης Αριθμός σε ένα μόνο στοιχείο της στήλης Τετραγωνική ρίζα αριθμού Αριθμός Τετραγωνική ρίζα αριθμού 48 Α 00 7 Β 4 8 Γ Δ Ε 80) Να υπολογίσετε τις τιμές των παρακάτω παραστάσεων: 00 4 A 4 B ) Αν και 4 8) Να υπολογίσετε την τιμή των παραστάσεων: A , να υπολογίσετε την διαφορά B E ) Αν θετικοί αριθμοί με να δείξετε ότι:
10 84) Αν θετικοί αριθμοί να δείξετε ότι: α και να εξετάσετε πότε ισχύει η ισότητα, β 4, γ και να εξετάσετε πότε ισχύει η ισότητα, δ 6 6 8) Για θετικούς αριθμούς α, β με α<β να αποδείξετε ότι: α β γ 86) Αν και y να υπολογίσετε τις τιμές των παρακάτω παραστάσεων: α β γ δ ε 87) Για θετικούς αριθμούς με : 88) Αν α Να βρείτε το ανάπτυγμα : β Να υπολογίσετε την τιμή της παράστασης: α Να υπολογίσετε το β Να δείξετε ότι 89) Να απλοποιήσετε τις παρακάτω παραστάσεις: i 6 ii _ 6 iii iv v 0 vi 0 vii 7 4 viii 7 4 i ) Αν να απλοποιήστε την παράσταση: f 9) Να απλοποιηθούν τα ριζικά: , α β, 6α β,, α α α, 9) Να γίνουν οι πράξεις: α α,, ) Να γίνουν οι πράξεις: α α α, α α,, α α α ) Ομοίως: α : α, α : α, : 0
Κ Ε Φ Α Λ Α Ι Ο 2 ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. 2.1 Οι Πράξεις και οι Ιδιότητές τους. 2.2 Διάταξη Πραγματικών Αριθμών
Άλγεβρα Α Λυκείου, Κεφάλαιο ο ΘΕΩΡΙΑ-ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΠΟΔΕΙΞΕΙΣ ΠΡΟΤΑΣΕΩΝ-ΑΣΚΗΣΕΙΣ ΤΡΑΠΕΖΑΣ ΥΠΟΥΡΓΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο ο : Ο ι Π ρ α γ μ α τ ι κ ο ί Α ρ ι θ μ ο ί. Οι Πράξεις και οι Ιδιότητές
Διαβάστε περισσότεραΑριθμοί. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Αριθμοί Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7 0 0 8 8 8 8 Kgllykosgr 5 / 0 / 0 6 εκδόσεις τηλ Οικίας : 0-6078 κινητό : 697-008888 Ασκήσεις Πιθανότητες
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
Διαβάστε περισσότεραΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.
ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β
Διαβάστε περισσότεραΘΕΜΑ 2 (996) A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους. Δίνεται η παράσταση:
ΘΕΜΑ 2 (996) Δίνεται η παράσταση: A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους ισχύει: 1 < x < 4 και 2 < y < 3. Να αποδείξετε ότι: α) A = x y +2. (Μονάδες 12) β) 0 < A < 4. (Μονάδες 13)
Διαβάστε περισσότεραΑ Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα
Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό
Διαβάστε περισσότεραΦεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Διαβάστε περισσότεραΜαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Διαβάστε περισσότεραΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ
3. Δίνεται ο πίνακας: 3 3 3 ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ ο. Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 6. Επιλέγουμε
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες:
Διαβάστε περισσότεραΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Διαβάστε περισσότεραΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή
Διαβάστε περισσότεραΘΕΜΑ ΘΕΜΑ ΘΕΜΑ 4
7.0 ΘΕΜΑ 4 Δίνονται τα σημεία Α, Β και Μ που παριστάνουν στον άξονα των πραγματικών αριθμών τους αριθμούς -, 7 και x αντίστοιχα, με - < x < 7. α) Να διατυπώσετε τη γεωμετρική ερμηνεία των παραστάσεων.
Διαβάστε περισσότεραρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο
ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον
Διαβάστε περισσότεραΦ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ
Διαβάστε περισσότεραβ. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).
