Πρόβλημα Αποθήκευση Προγραμμάτων
|
|
- Ἀπολλωνία Ταμτάκος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 16 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 200 ΘΕΜΑ TEΛΙΚΗΣ ΦΑΣΗΣ Πρόβλημα Αποθήκευση Προγραμμάτων Περιγραφή Προβλήματος Μόλις προσληφθήκατε σε μια εταιρεία ανάπτυξης λογισμικού και ο προϊστάμενος σας ανέθεσε το ακόλουθο πρόβλημα. Να αποθηκευθούν n προγράμματα σε k σκληρούς δίσκους ενός υπολογιστή. Δίνεται ότι η απαιτούμενη μνήμη για αποθήκευση του i προγράμματος είναι l i, i = 1,2,,n, η δε χωρητικότητα του κάθε δίσκου σε μνήμη είναι L. Κάθε πρόγραμμα πρέπει να αποθηκευθεί ολόκληρο σε ένα δίσκο και απαιτεί μνήμη μικρότερη ή ίση της χωρητικότητας του κάθε δίσκου. Επίσης, η συνολική μνήμη των n προγραμμάτων υπερβαίνει την συνολική χωρητικότητα των k δίσκων. 1) Ζητούμενο (k δίσκοι) [20 μονάδες] Να γραφεί πρόγραμμα, το οποίο να δέχεται σαν δεδομένα τα n, L, k και l i, i = 1,2,,n και να υπολογίζει και τυπώνει το μέγιστο πλήθος από τα n προγράμματα, τα οποία μπορούν να αποθηκευθούν στους k δίσκους καθώς και τις αντίστοιχες ποσότητες μνήμης τους. Ο χρόνος εκτέλεσης του προγράμματός σας να είναι ο ελάχιστος δυνατός διότι θα αποτελέσει βασικό κριτήριο στη βαθμολόγηση. INPUT1.TXT) και αποτελείται από τις εξής γραμμές: Η πρώτη γραμμή περιέχει τρεις ακέραιους αριθμούς n, L και k, όπου n το πλήθος των προγραμμάτων, L η χωρητικότητα σε μνήμη ενός δίσκου και k το πλήθος των δίσκων. Η κάθε μία από τις επόμενες n γραμμές περιέχει ένα ακέραιο αριθμό, ο οποίος αντιστοιχεί στην χωρητικότητα μνήμης ενός προγράμματος. Η πρώτη γραμμή περιέχει την χωρητικότητα μνήμης του πρώτου προγράμματος (l 1 ), η δεύτερη γραμμή την χωρητικότητα μνήμης του δεύτερου προγράμματος (l 2 ) κ.ο.κ. Η έξοδος του προγράμματός σας θα πρέπει να δίνεται σε ένα αρχείο καθοριζόμενο από τον χρήστη (π.χ. OUTPUT1.TXT) και αποτελείται από τις εξής γραμμές: Η πρώτη γραμμή περιέχει k+1 ακέραιους αριθμούς, ο πρώτος είναι το μέγιστο πλήθος από τα n προγράμματα, τα οποία μπορούν να αποθηκευθούν στους k δίσκους, ο δεύτερος είναι το πλήθος των προγραμμάτων που αποθηκεύθηκαν στον πρώτο δίσκο, ο τρίτος είναι το πλήθος των προγραμμάτων που αποθηκεύθηκαν στο δεύτερο δίσκο κ.ο.κ. Θεσσαλονίκης & Χανδρή 1 (Κτίριο Γεν. Γραμ. Πληρ/κών Συστημάτων - Γραφείο: Δ.7), Μοσχάτο 18 6, 1
2 Η κάθε μία από τις επόμενες γραμμές περιέχει τις χωρητικότητες μνήμης των προγραμμάτων που αποθηκεύθηκαν σε κάθε δίσκο. Πρώτα γράφονται οι χωρητικότητες μνήμης των προγραμμάτων που αποθηκεύθηκαν στον πρώτο δίσκο και ακολουθούν αυτές που αποθηκεύθηκαν στο δεύτερο δίσκο κ.ο.κ Παρατήρηση 1) Όπως μπορείτε εύκολα να διαπιστώσετε η ανωτέρω λύση δεν είναι μοναδική και δεν είναι βέλτιστη. 2) Μην προσπαθήσετε να βρείτε τη βέλτιστη λύση, αλλά μια όσο το δυνατόν καλή λύση πλησίον της βέλτιστης. χρησιμοποιήσετε σαν αρχεία εισόδου τα: inpar1_1.txt, inpar1_2.txt και inpar1_.txt. Οι αντίστοιχες λύσεις βρίσκονται στα αρχεία: outpar1_1.txt, outpar1_2.txt και outpar1_.txt. 2) Ζητούμενο (ελάχιστοι δίσκοι) [0 μονάδες] Αν η χωρητικότητα μνήμης κάθε προγράμματος είναι μεγαλύτερη από L/, όπου L η χωρητικότητα μνήμης κάθε δίσκου, τότε να γραφεί ένα πρόγραμμα, το οποίο να τοποθετεί και τα n προγράμματα στο ελάχιστο πλήθος δίσκων. INPUT2.TXT) και αποτελείται από τις εξής γραμμές: Η πρώτη γραμμή περιέχει δύο ακέραιους αριθμούς n και L, όπου n το πλήθος των προγραμμάτων και L η χωρητικότητα σε μνήμη κάθε δίσκου. Η κάθε μία από τις επόμενες n γραμμές περιέχει ένα ακέραιο αριθμό, ο οποίος αντιστοιχεί στην χωρητικότητα μνήμης ενός προγράμματος. Η πρώτη γραμμή περιέχει την χωρητικότητα μνήμης του πρώτου προγράμματος (l 1 ), η δεύτερη γραμμή την χωρητικότητα μνήμης του δεύτερου προγράμματος (l 2 ) κ.ο.κ. Θεσσαλονίκης & Χανδρή 1 (Κτίριο Γεν. Γραμ. Πληρ/κών Συστημάτων - Γραφείο: Δ.7), Μοσχάτο 18 6, 2
