Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ασκήσεις3 Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα."

Transcript

1 Ασκήσεις 0 Ασκήσεις Διαγωνισιμότητα Βασικά σημεία Διαγωνίσιμοι πίνακες: o Ορισμός και παραδείγματα o H -στήλη του P P είναι E αν και μόνο αν η -στήλη του P είναι ιδιοδιάνυσμα του που αντιστοιχεί στην ιδιοτιμή o Μικρό Κριτήριο Διαγωνισιμότητας: O είναι διαγωνίσιμος αν και μόνο αν υπάρχει βάση του από ιδιοδιανύσματα του o Αν { X,, X } είναι βάση του από ιδιοδιανύσματα του με αντίστοιχες ιδιοτιμές,,, τότε ο πίνακας P ( X,, X ) είναι αντιστρέψιμος και P P dag(,, ) Ιδιότητες ιδιόχωρων: Έστω,, κάποιες από τις διακεκριμένες ιδιοτιμές του Ισχύουν τα εξής o Αν v v 0, όπου v V ( ), τότε v v 0 o ( V ( ) V ( )) V ( ) {0} o d( V ( ) V( )) d V( ) d V ( )) o Αν για κάθε, B είναι βάση του V ( ), τότε B είναι βάση του V ( ) V( ) o d V( ) ( ) για κάθε, όπου ( ) είναι η πολλαπλότητα της ιδιοτιμής Μεγάλο Κριτήριο Διαγωνισιμότητας: Έστω,, οι διακεκριμένες ιδιοτιμές του Οι ακόλουθες προτάσεις είναι ισοδύναμες o είναι διαγωνίσιμος o υπάρχει βάση του από ιδιοδιανύσματα του o V ( ) V ( ) o V V d ( ) d ( )) ( x) ( ) ( x ) ( x ) και για κάθε,,, d V ( ) o Αν ο έχει ν διακεκριμένες ιδιοτιμές, τότε είναι διαγωνίσιμος Αντίστοιχα όλων των παραπάνω για γραμμικές απεικονίσεις Εφαρμογές (δυνάμεις πινάκων, ρίζες πινάκων, αναδρομικές ακολουθίες ) Συνιστώμενες ασκήσεις: -,, 8, 0, 4-5, 7 () Εξετάστε ποιοι από τους παρακάτω πίνακες είναι διαγωνίσιμοι Αν κάποιος πίνακας διαγωνίσιμος, να βρεθεί μία βάση του που αποτελείται από ιδιοδιανύσματα του, ένας αντιστρέψιμος P με P P διαγώνιο και ο πίνακας P P a, b, c d () Έστω διαγωνίσιμος πίνακας a Δείξτε ότι για κάθε θετικό ακέραιο ο είναι διαγωνίσιμος και γενικά για κάθε ( x) [ x] ο ( ) είναι διαγωνίσιμος b Δείξτε ότι αν 0 για κάποιο θετικό ακέραιο, τότε 0 είναι

2 Ασκήσεις c Δείξτε ότι αν ο είναι αντιστρέψιμος, τότε ο ( ) είναι διαγωνίσιμος για κάθε ( x) [ x] 0 d Αν ( x ) ( x ) να βρεθεί ο e Έστω X με X 0 για κάποιο θετικό ακέραιο Δείξτε ότι X 0 Έστω ότι ο είναι αντιστρέψιμος και Είναι δυνατό ο να είναι όμοιος με τον dag (,,,,) ; () Έστω a Να βρεθούν οι ιδιοτιμές του, μια βάση για κάθε ιδιόχωρο του και η διάσταση του διανυσματικού χώρου που παράγουν τα ιδιοδιανύσματα του b Να εξεταστεί αν ο είναι διαγωνίσιμος και στην περίπτωση που είναι διαγωνίσιμος, να βρεθεί ένας αντιστρέψιμος P τέτοιος ώστε ο P P να είναι διαγώνιος 4 a 4 () Έστω a Αποδείξτε ότι ο πίνακας είναι διαγωνίσιμος αν και μόνο αν a b Έστω a Βρείτε αντιστρέψιμους πίνακες P, Q ώστε οι P P και Q Q να είναι διακεκριμένοι διαγώνιοι πίνακες 5 () a Έστω ένας διαγωνίσιμος πίνακας του οποίου οι ιδιοτιμές είναι μη αρνητικές Δείξτε ότι υπάρχει B τέτοιος ώστε B 0 b Δείξτε ότι ο δεν είναι διαγωνίσιμος και ότι δεν υπάρχει B τέτοιος ώστε B () Έστω, P, τέτοιοι ώστε P P και είναι διαγώνιος, dag(,, ) ( ) ( ) ( ) a Δείξτε ότι για κάθε,, έχουμε P P, όπου P είναι η -στήλη του P b Έστω,, Βρείτε έναν τα με ιδιοτιμές τις,, και αντίστοιχα ιδιοδιανύσματα,, Είναι ο μοναδικός; * 0 * 0 * * () Έστω με det Tr 0 Δείξτε ότι ο είναι διαγωνίσιμος * 0 * 0 * 0 * 4 8 () Έστω ένας άνω τριγωνικός πίνακας της μορφής *, 0 δηλαδή ο είναι άνω τριγωνικός και κάθε στοιχείο της διαγωνίου είναι ίσο με Δείξτε ότι ο είναι διαγωνίσιμος αν και μόνο αν είναι διαγώνιος 9 () Εξετάστε αν ο

3 Ασκήσεις είναι διαγωνίσιμος 0 () Να βρεθούν οι τιμές των a, b, c ώστε ο 0 0 a 0 b c να είναι διαγωνίσιμος () Να βρεθούν οι τιμές του a ώστε η διάσταση του διανυσματικού χώρου που παράγουν τα ιδιοδιανύσματα του 0 0 a 0 a 0 0 να είναι ίση με () Έστω, B τέτοιοι ώστε B B Αποδείξτε ότι αν ο Α έχει διακεκριμένες ιδιοτιμές, τότε ο Β είναι διαγωνίσιμος () Έστω, B δυο διαγωνίσιμοι πίνακες Δείξτε ότι οι, B είναι όμοιοι αν και μόνο αν ( x) ( x) B 4 () Να βρεθούν όλα τα a τέτοια ώστε η γραμμική απεικόνιση : να είναι διαγωνίσιμη στις ακόλουθες περιπτώσεις a ( x, y, z) ( x az, y, ay z), b ( x, y, z) ( ax y z, x ay z, x y az) 5 () Εξετάστε ποιες από τις παρακάτω γραμμικές απεικονίσεις είναι διαγωνίσιμες :, ( x, y, z) ( x y, y z, y 4 z), g :, ( x, y, z) ( x y, y z, y 4 z), h : [ x] [ x], g( ( x)) () x 6 () Έστω : V V μια διαγωνίσιμη γραμμική απεικόνιση τέτοια ώστε, για κάθε ιδιοτιμή της Δείξτε ότι V 7 () Έστω : V V ένας ισομορφισμός Δείξτε τα εξής a Αν το είναι μια ιδιοτιμή της, τότε 0 b Το είναι ιδιοτιμή της το c Για κάθε {0}, V ( ) V ( ) d διαγωνίσιμη 8 () Έστω του με : διαγωνίσιμη είναι ιδιοτιμή της ˆ ( v, v, v ) μια γραμμική απεικόνιση τέτοια ώστε υπάρχει διατεταγμένη βάση a Δείξτε ότι η είναι διαγωνίσιμη b Αληθεύει ότι η είναι διαγωνίσιμη; 0 0 ( : ˆ, ˆ )