1.: Έννοια της Πιθανότητας Κεφάλαιο 1ο: Πιθανότητες ΑΣΚΗΣΗ 1 (_497) Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
Διαβάστε περισσότεραΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ Απόλυτες τιμές Α Λυκείου. 1. α) Αν, να αποδειχθεί ότι: Μονάδες 15
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 016-17 Απόλυτες τιμές Α Λυκείου 1. α) Αν, να αποδειχθεί ότι: Μονάδες 15 β) Αν α
Διαβάστε περισσότεραΚ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-
3. Εξισώσεις ου Βαθμού 3. Η εξίσωση 3.3 Εξισώσεις ου Βαθμού Διδακτικό υλικό Άλγεβρας Α Λυκείου (Κεφάλαιο 3 ο ) Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς ρωτήσεις αντικειμενικού τύπουθέμα Α- Εξεταστέα ύλη
Διαβάστε περισσότερα2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. α) Να βρείτε τις ρίζες της εξίσωσης x +0x=. x + 0x β) Να λύσετε την εξίσωση x. ίνεται η εξίσωση: x λx+(λ +λ )=0 (), λ R. α) Να προσδιορίσετε τον πραγµατικό αριθµό λ, ώστε η
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
Διαβάστε περισσότερα3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.
. Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω
Διαβάστε περισσότεραΑ. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Διαβάστε περισσότεραΟι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα
Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα Ιούνιος 04 . Έννοια της πιθανότητας GI_A_ALG 497 Ένα τηλεοπτικό παιχνίδι παίζεται µε ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι
Διαβάστε περισσότεραΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,
Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι
Διαβάστε περισσότεραΝα αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
Διαβάστε περισσότεραΣτέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς
Μεθοδική Επανάληψη www.askisopolis.gr Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς Ε. Σύνολα i. Τι είναι το σύνολο; ii. Ποιοι είναι οι βασικοί τρόποι παράστασης συνόλων και τι γνωρίζετε γι αυτούς; iii. Πότε
Διαβάστε περισσότερα1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
Διαβάστε περισσότεραΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου
ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ 4ο Λύκειο Περιστερίου Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν ααννάά εεννόόττηητταα ΑΛΓΕΒΡΑ
Διαβάστε περισσότεραβ) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9 < α
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΑ ΛYKEIOY ΆΛΓΕΒΡΑ Άλγεβρα. Μίλτος Παπαγρηγοράκης Χανιά
Άλγεβρα Α ΛYKEIOY ΆΛΓΕΒΡΑ 09-00 Μίλτος Παπαγρηγοράκης Χανιά Ταξη: Α Γενικού Λυκείου Άλγεβρα Έκδοση 907 Η συλλογή αυτή διανέμεται δωρεάν σε ψηφιακή μορφή μέσω διαδικτύου προορίζεται για σχολική χρήση και
Διαβάστε περισσότεραΑ ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;
Διαβάστε περισσότεραΤετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4 ΛΥΣΗ ΤΗΣ ΕΞΙΣΩΣΗΣ α + β + γ = 0 α 0 Η ΕΝΝΟΙΑ ΤΗΣ ΙΑΚΡΙΝΟΥΣΑΣ 1. Να λυθούν οι παρακάτω εξισώσεις ως προς ή y: α) - 4 = 0 β) 3 = 4 γ) + - 15 = 0 δ) 5-18 -
Διαβάστε περισσότερα1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -
Διαβάστε περισσότερα2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
Διαβάστε περισσότερα2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ
2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και
Διαβάστε περισσότερα7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Διαβάστε περισσότεραΕκφωνήσεις θεμάτων Άλγεβρας Τράπεζας θεμάτων ανά ενότητα. 2ο θέμα
.497 Πιιθαννότητεεςς ο θέμα Ένα τηλεοπτικό παιχνίδι παίζεται με ζεύγη αντιπάλων των δυο φύλων. Στο παιχνίδι συμμετέχουν 3 άντρες: ο Δημήτρης (Δ), ο Κώστας (Κ), ο Μιχάλης (Μ) και γυναίκες: η Ειρήνη (Ε)
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
.α) Να αποδείξετε ότι για οποιουσδήποτε πραγματικούς αριθμούς x,y ισχύει: x y x y x 6y 0 0 Β)Να βρείτε τους αριθμούς x,y ώστε x y x y 6 0 0.Δίνονται οι μη μηδενικοί πραγματικοί αριθμοί α,β με τους οποίους
Διαβάστε περισσότερα1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και
Διαβάστε περισσότεραΑ Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ
Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ τράπεζαθεμάτων θέμαδεύτεροκαιτέταρτο Επιμέλεια: ΕμμανουήλΚ.Σκαλίδης ΑντώνηςΚ.Αποστόλου ΚόμβοςΑτσιποπούλου014-15 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΙΘΑΝΟΤΗΤΕΣ 1. Ένα κουτί περιέχει 5 άσπρες,
Διαβάστε περισσότεραΆλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου
Άλγεβρα Α Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Άλγεβρα Α Λυκείου Οι πράξεις των πραγματικών αριθμών και οι ιδιότητες τους Αν οι αριθμοί α,β είναι αντίστροφοι, να αποδείξετε ότι: 7 4 : 8 0 7 Να
Διαβάστε περισσότεραΜαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.
Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα. (2) Ποιοι είναι οι άρτιοι και ποιοι οι περιττοί αριθμοί; Γράψε από τρία παραδείγματα.
Διαβάστε περισσότεραx y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Διαβάστε περισσότεραA N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις
ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)
Διαβάστε περισσότεραΑνισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άσκηση 1 Από τους µαθητές ενός Λυκείου, το 25% συµµετέχει στη οµάδα, το 30% συµµετέχει στη θεατρική οµάδα ποδοσφαίρου και το 15% των µαθητών
Διαβάστε περισσότεραΡητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,
Διαβάστε περισσότεραΤάξη Τμήμα Διάρκεια: δ. ώρα/ες. Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών. Ποιοι τετράγωνοι αριθμοί υπάρχουν μέχρι το 100;
Φύλλο εργασίας Τάξη Τμήμα Διάρκεια: δ. ώρα/ες Ημερομηνία / / Ονοματεπώνυμο Μαθητή: Τετραγωνική ρίζα πραγματικών αριθμών Ομάδα 1 η Δραστηριότητα 1.1 Θυμάστε τους τετράγωνους αριθμούς; Ποιοι τετράγωνοι αριθμοί
Διαβάστε περισσότεραΠαρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:
ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν
Διαβάστε περισσότεραΠαρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:
ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ Στέλιιος Μιιχαήλογλου-Δημήτρης Πατσιιμάς Εκκφωννήήσσεει ιςς κκααι ι λλύύσσεει ιςς θθεεμμάάττωνν Άλλγγεεββρρααςς Τρράάππεεζζααςς θθεεμμάάττωνν
Διαβάστε περισσότεραΑΝΙΣΩΣΕΙΣ. 3.1 ΑΝΙΣΩΣΕΙΣ 1 ου ΒΑΘΜΟΥ. Οι ανισώσεις: αx + β > 0 και αx + β < 0
3 ΝΙΣΩΣΕΙΣ 31 ΝΙΣΩΣΕΙΣ 1 ου ΒΘΜΟΥ Οι ανισώσεις: α + β > 0 και α + β < 0 Γνωρίσαμε στο Γυμνάσιο τη διαδικασία επίλυσης μιας ανίσωσης της μορφής α β 0 ή της μορφής α β 0, με α και β συγκεκριμένους αριθμούς
Διαβάστε περισσότερα1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Διαβάστε περισσότεραΠαρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:
1 Παρατηρήσεις Προβλήματα είχαν οι ασκήσεις: Απόλυτες τιμές:.504(δεν χρειάζεται το α
Διαβάστε περισσότεραΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
Διαβάστε περισσότεραμε Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2
Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Διαβάστε περισσότεραΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού
ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού 97 98 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ 1. Να λυθεί η εξίσωση: 1 1 1 ( x+ )(x ) = x 3 3 9. Αν η εξίσωση (x - 3) λ + 3 = λ x έχει ρίζα τον αριθμό, να υπολογιστεί
Διαβάστε περισσότεραΝα υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού.
Ενότητα 3 Ρίζες Πραγματικών Αριθμών Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τη λύση ή ρίζα ενός πολυωνύμου της μορφής Ρ x x ν α. Να υπολογίζουμε τη ν-οστή ρίζα ενός μη αρνητικού αριθμού. Τις ιδιότητες
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ. (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης ) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ (εκπαιδευτικό υλικό Τεχνολογικής κατεύθυνσης 999-000) ΜΕΡΟΣ Α : ΑΛΓΕΒΡΑ Κεφάλαιο ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύπου «Σωστό -
Διαβάστε περισσότεραf (x) = x2 5x + 6 x 3 S 2 P 2 0
Η ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΟ ΘΕΜΑ Β 1. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,... (αʹ) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να
Διαβάστε περισσότερα12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο
ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες
Διαβάστε περισσότεραΑπό το Γυμνάσιο στο Λύκειο... 7. 3. Δειγματικός χώρος Ενδεχόμενα... 42 Εύρεση δειγματικού χώρου... 46
ΠEΡΙΕΧΟΜΕΝΑ Από το Γυμνάσιο στο Λύκειο................................................ 7 1. Το Λεξιλόγιο της Λογικής.............................................. 11. Σύνολα..............................................................