3 Η έξοδος του προγράμματός σας δίνεται σε ένα αρχείο καθοριζόμενο από τον χρήστη (π.χ. OUTPUT2.TXT) και αποτελείται από τις εξής γραμμές: Η πρώτη γραμμή περιέχει ένα ακέραιο αριθμό που είναι το ελάχιστο πλήθος δίσκων. Η κάθε μία από τις επόμενες γραμμές περιέχει τις χωρητικότητες μνήμης των προγραμμάτων που αποθηκεύθηκαν σε κάθε δίσκο. Πρώτα γράφονται οι χωρητικότητες μνήμης των προγραμμάτων που αποθηκεύθηκαν στον πρώτο δίσκο και ακολουθούν αυτές που αποθηκεύθηκαν στο δεύτερο δίσκο κ.ο.κ. 6 7 χρησιμοποιήσετε σαν αρχεία εισόδου τα: inpar2_1.txt, inpar2_2.txt και inpar2_.txt. Οι αντίστοιχες λύσεις βρίσκονται στα αρχεία: outpar2_1.txt, outpar2_2.txt και outpar2_.txt. ΠΡΟΣΟΧΗ 1. Το όνομα του εκτελέσιμου προγράμματος που θα δημιουργήσετε πρέπει να είναι apoth1.exe και apoth2.exe για κάθε ζητούμενο, αντίστοιχα. 2. Γράφετε όσο το δυνατόν πιο ευανάγνωστα τον κώδικα του προγράμματός σας και τοποθετείτε σχόλια. Πρόβλημα Ο Αρχαιολογικός χώρος Περιγραφή Προβλήματος Το σχέδιο ενός αρχαιολογικού χώρου είναι ένα πλέγμα (βλ. Σχήμα) όπου οι γραμμές παριστάνουν διαδρόμους. Τα αρχαιολογικά ευρήματα βρίσκονται στα σημεία τομής των διαδρόμων. Υπάρχουν δύο ακολουθίες ευρημάτων (με ακέραιες συντεταγμένες) η P = { p1, p2, K, p n }, και η Q = { q1, q2, K, q m }, όπου pi, q i συμβολίζουν το ι-ιοστό εύρημα της P και Q ακολουθίας, Θεσσαλονίκης & Χανδρή 1 (Κτίριο Γεν. Γραμ. Πληρ/κών Συστημάτων - Γραφείο: Δ.7), Μοσχάτο 18 6,
4 αντίστοιχα. Ένας ξεναγός, μαζί με την ομάδα (γκρούπ) του επιθυμεί να επισκεφθεί διαμέσου των διαδρόμων όλα τα ευρήματα των δύο ακολουθιών ξεκινώντας από το σημείο (0,0). Για ιστορικούς λόγους τα ευρήματα της κάθε ακολουθίας πρέπει να επισκεφθούν με την σειρά που εμφανίζονται στην ακολουθία. Πιο συγκεκριμένα, ο ξεναγός επιθυμεί να επισκεφθεί διαμέσου των διαδρόμων το εύρημα p i-1 πριν από το p i, για i = 2,,,n και το εύρημα q j-1 πριν από το q j για j = 2,,,m. Επειδή, η κίνηση του ξεναγού με την ομάδα του γίνεται μόνο διαμέσου των διαδρόμων (οριζόντια / κατακόρυφα) στον αρχαιολογικό χώρο, η απόσταση μεταξύ δύο αρχαιολογικών ευρημάτων με συντεταγμένες (x 1,y 1 ) και (x 2,y 2 ) είναι x 1 -x 2 + y 1 -y 2. y 2 q 1 p 1 αφετηρία 1 p 2 q 2 (0,0) x Σχήμα: Με παριστάνονται τα ευρήματα της ακολουθίας Ρ και με τα ευρήματα της Q. Η διαδρομή με τα βέλη είναι η μικρότερη δυνατή απόσταση. ) Ζητούμενο [0 μονάδες] Να γραφεί ένα πρόγραμμα, το οποίο να δέχεται ως δεδομένα τις συντεταγμένες των αρχαιολογικών ευρημάτων δύο ακολουθιών και να υπολογίζει και τυπώνει τη μικρότερη δυνατή απόσταση που θα διανύσει ένας ξεναγός με την ομάδα του για να επισκεφθεί όλα τα αρχαιολογικά ευρήματα με τον τρόπο που περιγράφθηκε ανωτέρω. Ο χρόνος εκτέλεσης του προγράμματός σας να είναι ο ελάχιστος δυνατός διότι θα αποτελέσει βασικό κριτήριο στη βαθμολόγηση. INPUT.TXT) και αποτελείται από τις εξής γραμμές: Η πρώτη γραμμή περιέχει δύο ακέραιους αριθμούς n και m, όπου n (1 n 207) είναι το πλήθος των ευρημάτων της ακολουθίας Ρ και m (1 m 207) είναι το πλήθος των ευρημάτων της ακολουθίας Q. Θεσσαλονίκης & Χανδρή 1 (Κτίριο Γεν. Γραμ. Πληρ/κών Συστημάτων - Γραφείο: Δ.7), Μοσχάτο 18 6,