4 Ασκήσεις c Έστω ότι, 0 Δείξε ότι το v v είναι ένα ιδιοδιάνυσμα της 9 () Έστω : V V μια διαγωνίσιμη γραμμική απεικόνιση Δείξτε ότι er er και I I για κάθε θετικό ακέραιο, όπου 0 () Για κάθε θετικό ακέραιο υπολογίστε τον () Έστω a Υπολογίστε τη δύναμη, b Να βρεθεί ένας πίνακας B τέτοιος ώστε B c Πόσους πίνακες B μπορείτε να βρείτε τέτοιους ώστε B ; () Θεωρούμε την ακολουθία ( a),,,, η οποία ορίζεται από τους όρους a, a 4 και τον αναδρομικό τύπο a a a,,4, Να βρεθεί ο γενικός όρος a συναρτήσει των a, a και () a Έστω διαγωνίσιμος τέτοιος ώστε για κάθε ιδιοτιμή του Δείξτε ότι υπάρχει αντιστρέψιμος B τέτοιος ώστε B B b Δείξτε ότι δεν υπάρχει αντιστρέψιμος B τέτοιος ώστε B B I 4 () Έστω ότι a Δείξτε ότι U V, όπου { t t U }, V { } Επίσης, δείξτε v( v ) v( v ) ότι d U, d V b Χρησιμοποιώντας τα προηγούμενα, αποδείξτε ότι η γραμμική απεικόνιση t :,, είναι διαγωνίσιμη και βρείτε το χαρακτηριστικό πολυώνυμό της 5 () Έστω, g : V V δυο γραμμικές συναρτήσεις τέτοιες ώστε η είναι διαγωνίσιμη και κάθε ιδιοδιάνυσμα της είναι ιδιοδιάνυσμα της g Δείξτε ότι g g 6 () Έστω a,, a, b,, b τέτοια ώστε ο πίνακας ab ab ab ab είναι μη μηδενικός a Δείξτε ότι ra b Δείξτε ότι ο είναι διαγωνίσιμος αν και μόνο αν Tr( ) 0 7 () Δείξτε ότι ο πίνακας a b b b b a b b b b a b b b b a

5 Ασκήσεις 4 είναι διαγωνίσιμος 8 () Έστω a και ( v, v, v) μια διατεταγμένη βάση του : που ορίζεται από ( v ) v, ( v) v av v, ( v ) a v av a Δείξτε ότι η δεν είναι διαγωνίσιμη b Δείξτε ότι η είναι διαγωνίσιμη για κάθε Θεωρούμε τη γραμμική απεικόνιση 9 () Έστω Έστω a,, a, b,, b τέτοια ώστε όχι όλα είναι ίσα με 0 και ab 0 Υπολογίστε το χαρακτηριστικό πολυώνυμο του πίνακα a a a b b b 0 και δείξτε ότι αυτός δεν είναι διαγωνίσιμος 0 () Εξετάστε ποιες από τις επόμενες προτάσεις είναι σωστές ή λάθος Δικαιολογήστε την απάντησή σας 4 4 a Υπάρχει διαγωνίσιμη γραμμική απεικόνιση : τέτοια ώστε ( x) x ( x ) και d(i ) b Για κάθε a, b, οι πίνακες 4 a 0 5, 5 0 b 4 είναι όμοιοι c Έστω : V V μια γραμμική απεικόνιση Αν είναι δυο ιδιοτιμές της, τότε η γραμμική απεικόνιση g : V ( ) V ( ) V ( ) V ( ), g( u v) ( u v), είναι διαγωνίσιμη () Έστω με ra r Αποδείξτε ότι το χαρακτηριστικό πολυώνυμο του Α είναι της μορφής r ( ) x a x a x () Έστω και, r οι ιδιοτιμές του Δείξτε ότι αν, τότε κάθε θετικό ακέραιο, ( I) ( I) () Έστω με ra και Αποδείξτε τις εξής προτάσεις a Ο είναι όμοιος με πίνακα της μορφής 0 0 a 0 0 a 0 0 a b Tr( ) 0 ο Α είναι διαγωνίσιμος 4 () Θεωρούμε τη γραμμική απεικόνιση : [ x] [ x] που ορίζεται από x ( ) x, ( x ) x () x 8 Θέτουμε g V, V [ x] a Να βρεθεί μια βάση για κάθε ιδιόχωρο της και κάθε ιδιόχωρο της g b Να εξεταστεί αν οι, g είναι διαγωνίσιμες c Να εξεταστεί αν οι, g είναι ισομορφισμοί

6 Ασκήσεις 5 5 () Έστω και :, ( X ) X X Εξετάστε αν η είναι διαγωνίσιμη () Αν,,, 4 είναι οι ιδιοτιμές αντιστρέψιμου, τότε οι ιδιοτιμές του adj( ) είναι οι, 4, 4, 4 7 Επαναληπτική άσκηση κατανόησης Εξετάστε ποιες από τις επόμενες προτάσεις αληθεύουν Σε κάθε περίπτωση δικαιολογήστε την απάντησή σας με απόδειξη ή αντιπαράδειγμα a Κάθε πίνακας που είναι όμοιος με διαγωνίσιμο πίνακα, είναι διαγωνίσιμος 44 b Αν με ( x ) x ( x )( x ), τότε ο είναι διαγωνίσιμος 44 c Αν με ( x ) x ( x )( x ), τότε ο είναι διαγωνίσιμος 44 d Έστω με ( x ) x ( x )( x ) Τότε ο είναι διαγωνίσιμος αν και μόνο αν d V(0) e Αν, B είναι διαγωνίσιμοι, τότε B διαγωνίσιμος Αν, B είναι διαγωνίσιμοι, τότε B διαγωνίσιμος g Κάθε αντιστρέψιμος πίνακας είναι διαγωνίσιμος h Η διάσταση του υπόχωρου που παράγουν τα ιδιοδιανύσματα του τουλάχιστον * 0 * 0 * * 0 είναι * 0 * 0 * 0 * 4

7 Ασκήσεις 6 Υποδείξεις/Απαντήσεις Ασκήσεις Απάντηση a O δεν είναι διαγωνίσιμος αφού δεν έχει ιδιοτιμή (στο ) b O είναι διαγωνίσιμος Έχουμε V ( ), V ( ) Μια ζητούμενη βάση είναι η, Για P έχουμε P P dag(, ) σύμφωνα με τη θεωρία c O δεν είναι διαγωνίσιμος καθώς υπάρχει μοναδική ιδοτιμή, το 0, και d V (0) d O είναι διαγωνίσιμος Έχουμε V (0), 0, V () 0 Μια ζητούμενη βάση του είναι η, 0, 0 Για P 0 0 έχουμε P P dag(0,0,) σύμφωνα με τη θεωρία Λύση: Αφού ο είναι διαγωνίσιμος υπάρχει αντιστρέψιμος P και διαγώνιος πίνακας dag(,, ) με P P Οι ιδιοτιμές του είναι οι,, a Επειδή ο είναι διαγώνιος, ξέρουμε ότι ο ( ) είναι διαγώνιος για κάθε πολυώνυμο ( x) [ x] (Εύκολα αποδεικνύεται ότι ( ) dag( ( ),, ( )) P P για κάθε θετικό ακέραιο Με επαγωγή στο αποδεικνύεται ότι P P P P Πράγματι, η σχέση αυτή είναι προφανής αν Αν P P P P για κάποιο, τότε Έχουμε P P P P P P P P P P ( ) ( ) P PP P P I P P P P P Τώρα αν ( x) a x ax a0 [ x], έχουμε P ( ) P P a a a a I P 0 a P P a P P a P P a P I P 0 a ( P P) a ( P P) a ( P P) a I 0 a a a a I ( ) 0

8 Ασκήσεις 7 και ο ( ) είναι διαγώνιος Άρα ο P ( ) P είναι διαγωνίσιμος b Από P P έχουμε P P Είδαμε πριν ότι P P για κάθε θετικό ακέραιο Έστω ότι 0 για κάποιο ακέραιο Τότε 0 Άρα dag(,, ) PP 0 c Επειδή ο είναι αντιστρέψιμος έχουμε 0 για κάθε,, οπότε ο είναι αντιστρέψιμος και dag(,, ) Από P P παίρνουμε P P P ( P ) P P, δηλαδή P P dag(,, ) Άρα ο είναι διαγωνίσιμος και το ζητούμενο έπεται από το ερώτημα a 0 d Από ( x ) ( x ) έπεται ότι κάθε ιδιοτιμή του είναι ίση με Επειδή ο είναι διαγωνίσιμος, παίρνουμε ότι ο είναι όμοιος με τον πίνακα dag(,,,) I0, δηλαδή υπάρχει αντιστρέψιμος P 00 με P P I 0 Τότε e Έστω X 0, όπου X Άρα P P X 0, οπότε P( I ) P ( PI P ) I Έχουμε P P P P P P ( P X ) 0 y Έστω P X Από ( P X ) 0, δηλαδή y y 0, y 0 παίρνουμε y 0 0 ή y 0 y 0 0 ή y 0 y 0 y 0 y 0 y Δηλαδή έχουμε ( P X ) και άρα X P( P X ) 0 0 Αφού ο είναι διαγωνίσιμος υπάρχει αντιστρέψιμος P και διαγώνιος πίνακας dag(,, ) με P P Έχουμε P P και επειδή ο είναι αντιστρέψιμος έχουμε (όπως στο c) P P Έστω ότι ο είναι όμοιος με τον dag (,,,,) Επειδή όμοιοι πίνακες έχουν τις ίδιες ιδιοτιμές, παίρνουμε ότι το είναι ιδιοτιμή του Έχουμε PP P P P( ) P Pdag(,, ) P Άρα οι ιδιοτιμές του είναι οι,,