Διαβάστε περισσότεραΜ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
Διαβάστε περισσότεραΝα γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
Διαβάστε περισσότεραΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9)
α) Να λύσετε την ανίσωση: 1 x < 4. (Μονάδες 9) 2 β) Να λύσετε την ανίσωση: x+ 5 3. (Μονάδες 9) γ) Να βρείτε τις κοινές λύσεις των ανισώσεων των ερωτημάτων (α) και (β) με χρήση του άξονα των πραγματικών
Διαβάστε περισσότεραΜιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση. Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση
Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Υποδειγματικά Λυμένες Ασκήσεις Άλυτες Ασκήσεις ΛΑ Να βρείτε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή
Διαβάστε περισσότεραΤράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 3. Ασκήσεις: -5 Θεωρία ως και την 3.3 Ασκήσεις: 6-8 Άσκηση Δίνεται η παράσταση: A= 3 5 +
Διαβάστε περισσότεραΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ ο : ΠΙΘΑΝΟΤΗΤΕΣ. Σε μια ομάδα που αποτελείται από 7 άνδρες και 3 γυναίκες, 4 από τους άνδρες και από τις γυναίκες παίζουν σκάκι. Επιλέγουμε τυχαία ένα από τα άτομα αυτά.
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
Διαβάστε περισσότεραΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
Διαβάστε περισσότερααριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
Διαβάστε περισσότερα1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:
ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x
Διαβάστε περισσότεραΟδηγίες & Ενδεικτικά θέματα προαγωγικών & απολυτηρίων εξετάσεων Γυμνασίου Σελίδα 1
ΟΔΗΓIEΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ Α. ΘΕΩΡΙΑ Οι μαθητές υποχρεούνται σε διαπραγμάτευση ενός απλού από δύο τιθέμενα θέματα θεωρίας της διδαγμένης ύλης. Ένα θέμα από την Άλγεβρα και
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Γ
ΥΜΝΑΣΙΟ - 010 90 Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι
Διαβάστε περισσότεραI. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr
I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο
Διαβάστε περισσότερα6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΕΞΙΣΩΣΕΙΣ. Δίνεται η εξίσωση λx=x+λ, με λr. α) Να αποδείξετε ότι η παραπάνω εξίσωση γράφεται ισοδύναμα (λ )x=(λ )(λ+), λr. β) Να βρείτε τις τιμές του λ για τις οποίες η παραπάνω εξίσωση
Διαβάστε περισσότεραΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)
ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
Διαβάστε περισσότεραΤράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 4.1 Ασκήσεις: 1-12 Θεωρία ως και την 4.2 Ασκήσεις: 13-25 Άσκηση 1 α) Να λύσετε την ανίσωση
Διαβάστε περισσότεραΘ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς
Θ έ µ α τ α Τ ύ π ο υ Σ ω σ τ ό Λ ά θ ο ς Να χαρακτηρίσετε µε Σ (Σωστό) ή Λ (Λάθος) τους παρακάτω ισχυρισµούς:. Για κάθε α R ισχύει ότι : α =α.. Για κάθε α R ισχύει ότι : α = α.. Για κάθε α R ισχύει ότι
Διαβάστε περισσότερα2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ
ΘΕΜΑ A ΑΛΓΕΒΡΑ Α' Γενικού Λυκείου Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Πεδίο ορισμού μιας συνάρτησης f (x) από ένα σύνολο Α σε ένα σύνολο Β ονομάζουμε το σύνολο Α, στο οποίο φαίνονται οι
Διαβάστε περισσότερα[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΤΟ 2 ο ΘΕΜΑ
[ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ] ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΠΙΘΑΝΟΤΗΤΕΣ ΤΟ ο ΘΕΜΑ Άσκηση 1 Από τους μαθητές ενός Λυκείου, το 5% συμμετέχει στη ομάδα, το 30% συμμετέχει στη θεατρική ομάδα ποδοσφαίρου και το 15%
Διαβάστε περισσότεραB =, όπου ο x είναι πραγματικός αριθμός. x x α) Να αποδείξετε ότι για να ορίζονται ταυτόχρονα οι παραστάσεις Α, Β πρέπει: x 1 και x 0.
1 Ένα κουτί περιέχει άσπρες, μαύρες, κόκκινες και πράσινες μπάλες. Οι άσπρες είναι 5, οι μαύρες είναι 9, ενώ οι κόκκινες και οι πράσινες μαζί είναι 16. Επιλέγουμε μια μπάλα στην τύχη. Δίνονται τα παρακάτω
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΕξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /
Εξισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 0 / 0 6 εκδόσεις Ασκήσεις Πιθανότητες Τράπεζα θεμάτων. Δίνεται η
Διαβάστε περισσότερα( ) ( ) Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή x. αντικ σταση στο που = α. [ ο αριθµ ός πουτο µηδεν ίζει
μέρος πρώτο v v 1 v 1 Γενική μορφή πολυωνύμου: ( ) 1 1 Όροι του ( ) v v v P = a v + av 1 + av +... + a + a 1 + a, ν Ν, α ν R Τοα R σημαίνει ότι οι συντελεστές δεν περιέχουν την μεταβλητή. P : a, a, a,...,
Διαβάστε περισσότεραΘέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση
Διαβάστε περισσότεραΟρισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
Διαβάστε περισσότερα