5 Η κάθε μία από τις επόμενες n γραμμές περιέχει δύο ακέραιους αριθμούς στο διάστημα [-207,207], που είναι η x και y συντεταγμένη ενός ευρήματος της Ρ ακολουθίας και χωρίζονται με ένα τουλάχιστον κενό. Η κάθε μια από τις επόμενες m γραμμές περιέχουν δύο ακέραιους αριθμούς στο διάστημα [-207,207], που είναι η x και y συντεταγμένη ενός ευρήματος της Q ακολουθίας και χωρίζονται με ένα τουλάχιστον κενό. Η έξοδος του προγράμματός δίνεται σε ένα αρχείο καθοριζόμενο από τον χρήστη (π.χ. OUTPUT.TXT) και αποτελείται από τις εξής γραμμές: Η πρώτη γραμμή περιέχει ένα ακέραιο αριθμό, ο οποίος είναι η ελάχιστη απόσταση που θα διανύσει ο ξεναγός με την ομάδα του. Η κάθε μία από τις επόμενες n+m γραμμές περιέχει δύο ακέραιους αριθμούς που είναι οι συντεταγμένες των ευρημάτων με τη σειρά που τα επισκέφθηκε ο ξεναγός Παρατήρηση 1) Ο υπολογισμός της ελάχιστης απόστασης, ξεκινώντας από το (0,0) (βλ. βέλη στο Σχήμα) γίνεται ως εξής 6+++ = 17. Εδώ υποθέτουμε ότι η απόσταση μεταξύ δύο γειτονικών σημείων του πλέγματος είναι 1. 2) Μία άλλη πιθανή διαδρομή είναι η (,1), (1,0), (7,2), (6,0) με συνολική απόσταση = 22, η οποία όμως δεν είναι η ελάχιστη δυνατή. χρησιμοποιήσετε σαν αρχεία εισόδου τα: inpar_1.txt και inpar_2txt. Οι αντίστοιχες λύσεις βρίσκονται στα αρχεία: outpar_1.txt και outpar_2.txt. ΠΡΟΣΟΧΗ: 1. Το όνομα του εκτελέσιμου προγράμματος που θα δημιουργήσετε πρέπει να είναι arxaios.exe. 2. Γράφετε όσο το δυνατόν πιο ευανάγνωστα τον κώδικα του προγράμματός σας και τοποθετείτε σχόλια. Θεσσαλονίκης & Χανδρή 1 (Κτίριο Γεν. Γραμ. Πληρ/κών Συστημάτων - Γραφείο: Δ.7), Μοσχάτο 18 6, Καλή Επιτυχία
Ενοικίαση αυτοκινήτου
14 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 2001 ΘΕΜΑ TEΛΙΚΗΣ ΦΑΣΗΣ 1 ο Πρόβλημα (20 μονάδες) Ενοικίαση αυτοκινήτου Περιγραφή Προβλήματος Μια εταιρεία ενοικίασης αυτοκινήτων βρίσκεται κάποια χρονική περίοδο
Ενοικίαση αυτοκινήτου
13 ος ΠΑΝΕΛΛΗΝΙΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 2001 ΘΕΜΑ TEΛΙΚΗΣ ΦΑΣΗΣ 1 ο Πρόβληµα (20 µονάδες) Ενοικίαση αυτοκινήτου Περιγραφή Προβλήµατος Μια εταιρεία ενοικίασης αυτοκινήτων βρίσκεται κάποια χρονική περίοδο
ΘΕΜΑ Α' ΠΡΟΚΑΤΑΡΤΙΚΗΣ ΦΑΣΗΣ 14 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ 2002 Για τους μαθητές Λυκείου/ΤΕΕ
ΘΕΜΑ Α' ΠΡΟΚΑΤΑΡΤΙΚΗΣ ΦΑΣΗΣ 14 ου ΠΑΝΕΛΛΗΝΙΟΥ ΔΙΑΓΩΝΙΣΜΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ 22 Για τους μαθητές Λυκείου/ΤΕΕ Ύλη Εξετάσεων Το βιβλίο κάποιου μαθήματος της Β Λυκείου έχει 1 κεφάλαια, αριθμημένα από το 1 έως το
Κατακερματισμός (Hashing)
Κατακερματισμός (Hashing) O κατακερματισμός είναι μια τεχνική οργάνωσης ενός αρχείου. Είναι αρκετά δημοφιλής μέθοδος για την οργάνωση αρχείων Βάσεων Δεδομένων, καθώς βοηθάει σημαντικά στην γρήγορη αναζήτηση
Χρωματίζουμε τα σημεία του επιπέδου με τρία χρώματα. Αποδείξτε ότι υπάρχουν δύο
1.1 ΠΡΟΒΛΗ ΜΑ Χρωματίζουμε τα σημεία του επιπέδου με δύο χρώματα. Αποδείξτε ότι υπάρχουν δύο τουλάχιστον σημεία με το ίδιο χρώμα που απέχουν απόσταση 1. Έστω ότι χρωματίζουμε τα σημεία του επιπέδου κόκινα
Ο Θησέας και ο Μινώταυρος (Μέρος Ι) Δεδομένη Στρατηγική
11 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 99 ΘΕΜΑ TEΛΙΚΗΣ ΦΑΣΗΣ ΓΙΑ ΤΟΥΣ ΜΑΘΗΤΕΣ ΛΥΚΕΙΟΥ Ο Θησέας και ο Μινώταυρος (Μέρος Ι) Δεδομένη Στρατηγική 1. Περιγραφή Προβλήματος Όλοι ξέρουμε βέβαια την ιστορία
ΠΛΗ10 Κεφάλαιο 2. ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ
ΠΛH10 Εισαγωγή στην Πληροφορική: Τόμος Α Κεφάλαιο: 2 2.2.1 : Συστήματα Αρίθμησης ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ ΔΥΑΔΙΚΟ ΣΥΣΤΗΜΑ ΑΡΙΘΜΗΣΗΣ. Στο δυαδικό σύστημα αρίθμησης, αντί για δεκάδες, εκατοντάδες με τις
ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ
22 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα 1o: Lines man ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ [25 Μονάδες] Το ποδόσφαιρο από την ανακάλυψή του στο Πανεπιστήμιο του Cambridge, έγινε το πιο δημοφιλές αλλά και το πιο
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡ/ΚΗΣ ΘΕΜΑ Α Α1. Να γράψετε
(6) : : 17 60 40 . .