9 Ασκήσεις 8 Συνεπώς έχουμε για κάποιο, δηλαδή 0 Όμως το τριώνυμο δεν έχει πραγματική ρίζα, άτοπο x x Απάντηση: Έχουμε ( x ) ( x ) ( x 8) οπότε οι ιδιοτιμές είναι - (με πολλαπλότητα ) και 8 (με πολλαπλότητα ) Οι ιδιόχωροι του είναι V ( ) { x 0 y x, y }, V (8) { x x } 0 και αντίστοιχες βάσεις είναι τα σύνολα { 0, }, { } 0 Η διάσταση του διανυσματικού χώρου που παράγουν τα ιδιοδιανύσματα του είναι ίση με d V ( ) d V (8) Ο είναι διαγωνίσιμος σύμφωνα με το Μεγάλο Κριτήριο και ένας P είναι ο P a Λύση: Έχουμε ( x ) x 7 x a Έστω 7 4( a) a ) Έστω a Τότε 0 και το ( ) x έχει δυο διακεκριμένες πραγματικές ρίζες Άρα ο είναι διαγωνίσιμος σύμφωνα με το Πόρισμα 9 ) Έστω a Τότε 0 και το ( ) x δεν έχει πραγματική ρίζα Άρα ο δεν είναι διαγωνίσιμος 7 ) Έστω a Τότε 0 και ( ) x x Για 7 έχουμε: d V ( ) ισούται με τη 7 0 διάσταση του διανυσματικού χώρου των λύσεων του x I, που είναι (πράξεις) Άρα y 0 ο Α δεν είναι διαγωνίσμος σύμφωνα με το Θεώρημα b Απάντηση: Με πράξεις βρίσκουμε V (), V (6) Άρα, αν P, έχουμε 0 P P 0 6 και αν Q, έχουμε 6 0 Q Q 0 5 a Υπόδειξη: Αν P P dag (,, ), δείξτε ότι B, όπου Pdag P (,, ) 6 b Απάντηση: Από το a έπεται ότι ο είναι μοναδικός και ( ά)

10 Ασκήσεις 9 7 Δείξτε ότι οι ιδιοτιμές του είναι οι,4,-7,0 Επειδή ο διαγωνίσιμος 44 έχει 4 διακεκριμένες ιδιοτιμές, είναι 8 Λύση: Έστω ότι ο είναι διαγωνίσιμος Επειδή ο έχει μοναδική ιδιοτιμή το (με πολλαπλότητα ν), είναι όμοιος με το I Όμως ο μόνος πίνακας όμοιος με το I είναι ο I Άρα I που είναι διαγώνιος Το αντίστροφο είναι άμεσο 9 Λύση: Είδαμε στην άσκηση 8, ότι ( x) ( ) ( x ) Χρησιμοποιώντας παραγώγους παρατηρούμε ότι ( ( x), ( x)) (( ) x,( ) ( x )) Άρα το πολυώνυμο ( x) ( ) ( x ) έχει διακεκριμένες ρίζες στο σύμφωνα με την Πρόταση 0 και συνεπώς ο πίνακας είναι διαγωνίσιμος σύμφωνα με το Πόρισμα 9 0 Υπόδειξη: Ξέρουμε από το Μεγάλο Κριτήριο ότι διαγωνίσιμος d V () d V ( ) Απάντηση: a 0 (και b, c τυχαία) Απάντηση: a 0 Υπόδειξη: Αν τα X,, X είναι μια βάση του ότι τα X, X είναι ιδιοδιανύσματα του B και κάθε X είναι ιδιοδιάνυσμα του, δείξτε Υπόδειξη: Δείξτε ότι αν ( x) ( x), τότε οι, B είναι όμοιοι με τον ίδιο διαγώνιο πίνακα 4 aλύση: Αν είναι ο πίνακας της ως προς τη συνήθη βάση του B, τότε 0 a a Έχουμε ( x) ( x) ( x )( x ) και οι ιδιοτιμές της είναι,, Ξέρουμε ότι d V () (), d V () () σύμφωνα με το Θεώρημα Από το Θεώρημα 0 συμπεραίνουμε ότι διαγωνίσιμη d V () d V () d V () Άρα d V () ra( I) ra( I) Επειδή 0 a I 0 0 0, 0 a 0 βλέπουμε ότι ra( I) a 0 b Υπόδειξη: Χρησιμοποιήστε το συλλογισμό του a Εδώ έχουμε ( x ) ( xa ) ( xa ) Απάντηση: Είναι διαγωνίσιμη για κάθε a 5 Απάντηση: Η είναι διαγωνίσιμη σύμφωνα με την Πρόταση 9 γιατί έχει διακεκριμένες ιδιοτιμές, τις,, Για τη g μπορούμε να εφαρμόσουμε το Θεώρημα 0 ) Η g δεν είναι διαγωνίσιμη, γιατί οι ιδιοτιμές είναι οι,, και για τους αντίστοιχους ιδιόχωρους έχουμε d V () d V ()

11 Ασκήσεις 40 H h είναι διαγωνίσιμη, γιατί από την απάντηση της άσκησης a έχουμε V (0) { ax bx c [ x] a b c 0} και V () { bx [ x] b 0}, οπότε d V (0) d V () d [ x] 6 Λύση: Από την υπόθεση υπάρχει μια βάση u,, u του V και,,,,, (Πρόταση ) Άρα με ( u ) u, ( u ) ( ( u )) ( u ) ( u ) u u, για κάθε,, Άρα u,, u er( V ) και επειδή τα u,, u παράγουν το V έχουμε er( V ) V, δηλαδή V 7 8 a Υπόδειξη: Παρατηρήστε ότι ο πίνακας ( : ˆ, ˆ) είναι διαγώνιος b Απάντηση: Όχι αναγκαστικά Ένα αντιπαράδειγμα προκύπτει όταν 0 και 0 Πράγματι, αν ο ήταν διαγωνίσιμος, τότε θα ήταν όμοιος με το μηδενικό πίνακα γιατί κάθε ιδιοτιμή του είναι ίση με 0 Αλλά τότε θα ήταν ίσος με το μηδενικό πίνακα 9 Λύση: Από την Πρόταση υπάρχουν βάση B v v,, του V και,, τέτοια ώστε ( v ) v,,, Έστω ένας θετικός ακέραιος Τότε για κάθε,, έχουμε ( v ) v Είναι σαφές ότι er er Για την άλλη σχέση, έστω v xv x v er, x Τότε 0 ( v) ( xv xv ) x ( v ) x ( v) x v x v και επειδή το,, v v είναι βάση, παίρνουμε x x 0 και άρα x x 0 Συνεπώς ( v) 0 Άρα er er Σημείωση Η σχέση er er έπεται από την άσκηση b Μάλιστα οι δύο λύσεις είναι ίδιες, μια γραμμένη για πίνακες, ή άλλη για γραμμικές απεικονίσεις Για την εικόνα I παρατηρούμε ότι αυτή παράγεται από τα ( v ) v,,, Άρα παράγεται από εκείνα τα v j για τα οποία j 0 (γιατί;) Άρα I I 0 Λύση: Έχουμε ( x) ( x )( x ) 0, οπότε οι ιδιοτιμές του πίνακα είναι και (διπλή ρίζα) Για, οι λύσεις του συστήματος που είναι οι x 0 ( ) X x 0, 0 6 x 0 x x x, x, x άσκηση = άσκηση από τις Ασκήσεις στην eclass

12 Ασκήσεις 4 αποτελούν τον ιδιόχωρο V ( ) της Επιλέγουμε το ιδιοδιάνυσμα p Για, οι λύσεις του συστήματος Είναι οι 0 x 0 ( ) X x 0 0 x 0 x 0 x x 0 x, x, x x 0 0 Επομένως για ο ιδιόχωρος V () παράγεται από τα p 0, p 0 0 p, p, p είναι γραμμικά ανεξάρτητα, επειδή det 0 0, άρα αποτελούν βάση του 0 Άρα ο Α διαγωνοποιείται Θέτοντας 0 P 0 0 βρίσκουμε με πράξεις ότι 0 P 0 Ξέρουμε ότι ισχύει 0 0 P P Από την τελευταία σχέση έχουμε : 0 ( ) P P ( πράξεις) ( ) ( ) 0 ( ) ( ) 0 ( ) ( ) Τα ιδιοδιανύσματα Απάντηση: Οι ιδιοτιμές είναι,, Βάσεις των ιδιόχωρων V ( ), V (), V () είναι αντίστοιχα τα διανύσματα

13 Ασκήσεις 4 0, 0, 0 0 Έχουμε P P 0 0, όπου P a Άρα 0 0 P 0 0 P 0 0 Με πράξεις βρίσκουμε 0 ( ) 0 0 ( ) b Ως B μπορούμε να θέσουμε 0 0 B P 0 0 P (πράξεις) c Χρησιμοποιώντας το γεγονός ότι κάθε εξίσωση της μορφής x a, όπου a {0}, έχει τρεις διακεκριμένες λύσεις στο, βλέπουμε ότι καθεμία από τις ιδιοτιμές,, έχει τρεις διακεκριμένες κυβικές ρίζες στο Επιπλέον αυτές οι 9 κυβικές ρίζες είναι ανά δύο διάφορες Άρα υπάρχουν τουλάχιστον 7 ανά δύο διάφοροι πίνακες B τέτοιοι ώστε B Λύση: Έχουμε το σύστημα a a a a a a a a 0 a Θέτουμε και παίρνουμε 0 a a () a a Διαδοχικά έχουμε a a a a a a a 4 a Από την τελευταία σχέση αρκεί να υπολογίσουμε τον Το χαρακτηριστικό πολυώνυμο του Α είναι ( x) ( x )( x ), οι ιδιοτιμές του Α είναι και, οπότε ο πίνακας διαγωνοποιείται Στην ιδιοτιμή αντιστοιχεί το ιδιοδιάνυσμα p και στην αντιστοιχεί το p Θέτουμε P οπότε P 4 Άρα

14 Ασκήσεις 4 ( ) 0 ( ) ( ) P P, 0 4 ( ) ( ) οπότε από την () προκύπτει ( ) ( ) a a a 4 Με αντικατάσταση των όρων a και a 4, έχουμε ( ) 5 a, 4 b Λύση: Από B B I παίρνουμε B B I 0 και άρα κάθε ιδιοτιμή του B στο ικανοποιεί 0 Άρα ο B δεν έχει πραγματική ιδιοτιμή Όμως το πολυώνυμο B ( x ) έχει πραγματικούς συντελεστές και περιττό βαθμό, οπότε έχει πραγματική ρίζα (Πρόταση 8), άτοπο t t 4 Υπόδειξη: a Αν, τότε U V Άρα U V Επίσης t t t U V 0 0 Άρα το άθροισμα είναι ευθύ Αποδεικνύεται (άσκηση) ότι μία βάση του U είναι η { E,, } { E E j } και μια βάση του V είναι η όπου Ej b Επειδή j j { E E j }, j j είναι ο πίνακας που έχει παντού 0 εκτός από τη θέση (, j ) όπου έχει Άρα v( v ) v( v ) v( v ) d U v, d V βλέπουμε ότι οι πιθανές ιδιοτιμές είναι, Για τους ιδιόχωρους έχουμε V () U και V ( ) V Άρα V () V ( ) (από το προηγούμενο ερώτημα) και συνεπώς η είναι διαγωνίσιμη Για το χαρακτηριστικό πολυώνυμο έχουμε ( x) ( ) ( x ) ( x ), Επειδή η είναι διαγωνίσιμη, το Θεώρημα 0 ) δίνει ( ) ( ) d V (), d V ( ), ( ) ( ) ( x) ( ) ( x ) ( x ) 5 Λύση: Επειδή η είναι διαγωνίσιμη, υπάρχει βάση{ v,, v } του V και υπάρχουν,, τέτοια ώστε ( v ) v,,, (Πρόταση ) Από την υπόθεση υπάρχουν,, με g( v ) v,,, Άρα g g ( v ) ( g( v )) g( ( v )) ( v ) g( v ) ( v ) g( v ) v v 0, l δηλαδή g g ( v ) 0 για κάθε,, Επειδή η απεικόνιση g g είναι γραμμική και το σύνολο { v,, v } παράγει το V, έπεται ότι ( g g )( v) 0 για κάθε v V Άρα g g 0 6 Υπόδειξη: a Δείξτε ότι κάθε δυο στήλες του είναι γραμμικά εξαρτημένες Εναλλακτικά, παρατηρήστε ότι a b b a και χρησιμοποιήστε το ότι ra( BC) { rab, rac}

15 Ασκήσεις 44 b Για τις ιδιοτιμές του Α, βλέπε άσκηση 8 Χρησιμοποιήστε τη σχέση d V (0) ra και το Θεώρημα 7 Υπόδειξη: Στην άσκηση 5 υπολογίσαμε τους ιδιόχωρους Εφαρμόστε το Μεγάλο Κριτήριο Εναλλακτικά, δείξτε ότι ο πίνακας για a b είναι διαγωνίσιμος (βλ προηγούμενη άσκηση) και παρατηρήστε ότι ο αρχικός πίνακας είναι πολυωνυμική παράσταση αυτού 8 Λύση: a Ο πίνακας της ως προς τη δοσμένη βάση είναι ο 0 0 a a, 0 a οπότε εύκολα βρίσκουμε ότι ( x) ( x) x ( x ) και οι ιδιοτιμές της είναι οι 0,0, Παρατηρούμε ότι ra (αφού det 0 και ο έχει γραμμικά ανεξάρτητες στήλες Άλλος τρόπος είναι να υπολογίσουμε μια κλιμακωτή μορφή του και να διαπιστώσουμε ότι το πλήθος των μη μηδενικών γραμμών σε αυτή είναι ) Ξέρουμε ότι d V (0) ra Επειδή d V (0) (0), η δεν είναι διαγωνίσιμη σύμφωνα με το Μεγάλο Κριτήριο b Με εύκολη επαγωγή αποδεικνύεται ότι για κάθε, ο * * είναι της μορφής και άρα ra Άρα έχουμε d V (0), d V () και d V (0) d V () που σημαίνει ότι η είναι διαγωνίσιμη για κάθε σύμφωνα με το Θεώρημα 0 9 Λύση: Θα δείξουμε επαγωγικά στο ότι το χαρακτηριστικό πολυώνυμο του δοσμένου πίνακα είναι το ( ) x ab x (*) Για v το αποδεικτέο επαληθεύεται με άμεσο υπολογισμό Έστω ότι και ότι το αποτέλεσμα ισχύει για ν- στη θέση του Χρησιμοποιώντας το ανάπτυγμα ορίζουσας ως προς την πρώτη γραμμή έχουμε x 0 0 a x 0 a 0 x 0 0 x 0 a det x det ( ) a det ( 0 x a 0 0 x ) 0 0 x a b b x b b b b b b x Από την επαγωγική υπόθεση έχουμε, x 0 a det ( ) x ab x () 0 x a b b x Με ανάπτυγμα ως προς την πρώτη στήλη έχουμε

16 Ασκήσεις 45 0 x 0 x x 0 x b b b Αντικαθιστώντας τις (), () στην () προκύπτει το ζητούμενο Τώρα από την υπόθεση det ( ) b det ( ) b ( x) () ab 0 και τη (*) έπεται ότι το χαρακτηριστικό πολυώνυμο του δοσμένου πίνακα είναι ( ) x που σημαίνει ότι κάθε ιδιοτιμή του στο είναι ίση με 0 Αν ήταν διαγωνίσιμος, θα ήταν ίσος με το μηδενικό, άτοπο από την υπόθεση ότι τουλάχιστον ένα από τα a,, a, b,, b είναι διάφορο του 0 0 Λύση: a Λάθος, γιατί διαφορετικά d(i ) d V (0) d(er ) 4d(I ) (0) b Σωστό Καθένας από τους δύο δοσμένους πίνακες έχει ιδιοτιμές τις 4,5 και άρα είναι διαγωνίσιμος (είναι και έχει διακεκριμένες ιδιοτιμές, βλ Πόρισμα 9) Άρα καθένας από αυτούς είναι όμοιος με τον και επομένως μεταξύ τους είναι όμοιοι c Σωστό Άμεσα επαληθεύεται ότι κάθε μη μηδενικό στοιχείο από καθέναν από του υπόχωρους V ( ), V ( ) είναι ένα ιδιοδιάνυσμα της g Αν B, B είναι βάσεις αντίστοιχα των V ( ), V ( ), ξέρουμε ότι η ένωση B B είναι μια βάση του V ( ) V ( ) (Πόρισμα 6) Άρα ο χώρος V ( ) V ( ) έχει μια βάση από ιδιοδιανύσματα της g Συνεπώς η g είναι διαγωνίσιμη (Πρόταση ) Λύση: Έχουμε d V (0) (0) σύμφωνα με το Θεώρημα Ξέρουμε ότι d V (0) r και άρα (0) Λύση: Έστω r r Συνεπώς x ( x) X από τον ορισμό του (0), X ιδιοδιανύσματα του που αντιστοιχούν στις ιδιοτιμές, αντίστοιχα Το σύνολο { X, X } είναι μια βάση του γιατί X, X είναι γραμμικά ανεξάρτητα αφού Συνεπώς για να δείξουμε το ζητούμενο αρκεί να δειχτεί ότι X ( I) ( I) X,, Για το αριστερό σκέλος είναι X X και το δεξιό ( I) ( I) X ( X X) ( X X) ( X X) ( X X) X Άρα ισχύει η ισότητα για Με ανάλογο υπολογισμό επαληθεύεται η ισότητα και για

17 Ασκήσεις 46 Σημείωση: Ένας άλλος τρόπος λύσης είναι ο ακόλουθος Επειδή, υπάρχει αντιστρέψιμος πίνακας P με P P 0 0 Συνεπώς αρκεί να δειχτεί ότι I I ( ) ( ) Αυτό επαληθεύεται με πράξεις πινάκων Λύση: a Επειδή ra, ο Α δεν είναι αντιστρέψιμος, δηλαδή το 0 είναι μια ιδιοτιμή του Α Έχουμε d V(0) ra Έστω u,, u μια βάση του V (0) Επειδή ra, υπάρχει u με u u u και u 0 Ισχυριζόμαστε ότι τα u,, u, u αποτελούν μια βάση του Πράγματι, αρκεί να δειχτεί ότι αυτά είναι γραμμικά ανεξάρτητα Αν u u u 0, όπου, τότε πολλαπλασιάζοντας με στα αριστερά έχουμε u u u u 0 0 Άρα u u 0 και επομένως 0 αφού τα,, u u είναι γραμμικά ανεξάρτητα Άρα υπάρχουν a,, a με u au a u Τότε ο πίνακας 0 0 a 0 0 a B 0 0 a είναι ο πίνακας της γραμμικής απεικόνισης L :, L ( u) u ως προς τη διατεταγμένη βάση { u,, u, u } του Άρα ο είναι όμοιος με τον B b Από το προηγούμενο ερώτημα, ο Α είναι όμοιος με τον B Άρα Tr TrB a και ( x) B ( x) ( ) x ( x a ) ( ) x ( x Tr) Έστω ότι Tr 0 Τότε d V(0) ra (0) και d V( Tr) ( Tr), οπότε ο Α είναι διαγωνίσιμος σύμφωνα με το Θεώρημα 0 Έστω ότι Tr 0 Αν ο Α ήταν διαγωνίσιμος, τότε θα ήταν όμοιος με το μηδενικό πίνακα, άτοπο αφού ra 0 4 Λύση a Θεωρούμε τη διατεταγμένη βάση { v, v, v } του [ x], όπου v x, v x, v (δικαιολογήστε γιατί είναι βάση) Εργαζόμενοι όπως ακριβώς στη λύση της άσκησης, βρίσκουμε V (0) v v, v v, V () v, οπότε αντίστοιχες βάσεις είναι { v v, v v}, { v} (δικαιολογήστε γιατί είναι βάση) Επειδή η g είναι πολυώνυμο g ( ) της, ξέρουμε ότι κάθε ιδιοδιάνυσμα της που αντιστοιχεί στην ιδιοτιμή λ, είναι ιδιοδιάνυσμα της g ( ) που αντιστοιχεί στην ιδιοτιμή ( ) Εδώ 8 ( x) x, οπότε V (0 ) V (), V () V () g g Άρα d V () d V (0 ), d V () d V ( ), οπότε d V () d V () g g Άρα d V () d V () και οι προηγούμενες ανισότητες είναι ισότητες, οπότε g g V () V (0 ), V () V ( ) g g Συνεπώς έχουμε για τους ιδιόχωρους της g τις ίδιες βάσεις με τους ιδιόχωρους της που βρήκαμε πριν g g

18 Ασκήσεις 47 b H είναι διαγωνίσιμη αφού d V (0) d V () H g είναι διαγωνίσιμη αφού d V () d V () g g c Η δεν είναι ισομορφισμός, αφού το 0 είναι ιδιοτιμή της H g είναι ισομορφισμός αφού το 0 δεν είναι ιδιοτιμή της g Πράγματι, ξέρουμε ότι η διάσταση του υπόχωρου που παράγουν τα ιδιοδιανύσματα της g είναι το άθροισμα των διαστάσεων των ιδιόχωρων της g Επειδή d V () d V (), η g δεν έχει άλλo ιδιόχωρο Άρα το 0 δεν είναι ιδιοτιμή της g g Σημείωση: Ότι το 0 δεν είναι ιδιοτιμή της g προκύπτει άμεσα από το θεώρημα φασματικής απεικόνισης που θα δούμε σε παρακάτω ενότητα 5 Απάντηση: Είναι διαγωνίσιμη, βλ απάντηση άσκησης Απάντηση a Σ Αν B Q Q και P b Λ Οι ιδιοτιμές του P, τότε 44 είναι οι 0, B ( P Q) P Q Έχουμε d V (0) (0) (Θεώρημα ) Άρα d V(0) Όμοια d V( ) Άρα d V(0) d V( ) 4 Άρα ο δεν είναι διαγωνίσιμος σύμφωνα με το Θεώρημα ) 44 c Σ Ο έχει 4 διακεκριμένες ιδιοτιμές d Σ Έχουμε d V (0) (0), d V () () και d V () () σύμφωνα με το Θεώρημα Άρα d V() () και d V() () Από το Επομένως, από το Θεώρημα ), διαγωνίσιμος d V (0) d V () d V () 4 d V (0) e Λ Ένα αντιπαράδειγμα είναι 0 0, 0 0 B Παρατηρούμε ότι ο είναι τριγωνικός με 0 και 0 στη διαγώνιο Άρα οι ιδιοτιμές του είναι οι,0 Επειδή ο είναι πίνακας και έχει δύο διακεκριμένες ιδιοτιμές, είναι διαγωνίσιμος σύμφωνα με το Πόρισμα 9 Όμοια ο B είναι διαγωνίσιμος Αλλά ο B δεν είναι διαγωνίσιμος (γιατί;) 0 Λ Ένα αντιπαράδειγμα είναι 0 0, B 0 0 Είδαμε πριν ότι οι, B είναι διαγωνίσιμοι 0 0 Εδώ B που δεν είναι διαγωνίσιμος (γιατί;) 0 0 g Λ Ένα αντιπαράδειγμα είναι ο (γιατί;) 0 h Σ Τα E, E 4 είναι ιδιοδιανύσματα του

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

A, και εξετάστε αν είναι διαγωνίσιμη.

A, και εξετάστε αν είναι διαγωνίσιμη. Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Θεώρημα (Κριτήριο διαγωνισιμότητας) Ένας είναι διαγωνίσιμος αν και μόνο αν ( x) γινόμενο διακεκριμένων

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II Εαρινό εξάμηνο

Γραμμική Άλγεβρα II Εαρινό εξάμηνο Γραμμική Άλγεβρα II Εαρινό εξάμηνο 0-0 Υποδείξεις/Απαντήσεις των Ασκήσεων Περιεχόμενα Ασκήσεις Πολυώνυμα Ασκήσεις Ιδιοτιμές-Ιδιοδιανύσματα 6 Ασκήσεις Διαγωνίσιμες γραμμικές απεικονίσεις 9 Ασκήσεις4 Τριγωνίσιμες

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3

Ασκήσεις2 8. ; Αληθεύει ότι το (1, 0, 1, 2) είναι ιδιοδιάνυσμα της f ; b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα της γραμμικής απεικόνισης 3 3 Ασκήσεις 8 Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμων και ιδιοδιανυσμάτων, υπολογισμός τους Σε διακεκριμένες ιδιοτιμές αντιστοιχούν γραμμικά ανεξάρτητα ιδιοδιανύσματα Αν ΑΧ=λΧ,

Διαβάστε περισσότερα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα

Γραμμική Άλγεβρα II. Ασκήσεις με Υποδείξεις - Απαντήσεις. Περιεχόμενα Γραμμική Άλγεβρα II Ασκήσεις με Υποδείξεις - Απαντήσεις ΜΜ Περιεχόμενα Ασκήσεις0: Όμοιοι Πίνακες Ασκήσεις: Πολυώνυμα 6 Ασκήσεις: Ιδιοτιμές και Ιδιοδιανύσματα Ασκήσεις: Διαγωνισιμότητα Ασκήσεις4: Τριγωνισιμότητα

Διαβάστε περισσότερα

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x]

1. a. Έστω b. Να βρεθούν οι ιδιοτιμές και τα ιδιοδιανύσματα του A Έστω A και ( x) [ x] σκήσεις Ασκήσεις Ιδιοτιμές και ιδιοδιανύσματα Βασικά σημεία Ορισμός ιδιοτιμών και ιδιοδιανυσμάτων, υπολογισμός τους Ιδιόχωροι, διάσταση ιδιόχωρου, εύρεση βάσης ιδιόχωρου Σε διακεκριμένες ιδιοτιμές αντιστοιχούν

Διαβάστε περισσότερα

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1

Ασκήσεις4 48. P AP τριγωνικό. Αφού δείξτε ότι ο A δεν είναι διαγωνίσιμος, βρείτε αντιστρέψιμο A 1 3 1 Ασκήσεις4 48 Ασκήσεις4 Τριγωνισιμότητα Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Θεώρημα: είναι τριγωνίσιμος αν και μόνο αν ( x ) γινόμενο πρωτοβάθμιων παραγόντων

Διαβάστε περισσότερα

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d

1. Για καθένα από τους ακόλουθους διανυσματικούς χώρους βρείτε μια βάση και τη διάσταση. 3. U x y z x y z x y. {(,, ) } a b. c d Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις6: Βάση και Διάσταση Βασικά σημεία Βάση διανυσματικού χώρου (ορισμός, παραδείγματα, μοναδικότητα συντελεστών) Θεώρημα (ύπαρξη, πρώτη μορφή) Έστω V K μη μηδενικός με K πεπερασμένο

Διαβάστε περισσότερα

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων

Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων 7 Βασικά σημεία Ασκήσεις6 Διαγωνοποίηση Ερμιτιανών Πινάκων Το σύνηθες εσωτερικό γινόμενο στο και Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορισμός, Ερμιτιανού πίνακα και μοναδιαίου πίνακα Ιδιότητες

Διαβάστε περισσότερα

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους

Ασκήσεις1 Πολυώνυμα. x x c. με το. b. Να βρεθούν όλες οι τιμές των a, Να βρεθεί ο μκδ και το εκπ τους Aσκήσεις1 1 Βασικά σημεία Ευκλείδεια διαίρεση πολυωνύμων Ορισμός και ιδιότητες μκδ και εκπ Ιδιότητες σχετικών πρώτων πολυωνύμων Τα ανάγωγα πολυώνυμα στο [ ] και [ ] Ασκήσεις1 Πολυώνυμα Ανάλυση πολυωνύμου

Διαβάστε περισσότερα

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί.

,..., v n. W πεπερασμένα παραγόμενοι και dimv. Τα ακόλουθα είναι ισοδύναμα f είναι ισομορφιμός. f είναι 1-1. f είναι επί. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις7: Γραμμικές Απεικονίσεις Βασικά σημεία Ορισμός και παραδείγματα γραμμικών απεικονίσεων Σύνθεση γραμμικών απεικονίσεων, ισομορφισμοί Κάθε γραμμική απεικόνιση f : V W, όπου

Διαβάστε περισσότερα

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις

Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου Όνομα συνοπτικές ενδεικτικές λύσεις Γραμμική Άλγεβρα ΙΙ Εξέταση Σεπτεμβρίου 009 Όνομα συνοπτικές ενδεικτικές λύσεις ΑΜ Ημ/ία Αίθουσα 1 Σύνολο Η εξέταση αποτελείται από θέματα. Κάθε θέμα αξίζει 4 μονάδες. Το άριστα είναι μονάδες και η βάση

Διαβάστε περισσότερα

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο

Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο Ασκήσεις6 7 Ασκήσεις6 Το σύνηθες εσωτερικό γινόμενο στο και Βασικά σημεία Το σύνηθες εσωτερικό γινόμενο στο και (ορισμοί και ιδιότητες) Ορθοκανονικές βάσεις και η μέθοδος Gram-Schmidt Ορθογώνιο συμπλήρωμα

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 6 Ιδιοτιμές και Ιδιοδιανύσματα Κεφάλαιο 6 Ορισμοί Έστω Α ένας πίνακας με πραγματικά στοιχεία Ο πραγματικός ή μιγαδικός αριθμός λ καλείται ιδιοτιμή του πίνακα Α εάν υπάρχει μη μηδενικό διάνυσμα v με πραγματικά ή μιγαδικά στοιχεία τέτοιο

Διαβάστε περισσότερα

B είναι ισοδύναμοι αν και μόνο αν υπάρχουν διατεταγμένες βάσεις ˆv του. , b, έχει λύση αν και μόνο αν rank( A) rank( A b)

B είναι ισοδύναμοι αν και μόνο αν υπάρχουν διατεταγμένες βάσεις ˆv του. , b, έχει λύση αν και μόνο αν rank( A) rank( A b) Ασκήσεις8: Γραμμικές Απεικονίσεις και Πίνακες Βασικά σημεία Ορισμός πίνακα γραμμικής απεικόνισης, παραδείγματα Ανάκτηση γραμμικής απεικόνισης από πίνακά της Ιδιότητες (πίνακας που αντιστοιχεί στο άθροισμα,

Διαβάστε περισσότερα

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των,

, b, έχει λύση αν και μόνο αν rank( A) rank( A b) είναι οι συνήθεις διατεταγμένες βάσεις των, Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις8: Γραμμικές Απεικονίσεις και Πίνακες Βασικά σημεία Ορισμός πίνακα γραμμικής απεικόνισης, παραδείγματα Ανάκτηση γραμμικής απεικόνισης από πίνακά της Ιδιότητες (πίνακας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 20 Οκτωβρίου 2008 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 0 Οκτωβρίου 008 Ημερομηνία παράδοσης της Εργασίας: Νοεμβρίου 008 Πριν

Διαβάστε περισσότερα

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής.

t t Αν κάποιος από αυτούς είναι αντιστρέψιμος, υπολογίστε τον αντίστροφό του. 2. Υπολογίστε την ορίζουσα του Δείξτε τα εξής. Γραμμική Άλγεβρα Ι, 07-8 Ασκήσεις4: Ορίζουσες Βασικά σημεία Ορισμός και ιδιότητες οριζουσών (ιδιότητες γραμμών και στηλών, αναπτύγματα οριζουσών, det( B) det( )det( B)) Ένας τετραγωνικός πίνακας είναι

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 9/6/08 Διδάσκων: Ι. Λυχναρόπουλος Έστω A= k και w = 3 0. Να βρεθεί η τιμή του k για την οποία

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας

Διαγωνοποίηση μητρών. Στοιχεία Γραμμικής Άλγεβρας Διαγωνοποίηση μητρών Στοιχεία Γραμμικής Άλγεβρας Όμοιες μήτρες Ορισμός: Οι τετραγωνικές μήτρες Α=[α ij ] nxn & B=[b ij ] nxn όμοιες (Α~Β): αν υπάρχει ομαλή μήτρα Ρ τ.ώ. Β = Ρ -1 Α Ρ A~B Β~ Α Ρ ομαλή μήτρα

Διαβάστε περισσότερα

8.1 Διαγωνοποίηση πίνακα

8.1 Διαγωνοποίηση πίνακα Κεφάλαιο 8 Κανονικές μορφές από 6 Κεφάλαιο 8 Κ Α Ν Ο Ν Ι Κ Ε Σ Μ Ο Ρ Φ Ε Σ 8. Διαγωνοποίηση πίνακα Ορισμός 8.α Ένας πίνακας M n ( ) oνομάζεται διαγωνοποιήσιμος στο αν υπάρχει αντιστρέψιμος πίνακας P M

Διαβάστε περισσότερα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα

Κεφάλαιο 9 1 Ιδιοτιμές και Ιδιοδιανύσματα Σελίδα από 58 Κεφάλαιο 9 Ιδιοτιμές και Ιδιοδιανύσματα 9. Ορισμοί... 9. Ιδιότητες... 9. Θεώρημα Cayley-Hamlto...9 9.. Εφαρμογές του Θεωρήματος Cayley-Hamlto... 9.4 Ελάχιστο Πολυώνυμο...40 Ασκήσεις του Κεφαλαίου

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 2 η Ημερομηνία Αποστολής στον Φοιτητή: 28 Νοεμβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 8 Νοεμβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 6 Ιανουαρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

Γραμμική Άλγεβρα Ι,

Γραμμική Άλγεβρα Ι, Γραμμική Άλγεβρα Ι, 207-8 Ασκήσεις2 και Ασκήσεις3: Γραμμοϊσοδύναμοι Πίνακες και Επίλυση Γραμμικών Συστημάτων Βασικά σημεία Γραμμοϊσοδυναμία πινάκων o Στοιχειώδεις πράξεις γραμμών o Ανηγμένη κλιμακωτή μορφή

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

2 3x 5x x

2 3x 5x x ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ Ι ΙΩΑΝΝΗΣ Σ ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Σεπτεμβρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, Αυγούστου 00 Θέμα. (μονάδες.5) α) [μονάδες: 0.5] Υπολογίστε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι

Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Εφαρμοσμένα Μαθηματικά ΙΙ 9ο Σετ Ασκήσεων (Λύσεις) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος. Δείξτε ότι ο V R εφοδιασμένος με τις ακόλουθες πράξεις (, a b) + (, d) ( a+, b+ d) και k ( ab, ) ( kakb,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 1 η Ημερομηνία Αποστολής στον Φοιτητή: 17 Οκτωβρίου 2011 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Οκτωβρίου 0 Ημερομηνία παράδοσης της Εργασίας: 5 Νοεμβρίου 0 Οι ασκήσεις

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 2010 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων της Εξέτασης Ιανουαρίου 00 στο μάθημα: «Γραμμική Άλγεβρα» (ΗΥ9) Ηράκλειο, 7 Ιανουαρίου 00 Θέμα. (μονάδες.5) α) [μονάδες:.0]. Υπολογίστε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0.

ΑΠΑΝΤΗΣΕΙΣ , Β= 1 y, όπου y 0. , όπου y 0. ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 8:-: ΑΠΑΝΤΗΣΕΙΣ Θέμα (Α) ( 5 μονάδες) Δίδονται οι πίνακες Α=,

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10

Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 10 Γραµµικη Αλγεβρα ΙΙ Ασκησεις - Φυλλαδιο 0 Επαναληπτικες Ασκησεις ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθοι Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laiihtml

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0

1 1 A = x 1 x 2 x 3. x 4. R 2 3 : a + b + c = x + y + z = 0. R 2 3 : a + x = b + y = c + z = 0 Γραμμική Άλγεβρα Ι Θέματα Εξετάσεων Ιανουαρίου 6. (α Υπολογίστε τον πίνακα X R και την ορίζουσα det(x 5 αν AX = B + C και ( ( ( 3 3 A = B = C =. 4 3 (β Θεωρούμε πίνακα A R n n τέτοιον ώστε A = 4A 4I n.

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 9 Επαναληπτικες Ασκησεις ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii8/laii8html Παρασκευή 4 Ιουνίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ: ΠΛΗΡΟΦΟΡΙΚΗ ΘΕ: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΉ Ι (ΠΛΗ ) ΛΥΣΕΙΣ ΕΡΓΑΣΙΑΣ Οι πρώτες δύο ασκήσεις αναφέρονται στις έννοιες γραµµική ανεξαρτησία, γραµµικός

Διαβάστε περισσότερα

Κεφάλαιο 7 Ορθογώνιοι Πίνακες

Κεφάλαιο 7 Ορθογώνιοι Πίνακες Κεφάλαιο 7 Ορθογώνιοι Πίνακες Εσωτερικό Γινόμενο και ορθογωνιότητα Έστω V ένας διανυσματικός χώρος, υπόχωρος του n. Κάθε συνάρτηση ορισμένη στο VV (την οποία θα συμβολίζουμε με ) ορίζει ένα εσωτερικό γινόμενο

Διαβάστε περισσότερα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα

Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Κεφάλαιο 6 Ιδιοτιµές και Ιδιοδιανύσµατα Ορισµοί Ιδιοτιµές και Ιδιοδιανύσµατα Έστω Α ένας πίνακας µε πραγµατικά στοιχεία Ο πραγµατικός ή µιγαδικός αριθµός λ καλείται ιδιοτιµή του πίνακα Α εάν υπάρχει µη

Διαβάστε περισσότερα

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες)

{ } ΠΛΗ 12: ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι 2 η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ. Απαντήσεις. 1. (15 µονάδες) Σελίδα από 8 (5 µονάδες) ΠΛΗ : ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗ ΠΛΗΡΟΦΟΡΙΚΗ Ι η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ Απαντήσεις i Εξηγείστε γιατί κάθε ένα από τα παρακάτω υποσύνολα του R δεν είναι υπόχωρος του R {[ xyz,, ] T z } {[ xyz,,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) Ενδεικτικές Λύσεις ΕΡΓΑΣΙΑ η (Ηµεροµηνία Αποστολής στον Φοιτητή: Οκτωβρίου 005) Η Άσκηση στην εργασία αυτή είναι

Διαβάστε περισσότερα

1 ιαδικασία διαγωνιοποίησης

1 ιαδικασία διαγωνιοποίησης ιαδικασία διαγωνιοποίησης Εστω V ένας R-διανυσματικός χώρος (ή έναςc-διανυσματικός χώρος) διάστασης n. Είναι γνωστό ότι κάθε διάνυσμα (,,..., n ) του χώρου V μπορεί να παρασταθεί και σαν πίνακας στήλη

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΗΣ Ιουλίου 0 Θέμα α) (Μον.6) Να βρεθεί η τιμή του πραγματικού

Διαβάστε περισσότερα

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι

Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

( A = A = 3 5 A 2 + B 2.

( A = A = 3 5 A 2 + B 2. ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Χειμερινό Εξάμηνο 25 Ασκήσεις Για πίνακες A R m n και B R p q ορίζονται οι πίνακες AB και BA και ισχύει AB = BA Τι συμπεραίνετε για τα m, n, p, q; 2 Για A, B R n n : (α Δείξτε ότι (A

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 05-6 (εκδοχή 8--05) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόμενα σελίδα Ασκήσεις Διαιρετότητα στους ακέραιους, ισοτιμίες Ασκήσεις Ακέραιοι odulo, Θεώρημα του Euler

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ).

ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). 1 ΧΑΡΑΚΤΗΡΙΣΤΙΚΟ ΠΟΛΥΩΝΥΜΟ ΠΙΝΑΚΑ: Έστω Α ένας n nπίνακας επί ενός σώματος F. Για χ στο F, ορίζεται το πολυώνυμο ( ως προς χ ) : h ( x) = det( A- xi ). A n Πόρισμα 1: Ο βαθμός του χαρ/κου πολυωνύμου ενός

Διαβάστε περισσότερα

Βασική Άλγεβρα. Ασκήσεις (εκδοχή )

Βασική Άλγεβρα. Ασκήσεις (εκδοχή ) Βασική Άλγεβρα Ασκήσεις 0-4 (εκδοχή 5--04) Βασική Άλγεβρα Ασκήσεις Υποδείξεις/Απαντήσεις Περιεχόµενα σελίδα Ασκήσεις ιαιρετότητα στους ακέραιους, ισοτιµίες Ασκήσεις Ακέραιοι odulo, Θεώρηµα του Euler 7

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ].

D = / Επιλέξτε, π.χ, το ακόλουθο απλό παράδειγμα: =[IA 1 ]. 4. Φυλλάδιο Ασκήσεων IV σύντομες λύσεις, ενδεικτικές απαντήσεις πολλαπλής επιλογής 4.. Άσκηση. Χρησιμοποιήστε τη διαδικασία Gauss-Jordan γιά να βρείτε τους αντιστρόφους των παρακάτω πινάκων, αν υπάρχουν.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-9) ΜΕΡΟΣ 7: ΙΔΙΟΤΙΜΕΣ & ΙΔΙΟΔΙΑΝΥΣΜΑΤΑ ΔΙΑΓΩΝΙΟΠΟΙΗΣΗ ΠΙΝΑΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΑΠΟ ΤΙΣ ΠΑΡΑΔΟΣΕΙΣ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Άσκηση (Μονάδες.5) Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/07 Διδάσκων: Ι. Λυχναρόπουλος Προσδιορίστε το c R ώστε το διάνυσμα (,, 6 ) να ανήκει στο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 3 η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 2008 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: 7 Ιανουαρίου 8 Ημερομηνία παράδοσης της Εργασίας: Φεβρουαρίου 8 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ 00- ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ. (5 µον.) ίνεται ο πίνακας 0 0 A. 0 (α) (α) Να βρεθούν όλες οι ιδιοτιµές και τα ιδιοδιανύσµατα του πίνακα Α. (β) Είναι δυνατή η διαγωνιοποίηση

Διαβάστε περισσότερα

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις

A N A B P Y T A ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ. 1 (α + β + γ) [(α-β) 2 +(α-γ) 2 +(β-γ) 2 ] και τις υποθέσεις ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ ΑΣΚΗΣΗ η Αν α +β +γ = αβγ και α + β + γ, να δείξετε ότι το πολυώνυμο P()=(α β) +(β γ) + γ α είναι το μηδενικό πολυώνυμο. Από την ταυτότητα του Euler α +β +γ -αβγ = (α + β + γ)[(α-β)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside

ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11

ΠΛΗ ΛΥΣΕΙΣ ΕΡΓ_2 ΣΕΛ. 1/11 ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ η Ημερομηνία Αποστολής στον Φοιτητή: Νοεμβρίου 007 Ημερομηνία παράδοσης της Εργασίας: 4 Δεκεμβρίου 007 Πριν από την λύση κάθε άσκησης καλό

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

Έντυπο Yποβολής Αξιολόγησης ΓΕ

Έντυπο Yποβολής Αξιολόγησης ΓΕ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ. Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ -ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Λύσεις των Θεμάτων εξέτασης προόδου στο μάθημα «Γραμμική Άλγεβρα» (ΗΥ9) Θέμα. (μονάδες.0) Οι ορίζουσες των πινάκων ABC,, βρεθούν οι ορίζουσες των πινάκων:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ Ιουλίου Θέμα ( μονάδες) 4 Θεωρούμε τον Ευκλείδειο χώρο και τον υποχώρο του V που παράγεται

Διαβάστε περισσότερα

Κεφάλαιο 7 Βάσεις και ιάσταση

Κεφάλαιο 7 Βάσεις και ιάσταση Κεφάλαιο 7: Βάσεις και ιάσταση Σελίδα από 9 Κεφάλαιο 7 Βάσεις και ιάσταση n Στο Κεφάλαιο 5 είδαµε την έννοια της βάσης στο και στο Κεφάλαιο 6 µελετήσαµε διανυσµατικούς χώρους. Στο παρόν κεφάλαιο θα ασχοληθούµε

Διαβάστε περισσότερα

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις

= 7. Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις 1. Εισαγωγή Δίνεται η συνάρτηση μεταφοράς = = 1 + 6 + 11 + 6 = + 6 + 11 + 6 =. 2 Στο σημείο αυτό θα υπενθυμίσουμε κάποιες βασικές ιδιότητες του μετασχηματισμού Laplace, δηλαδή τις L = 0 # και L $ % &'

Διαβάστε περισσότερα

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle.

να είναι παραγωγίσιμη Να ισχύει ότι f Αν μια από τις τρεις παραπάνω συνθήκες δεν ισχύουν τότε δεν ισχύει και το θεώρημα Rolle. Κατηγορία η Συνθήκες θεωρήματος Rolle Τρόπος αντιμετώπισης:. Για να ισχύει το θεώρημα Rolle για μια συνάρτηση σε ένα διάστημα [, ] (δηλαδή για να υπάρχει ένα τουλάχιστον (, ) τέτοιο ώστε ( ) ) πρέπει:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΤΕΛΙΚΗΣ ΕΞΕΤΑΣΗΣ 9 Ιουνίου (διάρκεια ώρες και λ) Διαβάστε προσεκτικά και απαντήστε

Διαβάστε περισσότερα

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 )

( 1)( 3) ( ) det( ) (1 )( 1 ) ( 2)( 2) pl( ) det( L ) (5 )( 7 ) ( 1) ( ) det( M ) (1 )(1 ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (ΘΕ ΠΛΗ ) ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 9 Ιουνίου 0 Θέμα Δίδονται οι πίνακες K= 5 4, L=, M=. 9 7 A) (8 μονάδες) Για κάθε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 121: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΜΑΣ 11: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ 3 1. Να βρείτε τις ιδιοτιμές και τα ιδιοδιανύσματα των πιο κάτω πινάκων: 1 0 3 1 1 1 1 1 3 1 1 4 a b.

Διαβάστε περισσότερα

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10)

1 x x x x 1 x x x x 1 x x x x 1 (10) B 2, B 1. (10) Γραμμική Άλγεβρα, Τμήμα Β (Τζουβάρας/Χαραλάμπους) Φεβρουάριος 07 (I) Εστω n n πίνακας A τέτοιος ώστε A = 6A, έστω δ.χ. V με dim(v ) = n και f : V V η γραμμική απεικόνιση με πίνακα A ως πρός κάποια βάση

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα

Εφαρμοσμένα Μαθηματικά ΙΙ 10ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Ιδιοτιμές - Ιδιοδιανύσματα Επιμέεια: Ι. Λυχναρόπουος. Έστω ο πίνακας 3. Δείξτε ότι το διάνυσμα v (,3) είναι ένα ιδιοδιάνυσμα που αντιστοιχεί στην ιδιοτιμή

Διαβάστε περισσότερα

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4)

Πορίσματα της Κανονικής Μορφής Smith (συμπλήρωμα για την Ενότητα 4) Πορίσματα της Κανονικής Μορφής Smh (συμπλήρωμα για την Ενότητα 4 Θα δείξουμε εδώ ότι από την κανονική μορφή Smh πινάκων πάνω από περιοχή κυρίων ιδεωδών R, έπονται τα εξής Το Θεώρημα Βάσεων Το Θεώρημα Ανάλυσης

Διαβάστε περισσότερα

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό 1.1 Όρια ακολουθιών Λέμε ότι η ακολουθία { n } συγκλίνει με όριο R αν για κάθε ϵ > 0 υπάρχει ακέραιος N = N(ϵ) τέτοιος ώστε (1.1) n < ϵ για κάθε n > N, και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ Εισαγωγή Οι αριθμοί που εκφράζουν το πλήθος των στοιχείων ανά αποτελούν ίσως τους πιο σημαντικούς αριθμούς της Συνδυαστικής και καλούνται διωνυμικοί συντελεστές διότι εμφανίζονται

Διαβάστε περισσότερα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα

Μία απεικόνιση από ένα διανυσματικό χώρο V στον εαυτό του, L : V V την ονομάζουμε γραμμικό τελεστή στο V (ή ενδομορφισμό του V ). Ορισμός. L : V V γρα Γραμμική Άλγεβρα ΙΙ Διάλεξη 15 Αναλλοίωτοι Υπόχωροι, Ιδιόχωροι Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 2/5/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 15 2/5/2014 1 / 12 Μία απεικόνιση από ένα διανυσματικό

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 9/6/5 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 5 Δίνεται ο πίνακας A 5. Αν διαγωνοποιείται να τον διαγωνοποιήσετε και στη συνέχεια να k υπολογίσετε το A όπου k θετικός

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί

Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί Κεφάλαιο 5 Γραμμικοί Μετασχηματισμοί 5 Γενικά Γραμμικοί Μετασχηματισμοί Μία σχέση μεταξύ των στοιχείων δύο συνόλων Α,Β αντιστοιχίζει στοιχεία του Α με στοιχεία του Β άλλου μέσω ενός κανόνα που μπορεί να

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebraii/laii2018/laii2018.html Παρασκευή 23 Μαρτίου 2018

Διαβάστε περισσότερα

Το φασματικό Θεώρημα

Το φασματικό Θεώρημα Το φασματικό Θεώρημα 1 Το φάσμα ενός τελεστή Λήμμα 1.1 Έστω A B(H) φυσιολογικός τελεστής. Αν x H είναι ιδιοδιάνυσμα του A με ιδιοτιμή λ, τότε A x = λx. Έπεται ότι οι ιδιόχωροι ενός φυσιολογικού τελεστή

Διαβάστε περισσότερα

Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος

Παραδείγματα (2 ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα Έστω ο υποχώρος W του R 5 που παράγεται από τα διανύσματα v=(,,-,,), v=(,,-,6,8), v=(,,,,6), v=(,,5,,8), v5=(,7,,,9). a)

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ Α. Ντούνης ΔΙΔΑΣΚΩΝ ΑΚΑΔ. ΥΠΟΤΡΟΦΟΣ Χ. Τσιρώνης ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ ΜΑΘΗΜΑ ΔΕΥΤΕΡΟ - Διανύσματα - Πράξεις με πίνακες - Διαφορικός λογισμός (1D) ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

Διαβάστε περισσότερα