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΓΙΑ ΠΛΗΡΩΣΗ ΜΙΑΣ ΚΕΝΗΣ ΘΕΣΗΣ ΒΟΗΘΟΥ ΛΕΙΤΟΥΡΓΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟ ΗΜΟ ΛΕΥΚΩΣΙΑΣ Θέµα: Ειδικό
ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ
27 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα 1 ο : Παρέες αριθμών ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ [30 Μονάδες] Λέμε ότι δύο φυσικοί αριθμοί είναι στην ίδια παρέα όταν έχουν το ίδιο πλήθος άσων (1) στη δυαδική
Πρόγραμμα όρασης. Στη συνέχεια θα περιγράψουμε πώς δουλεύει το ρομπότ.
Πρόγραμμα όρασης Υλοποιείτε ένα πρόγραμμα όρασης για ένα ρομπότ. Κάθε φορά που η κάμερα του ρομπότ βγάζει μία φωτογραφία, αυτή αποθηκεύεται στη μνήμη του ρομπότ ως μία ασπρόμαυρη εικόνα. Κάθε εικόνα είναι
Θέµατα προς Λύση. Προγράµµατα οµές επανάληψης και επιλογής
ΘΕΜΑ 1ο Θέµατα προς Λύση Προγράµµατα οµές επανάληψης και επιλογής Ένας συλλέκτης γραµµατοσήµων επισκέπτεται στο διαδίκτυο το αγαπηµένο του ηλεκτρονικό κατάστηµα φιλοτελισµού προκειµένου να αγοράσει γραµµατόσηµα.
7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ
1 7.2 ΑΠΟΛΥΤΗ ΤΙΜΗ ΡΗΤΟΥ ΘΕΩΡΙΑ 1. Απόλυτη τιµή ρητού: Έστω ένας ρητός αριθµός α. Η απόλυτη τιµή του αριθµού α συµβολίζεται µε α και εκφράζει την απόσταση του σηµείου µε τετµηµένη α από την αρχή Ο του
Εφαρµογές Υπολογιστών Βασίλης Μπλιάµπλιας Γεωργία Τσούτσου Γιώργος Συνάπαλος
Το υλικό του υπολογιστή Εφαρµογές Υπολογιστών Βασίλης Μπλιάµπλιας Γεωργία Τσούτσου Γιώργος Συνάπαλος Υπολογιστικό σύστηµα Στο υπολογιστικό σύστηµα ανήκει το: Υλικό Λογισµικό Υλικό Είναι οτιδήποτε έχει
Ζήτημα 1 ο (μια η σωστή) β. έχει μια συνιστώσα σε οριζόντια διεύθυνση
1 διαγώνισμα στη κυκλική κίνηση Ζήτημα 1 ο (μια η σωστή) β. έχει μια συνιστώσα σε οριζόντια διεύθυνση 1. Στη θέση που δείχνει το βέλος κινείται όχημα.το οδόστρωμα είναι τόξο ενός κύκλου με ακτίνα R. Η
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 4 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Δείκτες Δομές Το τέταρτο σύνολο
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Α ΤΑΞΗ
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Α ΤΑΞΗ Απαντήσεις στις ερωτήσεις του βιβλίου ΚΕΦΑΛΑΙΟ 3 1. 2. Από ποια στοιχεία αποτελείται το κεντρικό μέρος ενός υπολογιστή και ποια η λειτουργία καθενός; Κεντρική Μονάδα επεξεργασίας
2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ
ΜΕΡΟΣ Α.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 193. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ Με την βοήθεια των εξισώσεων δευτέρου βαθμού λύνουμε πολλά προβλήματα της καθημερινής ζωής και διαφόρων επιστημών.
ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΛΥΣΕΙΣ ΣΤΟ ο ΠΡΟΣΟΜΟΙΩΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 9 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 5/4/9 ΘΕΜΑ Α Α. Θεωρία-Ορισμός,σχολικού
Διαγώνισμα Προσομοίωσης Εξετάσεων 2017
Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο
ΔΙΑΓΩΝΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ 2008
Τετάρτη 25/6/2008 Σελ 1/8 Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Θ Ε Σ Σ Α Λ Ι Α Σ Π Ο Λ Υ Τ Ε Χ Ν Ι Κ Η Σ Χ Ο Λ Η Τ Μ Η Μ Α Μ Η Χ Α Ν Ι Κ Ω Ν Η Λ Ε Κ Τ Ρ Ο Ν Ι Κ Ω Ν Υ Π Ο Λ Ο Γ Ι Σ Τ Ω Ν, Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι
με Τέλος πάντων, έστω ότι ξεκινάει ένα άλλο υποθετικό σενάριο που απλά δεν διευκρινίζεται. Για το i) θα έχουμε , 2
Άσκηση 75 Σε έναν οργανισμό, αρχικά υπάρχουν 04800 βακτήρια. Μετά από 1 ώρα υπάρχουν 10400 βακτήρια, μετά από ώρες 5100 βακτήρια, και γενικά ο αριθμός των βακτηρίων υποδιπλασιάζεται κάθε μια ώρα. α) Πόσα
ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ
20 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ ΘΕΜΑ ο : Data Blocks [20 Μονάδες] Η Ελληνική Εταιρεία Επιστημόνων & Επαγγελματιών Πληροφορικής & Επικοινωνιών (ΕΠΥ), με τη συμπλήρωση 0 χρόνων
Λογικός Προγραμματισμός Ασκήσεις
Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2011-12... 3 1.1 Άσκηση 4...
Θεωρία Πληροφορίας. Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 4: Διακριτή πηγή πληροφορίας χωρίς μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διακριτή πηγή πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση
Μάθημα 7: Μικροϋπολογιστικό Σύστημα και Μνήμες
Μάθημα 7: Μικροϋπολογιστικό Σύστημα και Μνήμες 7.1 Αρχιτεκτονική μνημών σε υπολογιστικό σύστημα Σε ένα υπολογιστικό σύστημα υπάρχουν συνήθως περισσότερες από μία μνήμες. Επειδή η χωρητικότητα ενός μόνο
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις
4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου
4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 8-9 Θέμα A A Αν οι συναρτήσεις,g είναι παραγωγίσιμες στο, να αποδείξετε ότι η συνάρτηση και ισχύει: g g παραγωγίσιμη στο μονάδες
6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο
6. ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤ ΕΠΙΠΕ ΘΕΩΡΙΑ. Σύστηµα καθέτων ηµιαξόνων: Είναι δύο κάθετες µεταξύ τους ηµιευθείες µία οριζόντια και µία κατακόρυφη. Την οριζόντια την ονοµάζουµε και την λέµε ηµιάξονα των ή ηµιάξονα
ΦΥΛΛΟ ΠΛΗΡΟΦΟΡΙΩΝ. Μονάδες μέτρησης χωρητικότητας μνήμης - Η περιφερειακή μνήμη
Τ.Π.Ε. - Φ.ΠΛΗΡ.Ε-001 ΜΟΝΑΔΕΣ ΜΕΤΡΗΣΗΣ ΧΩΡΗΤΙΚΟΤΗΤΑΣ ΜΝΗΜΗΣ 1 Όνομα Σχολείου 5ο Ολοήμερο Δημοτικό Σχολείο Μεταμόρφωσης Τάξη Ε Τίτλος μαθήματος Τ.Π.Ε. Τίτλος ενότητας Μονάδες μέτρησης χωρητικότητας μνήμης
Μάθημα 4: Κεντρική Μονάδα Επεξεργασίας
Μάθημα 4: Κεντρική Μονάδα Επεξεργασίας 4.1 Γενικά Ο υπολογιστής επεξεργάζεται δεδομένα ακολουθώντας βήμα βήμα, τις εντολές ενός προγράμματος. Το τμήμα του υπολογιστή, που εκτελεί τις εντολές και συντονίζει
ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ
ΑΣΚΗΣΕΙΣ ΚΥΜΑΤΙΚΗΣ ΟΠΤΙΚΗΣ ΑΣΚΗΣΗ 1: Ένα οπτικό φράγμα με δυο σχισμές που απέχουν μεταξύ τους απόσταση d=0.20 mm είναι τοποθετημένο σε απόσταση =1,20 m από μια οθόνη. Το οπτικό φράγμα με τις δυο σχισμές
2 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση
2 Η ΠΡΟΟΔΟΣ Ενδεικτικές λύσεις κάποιων προβλημάτων Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέταση Ένας τροχός εκκινεί από την ηρεμία και επιταχύνει με γωνιακή ταχύτητα που δίνεται από την,
Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους
Page 1 of 15 ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Β Ομάδα Ασκήσεων "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2016-17 Οι ασκήσεις της ομάδας αυτής πρέπει
ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16
ΔΙΑΓΩΝΙΣΜΑ Αου ΤΕΤΡΑΜΗΝΟΥ ΣΤΑ ΚΕΦΑΛΑΙΑ ΤΑΛΑΝΤΩΣΕΙΣ ΚΡΟΥΣΕΙΣ 4 ο ΛΥΚΕΙΟ ΜΥΤΙΛΗΝΗΣ 11/1/16 Θέμα Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που
9. Συστολικές Συστοιχίες Επεξεργαστών
Κεφάλαιο 9: Συστολικές συστοιχίες επεξεργαστών 208 9. Συστολικές Συστοιχίες Επεξεργαστών Οι συστολικές συστοιχίες επεξεργαστών είναι επεξεργαστές ειδικού σκοπού οι οποίοι είναι συνήθως προσκολλημένοι σε
3 ο Εργαστήριο Μεταβλητές, Τελεστές
3 ο Εργαστήριο Μεταβλητές, Τελεστές Μια μεταβλητή έχει ένα όνομα και ουσιαστικά είναι ένας δείκτης σε μια συγκεκριμένη θέση στη μνήμη του υπολογιστή. Στη θέση μνήμης στην οποία δείχνει μια μεταβλητή αποθηκεύονται
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ
ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα
Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2011-2012 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Φύλλο Εργασίας: Το Ορθογώνιο Σύστημα Αξόνων
Διδακτική με Τ.Π.Ε Ανακαλυπτική Μάθηση Σελίδα 1 από 5 Φύλλο Εργασίας: Το Ορθογώνιο Σύστημα Αξόνων Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:... Εργασία 1 Ανοίξτε το αρχείο 1_ΟρθοκανονικόΣύστημα.ggb.
ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ
ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής
ΕΠΛ132 Άσκηση 4 - Αρχές Προγραμματισμού ΙΙ Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου Ι. Στόχοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ Τμήμα Πληροφορικής ΕΠΛ 132 Αρχές Προγραμματισμού ΙΙ Άσκηση 4 Αυτόματη Επίλυση του Παιχνιδιού
2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 2 ο ΔΙΑΓΩΝΙΣΜΑ (ΚΕΦΑΛΑΙΟ 1) ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί
Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων. 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης
Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστηµάτων Εισαγωγή σε VLSI 3η Άσκηση Logical Effort - Ένα ολοκληρωµένο παράδειγµα σχεδίασης Μανόλης Καλλίγερος (kalliger@aegean.gr)
5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων
5ο Μάθημα Αλγόριθμοι Σχεδίασης Βασικών Σχημάτων Γραφικα Τμήμα Πληροφορικής Πανεπιστήμιο Θεσσαλίας Ακ Έτος 2016-17 Εισαγωγή Ευθεία Κύκλος Έλλειψη Σύνοψη του σημερινού μαθήματος 1 Εισαγωγή 2 Ευθεία 3 Κύκλος
(2β) Το Υπόδειγμα της Κυκλικής Πόλης ή Υπόδειγμα του Salop
(2β) Το Υπόδειγμα της Κυκλικής Πόλης ή Υπόδειγμα του alop (alop, teve 979, Moopolstc Competto wth Outsde Goods) - Υποθέτουμε μια πόλη που παριστάνεται από την περιφέρεια ενός κύκλου με περίμετρο L=. p
ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ. Εξετάζουμε ενδεικτικά ορισμένες περιπτώσεις: 1 ο 2 ο. 3 ο 4 ο
ΠΡΟΒΛΗΜΑ ΔΙΑΓΩΝΙΟΥ Δίνεται ορθογώνιο παραλληλόγραμμο διάστασης m n όπου m,n φυσικοί αριθμοί, το οποίο είναι διαιρεμένο σε τετράγωνα που το καθένα ισούται με την μονάδα μέτρησης του εμβαδού του. Να βρεθεί
Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.
Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή
Τελικός Κύκλος Διαγωνισμάτων Γ ΛΥΚΕΙΟΥ Κυριακή 17 Απριλίου 2016 Μάθημα: Α.Ε.Π.Π. KTIΡΙΟ ΤΜΗΜΑΤΑ ΚΑΛΟΚΑΙΡΙΝΑ ΑΡΓΥΡΟΥΠΟΛΗΣ - ΗΛΙΟΥΠΟΛΗΣ - ΓΛΥΦΑΔΑΣ
Τελικός Κύκλος Διαγωνισμάτων Γ ΛΥΚΕΙΟΥ Κυριακή 17 Απριλίου 2016 Μάθημα: Α.Ε.Π.Π. KTIΡΙΟ ΤΜΗΜΑΤΑ ΚΑΛΟΚΑΙΡΙΝΑ ΑΡΓΥΡΟΥΠΟΛΗΣ - ΗΛΙΟΥΠΟΛΗΣ - ΓΛΥΦΑΔΑΣ Ονοματεπώνυμο Τμήμα Καθηγητής Επιτηρητής Αίθουσα Διάρκεια:
ΛΟΓΙΣΜΙΚΟ Sun power Καπλάνη
ΛΟΓΙΣΜΙΚΟ Sun power Καπλάνη Επιμέλεια: Αλέξανδρος Τσιμπούκης Το πρόγραμμα με τίτλο Sun power εξομοιώνει τα ενεργητικά και παθητικά ηλιακά συστήματα. Είναι γραμμένο σε FORTAN-77 και περιλαμβάνεται στο cd
Προβλήµατα. 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989.
1989-1 η ιεθνής Ολυµπιάδα Πληροφορικής Προβλήµατα 1st International Olympiad in Informatics Held in Pravetz, Bulgaria May 16-19, 1989. Έξι Προβλήµατα Παρουσιάστηκαν στη διενέργεια της ΙΟΙ 89 ***PROBLEM
Δομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός
Δομές Ακολουθίας- Επιλογής - Επανάληψης Δομημένος Προγραμματισμός 1 Βασικές Έννοιες αλγορίθμων Σταθερές Μεταβλητές Εκφράσεις Πράξεις Εντολές 2 Βασικές Έννοιες Αλγορίθμων Σταθερά: Μια ποσότητα που έχει
Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης
Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ 036653 367784 Fax: 036405 e mail : info@hmsgr wwwhmsgr GREEK MATHEMATICAL SOCIETY 34, Paneistimiou (Εleftheriou Venizelou)
ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 4 ΑΣΚΗΣΗ 5
ΑΣΚΗΣΗ Μία εταιρεία διανομών διατηρεί την αποθήκη της στον κόμβο και μεταφέρει προϊόντα σε πελάτες που βρίσκονται στις πόλεις,,,7. Το οδικό δίκτυο που χρησιμοποιεί για τις μεταφορές αυτές φαίνεται στο
ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Α Λυκείου Σελ. 1 από 8 ΟΔΗΓΙΕΣ: ΕΚΦΩΝΗΣΕΙΣ: ΘΕΜΑ 1 Ο
ΟΔΗΓΙΕΣ: 1. Οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί χωριστά από τις εκφωνήσεις. 2. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε φύλλα Α4 ή σε τετράδιο
ΚΕΦΑΛΑΙΟ 2 ΔΙΑΤΑΞΕΙΣ, ΜΕΤΑΘΕΣΕΙΣ, ΣΥΝΔΥΑΣΜΟΙ
ΚΕΦΑΛΑΙΟ ΔΙΑΤΑΞΕΙΣ ΜΕΤΑΘΕΣΕΙΣ ΣΥΝΔΥΑΣΜΟΙ Εισαγωγή. Οι σχηματισμοί που προκύπτουν με την επιλογή ενός συγκεκριμένου αριθμού στοιχείων από το ίδιο σύνολο καλούνται διατάξεις αν μας ενδιαφέρει η σειρά καταγραφή
ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ. Πρόγραμμα Διαχείρισης Α.Π.Δ.
ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ Πρόγραμμα Διαχείρισης Α.Π.Δ. Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Εγκατάσταση του προγράμματος 1 ΚΕΦΑΛΑΙΟ 2 Οδηγίες χρήσης προγράμματος με παράδειγμα 2 ΚΕΦΑΛΑΙΟ 3 Αντιγραφή Α.Π.Δ. προηγούμενης περιόδου
Τηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 B ΦΑΣΗ
ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΜΑ Α Ημερομηνία: Σάββατο 0 Απριλίου 09 Διάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ημιτελείς προτάσεις Α Α4 να γράψετε στο τετράδιό
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο
x y z xy yz zx, να αποδείξετε ότι x=y=z.
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦ. ο A. Ταυτότητες, ιδιότητες δυνάμεων, διάταξη.1 Να παραγοντοποιήσετε τις παρακάτω παραστάσεις: 1. 15a x 15a y 5a x 5a y. a x a x a x a x 3 3 4 3 3 3 3. x 4xy 16 4 y
Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.
Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη
Μαλούτα Θεανώ Σελίδα 1
ΕΦΑΡΜΟΓΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Α' ΛΥΚΕΙΟΥ ΕΝΟΤΗΤΑ 1η ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε υλικό και τι λογισμικό ενός υπολογιστικού συστήματος; 2. Τι είναι α) η μητρική πλακέτα ( motherboard), β) η κεντρική μονάδα
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ. ν 1 + ν ν κ = v (1) Για τη σχετική συχνότητα ισχύουν οι ιδιότητες:
Συχνότητα v i O φυσικός αριθμός που δείχνει πόσες φορές εμφανίζεται η τιμή x i της εξεταζόμενης μεταβλητής Χ στο σύνολο των παρατηρήσεων. Είναι φανερό ότι το άθροισμα όλων των συχνοτήτων είναι ίσο με το
Μπορούμε να χρησιμοποιήσουμε τις παρακάτω μορφές συντεταγμένων με οποιοδήποτε συνδυασμό θέλουμε. Καρτεσιανές συντεταγμένες
ΣΥΝΤΕΤΑΓΜΕΝΕΣ Όταν σχεδιάζουμε, πρέπει να προσδιορίζουμε σημεία πάνω σε ένα επίπεδο. Μπορούμε να εντοπίσουμε οποιοδήποτε σημείο στο χώρο, αν ορίσουμε πρώτα ένα απόλυτο, σταθερό σημείο και να μετρήσουμε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ / ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή Απριλίου 0 ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α Θεωρία Σχολικό Βιβλίο (έκδοση 0) σελίδα 5 Α Θεωρία Σχολικό Βιβλίο (έκδοση
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας
Γραφήματα οικογένειας παραβολών
Γραφήματα οικογένειας παραβολών Η βολή ενός αντικειμένου στον αέρα έχει ως αποτέλεσμα μια καμπυλωμένη τροχιά, η οποία είναι πάντοτε μια παραβολή. Η παραβολή είναι το γράφημα μιας δευτεροβάθμιας συνάρτησης,
4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x
1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ/Γ ΟΙΚΟΝΟΜΙΚΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ-ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΚΑΤΡΑΚΗ Α.-ΣΙΟΤΡΟΠΟΣ Π.-ΛΙΟΔΑΚΗΣ Ε.
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2017-2018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ/Γ ΟΙΚΟΝΟΜΙΚΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ-ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΚΑΤΡΑΚΗ Α.-ΣΙΟΤΡΟΠΟΣ Π.-ΛΙΟΔΑΚΗΣ Ε. ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό
Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα
Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ον/μο:.. Γ Λυκείου Ύλη:1-2 Τεχν. Κατ. 03-11-13 ΘΕΜΑ 1 ο Α. 1)Ποιες κατηγορίες προβλημάτων γνωρίζετε; 2)Να αναπτύξετε τα κριτήρια που πρέπει να ικανοποιεί ένας αλγόριθμος. 3)Ποια
ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ
6 ος ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Θέμα 1 ο : Άθροισμα ζευγών ΘΕΜΑΤΑ ΤΕΛΙΚΗΣ ΦΑΣΗΣ [30 Μονάδες] Δίνεται μία ακολουθία Ν ακέραιων αριθμών. Θέλουμε να μπορούμε να απαντάμε στο ερώτημα «υπάρχει ζεύγος
Συγκοινωνιακός Σχεδιασµός κόµβος Σχήµα.. Αναπαράσταση σε χάρτη του οδικού δικτύου µιας περιοχής... Μέθοδοι καταµερισµού των µετακινήσεων.. Εύρεση βέλτ
Καταµερισµός των µετακινήσεων στο οδικό δίκτυο.. Εισαγωγή Το τέταρτο και τελευταίο στάδιο στη διαδικασία του αστικού συγκοινωνιακού σχεδιασµού είναι ο καταµερισµός των µετακινήσεων στο οδικό δίκτυο (λεωφόρους,
i Σύνολα w = = = i v v i=
ΜΕΤΡΑ ΘΕΣΗΣ ΆΣΚΗΣΗ Η βαθμολογία στα 0 μαθήματα ενός μαθητή είναι: 3, 9, 6, 0, 5,,, 0, 0, 4. Να υπολογίσετε: α) Τη μέση τιμή. β) Τη διάμεσο. Απάντηση t t + t + t 0 = = = = 3 + 9 + 6 + 0 + 5 + + + 0 + 0
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO. Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος.
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι χρειάζεται η εντολή DO ; ΕΠΑΝΑΛΗΨΕΙΣ ΕΝΤΟΛΗ DO Όταν απαιτείται να εκτελεστεί πολλές φορές το ίδιο τμήμα ενός προγράμματος. Τετριμμένο παράδειγμα: Κατασκευάστε πρόγραμμα που θα εμφανίζει
ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ. Η έννοια της ακολουθίας
5 ΠΡΟΟΔΟΙ 5.1 ΑΚΟΛΟΥΘΙΕΣ Η έννοια της ακολουθίας Ας υποθέσουμε ότι καταθέτουμε στην τράπεζα ένα κεφάλαιο 10000 ευρώ με ανατοκισμό ανά έτος και με επιτόκιο 2%. Αυτό σημαίνει ότι σε ένα χρόνο οι τόκοι που
ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ. Ως «γειτονικά» ορίζονται τα κελιά που συγγενεύουν οριζόντια, κάθετα και διαγώνια. Για παράδειγμα γειτονικά του Α[3,3] είναι τα:
ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ ΑΣΚ 1 Το παιχνίδι ναρκαλιευτής, βασίζεται σε ένα ταμπλω (πίνακα), τα περιεχόμενα του οποίου αποτελούνται από νάρκες, και αριθμούς. Κάθε αριθμός συμβολίζει το πλήθος των ναρκών που βρίσκονται
Προγραμματισμός & Έλεγχος Παραγωγής. Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις
Προγραμματισμός & Έλεγχος Παραγωγής Κεφ. 6 Συγκεντρωτικός Προγραμματισμός Συμπληρωματικές Σημειώσεις Στέλλα Σοφιανοπούλου Καθηγήτρια Πειραιάς 2012 Ενότητα 6.1 2 Τυπικά δεδομένα Ενότητα 6.3 Δοκιμή με σταθερή
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ
I.3 ΔΕΥΤΕΡΗ ΠΑΡΑΓΩΓΟΣ-ΚΥΡΤΟΤΗΤΑ.Δεύτερη παράγωγος.κυρτή 3.Κοίλη 4.Ιδιότητες κυρτών/κοίλων συναρτήσεων 5.Σημεία καμπής 6.Παραβολική προσέγγιση(επέκταση) ΠΑΡΑΡΤΗΜΑ 7.Δεύτερη πλεγμένη παραγώγιση 8.Χαρακτηρισμός
Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια
Σκοπός. Εργαστήριο 6 Εντολές Επανάληψης
Εργαστήριο 6 Εντολές Επανάληψης Η δομή Επιλογής στη PASCAL H δομή Επανάληψης στη PASCAL. Ρεύμα Εισόδου / Εξόδου.. Ρεύμα Εισόδου / Εξόδου. To πρόγραμμα γραφικών gnuplot. Γραφικά στη PASCAL. Σκοπός 6.1 ΕΠΙΔΙΩΞΗ
Ασκήσεις μελέτης της 6 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro
Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος
Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο
ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ
ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ. 6ο ΓΕΛ ΛΑΜΙΑΣ ΧΡΙΣΤΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΜΑΘΗΜΑΤΙΚΟΣ
ΣΥΝΟΛ 6ο ΓΕΛ ΛΜΙΣ ΧΡΙΣΤΟΣ ΤΡΙΝΤΦΥΛΛΟΥ ΜΘΗΜΤΙΚΟΣ ΣΥΝΟΛ Στοιχεία θεωρίας Σύνολο είναι μια συλλογή από αντικείμενα. Το σύνολο όλων των ελληνικών ποδοσφαιρικών ομάδων. Το σύνολο όλων των χωρών της Ευρώπης.
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 12 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F
Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις
Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις Όπως είδαμε μέχρι τώρα η ομαλότητα της ακριβούς λύσης επηρεάζει τις εκτιμήσεις σφάλματος με τέτοιο τρόπο ώστε ολα όσα αποδείξαμε ισχύουν
Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.
Άσκηση 1 Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. B) Αν ( ), ( ), ( ), να εκφράσετε τις πιθανότητες
ΘΕΜΑ : Μια βιωματική διδακτική προσέγγιση στην Πληροφορική Α Γυμνασίου με θέμα: «Το υλικό του Υπολογιστή»
Το προτεινόμενο διδακτικό σενάριο υλοποιήθηκε στα πλαίσια της επιμόρφωσης καθηγητών ΠΕ19 στο πρόγραμμα Β επιπέδου, το 2014 ΘΕΜΑ : Μια βιωματική διδακτική προσέγγιση στην Πληροφορική Α Γυμνασίου με θέμα: