Εισαγωγή. Στατική Λειτουργία V DD Q P Q N Q N =SAT QP=LIN QN=LIN Q P =SAT. Vi (Volts)
|
|
- Ευφημία Κολιάτσος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Εισαγωγή Η τεχνολογία COS εφευρέθηκε από τον Δρ. Frank Wanlass (17/5/33) το 1963 και κατοχυρώθηκε με πατέντα το 1967 (Αρ. πατέντας 3,356,5). Η COS τεχνολογία είναι αυτή που έχει κάνει πραγματικότητα την επανάσταση των ηλεκτρονικών. Όλες οι σύγχρονες ηλεκτρονικές συσκευές χαμηλής κατανάλωσης βασίζονται σ' αυτή. Τα βασικά της πλεονεκτήματα είναι: η σχεδόν μηδενική στατική κατανάλωση (Low Power) Σχ. 1. Ο COS Αναστροφέας η σχετικά απλή υλοποίησή της που επιτρέπει την ολοκλήρωση μεγάλης ποσότητας ψηφιακών κυκλωμάτων σε μικρό χώρο (ery Large Scale ntegration: LS) Η πρώτη εφαρμογή της COS τεχνολογίας δημιούργησε την σειρά ολοκληρωμένων κυκλωμάτων Η σειρά 4000 έχει μία μεγάλη λίστα από πολύ απλά ως και πολύπλοκα ψηφιακά κυκλώματα που λειτουργούν σε τάσεις τροφοδοσίας από 3 ως και 15. Ο COS αναστροφέας αποτελείται από δύο συμπληρωματικά (Complementary) OSFEs όπως φαίνεται στο Σχ. 1. i Q P Q N o Στατική Λειτουργία Θεωρώντας σαν τάση τροφοδοσίας του κυκλώματος τα 5 (=5) η πιθανή κατάσταση των OSFEs ανάλογα με το ζεύγος τιμών τάσης εισόδου εξόδου φαίνονται στο Σχ.. Παρατηρήστε ότι ενώ δεν είναι δυνατόν τα FEs να βρεθούν και τα δύο στην κατάσταση OFF, μπορεί αντιθέτως να βρεθούν σε κατάσταση SA, δίνοντας έτσι πολύ μεγάλο κέρδος τάσης o/i. Παρατηρήστε επιπλέον ότι δεν μπορεί να ρέει ρεύμα μέσα από τον αναστροφέα αν η τάση εισόδου είναι μικρότερη από 1 (N) διότι το QN είναι OFF ή αν είναι μεγαλύτερη από 4 (- P ) διότι τότε το QP είναι OFF. Το N-OSFE (QN) μπορεί να βρεθεί στις καταστάσεις: OFF: Όταν i<n LN: Όταν N<i>o-N SA: Όταν i<o-n o (olts) QN=OFF QP=LN Q N =SA Q P =LN Q N =SA Q P =SA Q N =LN Q P =SA QN=LN QP=OFF i (olts) Σχ.. Οι καταστάσεις των FE
2 Το P-OSFE (QP) μπορεί να βρεθεί στις καταστάσεις: OFF: Όταν i>- P LN: Όταν - P >i<o- P SA: Όταν i>o- P Υπολογισμός της OH Για τον υπολογισμό της OH θεωρούμε ότι η τάση εισόδου είναι πολύ χαμηλή, τόση ώστε το QN να μην άγει (i<n). Συνεπώς η τάση GS του QP είναι κατ απόλυτη τιμή μία μεγάλη τάση πολύ μεγαλύτερη από την P. Επειδή το QN δεν άγει, το ρεύμα που ρέει μέσα και από τα δύο OSFE είναι μηδενικό. Άρα: D P GS P DS DS 0 i o o P P Είναι προφανές ότι μία λύση της εξίσωσης είναι o OH Υπολογισμός της OL Θεωρώντας τώρα σαν είσοδο i=oh= διαπιστώνουμε ότι το QP είναι σε κατάσταση OFF (δεν άγει) και συνεπώς το ρεύμα που ρέει μέσα από τα δύο OSFEs είναι πάλι μηδενικό. Το QN έχει τάση GS=i= και συνεπώς είναι στην ωμική περιοχή (LN) άρα: D N GS N DS DS 0 o o N N Και εδώ είναι προφανές ότι μία λύση της εξίσωσης είναι: o 0 OL ΣΗΜΑΝΤΙΚΗ ΠΑΡΑΤΗΡΗΣΗ: Όταν η τάση εισόδου είναι Low ή High (0 ή ) η τάση εξόδου είναι αντίστοιχα ( ή 0) και το ρεύμα που ρέει από τον αναστροφέα και στις δύο περιπτώσεις είναι μηδενικό! Η Τάση Με δεδομένες τις τιμές OH και OL μπορούμε να προβλέψουμε ότι η χαρακτηριστική μεταφοράς τάσης εισόδου εξόδου θα περάσει μέσα από την περιοχή όπου και τα δύο OSFEs θα είναι στην περιοχή κορεσμού (SA). Και στην περίπτωση αυτή το ρεύμα που θα ρέει μέσα από τα δύο OSFEs θα είναι ίδιο και προφανώς μη μηδενικό και συνεπώς θα ισχύει: DP DN P GS P N GS N P P N N
3 Διαπιστώνουμε ότι στην κατάσταση αυτή (SA) τα δύο OSFEs μπορούν να βρεθούν μόνο για μία πολύ συγκεκριμένη τάση εισόδου: την. Επιλύοντας ως προς βρίσκουμε: P N 1 N P N P Θεωρώντας N= P και N=P διαπιστώνουμε ότι Η θεώρηση αυτή είναι πραγματικότητα στις περισσότερες σχεδιάσεις COS αναστροφέων. Με δεδομένη την τάση μπορούμε να υπολογίσουμε τα όρια της τάσης o που και τα δύο FEs θα είναι στον κορεσμό: Για να είναι το QN στον κορεσμό θα πρέπει να ισχύει: o>-n Για να είναι το QP στον κορεσμό θα πρέπει να ισχύει: -o<-- P o<+ P Άρα όσο η τάση εισόδου είναι και η τάση εξόδου κινείται στα όρια - <o<+ τα FEs είναι στον κορεσμό ΣΗΜΑΝΤΙΚΗ ΠΑΡΑΤΗΡΗΣΗ: Η τάση εξόδου μπορεί να κινείται από - έως + όταν η τάση εξόδου είναι. Συνεπώς το κέρδος τάσης του αναστροφέα για τάση εισόδου είναι άπειρο, βέβαια στην πραγματικότητα είναι πολύ μεγάλο. Υπολογισμός της L Αυξάνοντας την τάση εισόδου από τα 0 έως και την N η τάση εξόδου παραμένει σταθερή και ίση με OH (). Αυξάνοντας επιπλέον την τάση εισόδου αρχίζει να ρέει ρεύμα μέσα από τα FEs και η τάση εξόδου αρχίζει να μειώνεται. L είναι εκείνη η τάση εισόδου όπου η παράγωγος της τάσης εξόδου (ως προς την τάση εισόδου) γίνεται -1. Μπορούμε εύκολα να δούμε ότι στην περίπτωση αυτή το QN θα είναι SA, το QP θα είναι LN και τα ρεύματα των FEs θα είναι προφανώς ίδια: DN DP N GS N P GS N DS DS i i o o N P Παραγωγίζοντας ως προς i έχουμε:
4 o o R i o i o i i Σ ένα συμμετρικό COS αναστροφέα το R=N/P=1. Επειδή ψάχνουμε να βρούμε την τάση εισόδου όπου η παράγωγος γίνεται -1 η παραπάνω σχέση μπορεί να απλοποιηθεί: i o i o i o Θέτοντας το αποτέλεσμα αυτό στην εξίσωση των ρευμάτων τελικά υπολογίζουμε ό- τι: 3 i και 7 o Θεωρώντας την τάση =5 και N= P =1 οι τιμές για τις τάσεις που μόλις υπολογίσαμε είναι i=l=.15 και o=4.65. Υπολογισμός της Η Με παρόμοιο τρόπο σκεφτόμαστε για να υπολογίσουμε την H. Μειώνοντας την τάση εισόδου από έως και την -P η τάση εξόδου παραμένει σταθερή και ίση με OL (0). Μειώνοντας επιπλέον την τάση εισόδου αρχίζει να ρέει ρεύμα μέσα από τα FEs και η τάση εξόδου αρχίζει να αυξάνεται. Σ αυτή την περίπτωση: Η είναι εκείνη η τάση εισόδου όπου η παράγωγος της τάσης εξόδου (ως προς την τάση εισόδου) γίνεται -1. Μπορούμε εύκολα να δούμε ότι στην περίπτωση αυτή το QP θα είναι SA, το QN θα είναι LN και τα ρεύματα των FEs θα είναι προφανώς ίδια: DN DP N GS N DS DS P GS N i o o i N P Παραγωγίζοντας ως προς i έχουμε: o o o i o i i i R Σ ένα συμμετρικό COS αναστροφέα το R=N/P=1. Επειδή ψάχνουμε να βρούμε την τάση εισόδου όπου η παράγωγος γίνεται -1 η παραπάνω σχέση μπορεί να απλοποιηθεί: o i o i i o
5 Θέτοντας το αποτέλεσμα αυτό στην εξίσωση των ρευμάτων τελικά υπολογίζουμε ό- τι: 5 i και o Θεωρώντας την τάση =5 και N= P =1 οι τιμές για τις τάσεις που μόλις υπολογίσαμε είναι i=h=.75 και o=0.35. Υπολογισμός των Noise argins Με δεδομένες τις τιμές L και H είναι εύκολο να υπολογίσουμε τα περιθώρια θορύβου (Noise argins): N. 15 H OH H N. 15 L L OL Διαπιστώνουμε ότι στον συμμετρικό COS αναστροφέα (δηλαδή όταν R=1 και N= P ) τα περιθώρια θορύβου είναι ίδια. Χαρακτηριστική Μεταφοράς Με βάση την ανάλυση που προηγήθηκε μπορούμε να σχηματίσουμε την χαρακτηριστική μεταφοράς τάσης εισόδου τάσης εξόδου του COS αναστροφέα. Διαπιστώνουμε ότι η χαρακτηριστική μεταφοράς μπορεί να χωριστεί σε 5 τμήματα: Τμήμα QN QP D o i A OFF LN 0μΑ B SA LN >0μΑ 5v C SA SA ax D LN SA >0μΑ E LN OFF 0μΑ Στο Σχ. 3. δίδεται η χαρακτηριστική μεταφοράς τάσης εισόδου τάσης εξόδου του COS αναστροφέα 5 4,465 4 o (olts) 3 1 NL NH 0,35 L H i (olts) Σχ. 3. Η χαρακτηριστική μεταφοράς τάσης εισόδου τάσης εξόδου του COS αναστροφέα.
6 Δυναμική Λειτουργία Η μετάβαση της εξόδου του COS αναστροφέα από την μία στάθμη στην άλλη δεν γίνεται ακαριαία αλλά σταδιακά. Η αιτία της σταδιακής μετάβασης της τάσης εξόδου είναι η παρασιτική χωρητικότητα που εφαρμόζεται στην έξοδο του αναστροφέα. Το μέγεθος της παρασιτικής χωρητικότητας εξαρτάται από τον αριθμό των πυλών που οδηγούνται από τον αναστροφέα καθώς και από την τοπολογία του κυκλώματος. Κάθε είσοδος πύλης COS συνδέεται με τα Gates δύο OSFEs που παρουσιάζουν χωρητικότητα ως προς την γη. Επιπλέον η τοπολογία του κυκλώματος, οι καλωδιώσεις που συνδέουν την έξοδο του αναστροφέα με τις εισόδους των πυλών που αυτός οδηγεί παρουσιάζουν επιπλέον παρασιτική χωρητικότητα. Για την μελέτη της δυναμικής λειτουργίας του αναστροφέα ορίζουμε τους δύο χρόνους μετάβασης της τάσης εξόδου: PHL είναι ο χρόνος που απαιτείται για την μεταβολή της τάσης εξόδου από την τάση OH μέχρι το μέσον της δυναμικής περιοχής της τάσης εξόδου, δηλαδή μέχρι την τάση (OH+OL)/. PLH είναι ο χρόνος που απαιτείται για την μεταβολή της τάσης εξόδου από την τάση OL μέχρι το μέσον της δυναμικής περιοχής της τάσης εξόδου, δηλαδή μέχρι την τάση (OH+OL)/. Παρατηρείστε ότι και στις δύο περιπτώσεις η μεταβολή της τάσης είναι (OH-OL)/ Υπολογισμός του PHL Ο χρόνος καθυστέρησης της μεταβολής της τάσης εξόδου καθώς κινείται από High σε Low (PHL)είναι ουσιαστικά ο χρόνος που χρειάζεται να εκφορτιστεί η παρασιτική χωρητικότητα Co που υπάρχει στην έξοδο του αναστροφέα από την τάση OH μέχρι το μέσον της πλήρους διακύμανσης της τάσης εξόδου του αναστροφέα. Με δεδομένο ότι η τάση OH= και OL=0 εύκολα μπορούμε να συμπεράνουμε ότι ο χρόνος PHL είναι ο χρόνος που απαιτείται για την εκφόρτιση του πυκνωτή από την τάση έως την τάση /. Κατά την διάρκεια του χρόνου αυτού η είσοδος στον αναστροφέα είναι High και συνεπώς το QP είναι OFF ενώ το QN άγει και είναι αυτό που ουσιαστικά εκφορτίζει την παρασιτική χωρητικότητα. Καθ όλη την διάρκεια της εκφόρτισης του πυκνωτή η τάση GS του QN θα είναι High, δηλαδή θα έχουμε GS=. Στην αρχή της εκφόρτισης έχουμε DS=o= και συνεπώς το QN θα είναι σε κατάσταση κόρου (SA). Άρα το ρεύμα που θα εκφορτίζει τον πυκνωτή θα είναι: D1 N N Στο τέλος του χρόνου PHL έχουμε DS=o=/ και συνεπώς το QN θα είναι στη γραμμική περιοχή (LN). Άρα το ρεύμα που θα εκφορτίζει τον πυκνωτή θα είναι: D N N Μπορούμε να θεωρήσουμε ότι η παρασιτική χωρητικότητα εκφορτίζεται σχεδόν γραμμικά (δηλαδή με σταθερό ρεύμα) κατά την διάρκεια του χρόνου PHL. Συνεπώς το μέσο ρεύμα εκφόρτισης θα είναι:
7 D1 D και άρα ο χρόνος που απαιτείται για την εκφόρτιση της παρασιτικής χωρητικότητας θα είναι: PHL Co Co Υπολογισμός του PLΗ Παρόμοιο σκεπτικό με αυτό του αναπτύξαμε για τον υπολογισμό του χρόνου PHL μπορούμε να ακολουθήσουμε για τον υπολογισμό του χρόνου PLH. Κατά την διάρκεια του χρόνου PLH η είσοδος στον αναστροφέα είναι Low και συνεπώς το QN είναι OFF ενώ το QP άγει και είναι αυτό που ουσιαστικά φορτίζει την παρασιτική χωρητικότητα. Καθ όλη την διάρκεια της φόρτισης του πυκνωτή η τάση GS του QP θα είναι. Στην αρχή της φόρτισης έχουμε DS =-o= και συνεπώς το QP θα είναι σε κατάσταση κόρου (SA). Άρα το ρεύμα που θα φορτίζει εκείνη την στιγμή τον πυκνωτή θα είναι: D1 P P Στο τέλος του χρόνου PLH έχουμε DS =-o=/ και συνεπώς το QP θα είναι στη γραμμική περιοχή (LN). Άρα το ρεύμα που θα φορτίζει τον πυκνωτή θα είναι: D P N Μπορούμε να θεωρήσουμε ότι η παρασιτική χωρητικότητα εκφορτίζεται σχεδόν γραμμικά (δηλαδή με σταθερό ρεύμα) κατά την διάρκεια του χρόνου PLH. Συνεπώς το μέσο ρεύμα φόρτισης θα είναι: D1 D και άρα ο χρόνος που απαιτείται για την φόρτιση της παρασιτικής χωρητικότητας θα είναι: PLH Co Co Παρατηρείστε ότι οι εκφράσεις για τα ρεύματα και τους χρόνους και στην περίπτωση της φόρτισης αλλά και στην περίπτωση της εκφόρτισης του πυκνωτή είναι παρόμοιες. Συμπεράνουμε λοιπόν ότι ένας συμμετρικός COS αναστροφέας έχει τους χρόνους PHL και PLH ίσους. Κατανάλωση Ισχύος
Επιπλέον, για ευκολία στις πράξεις ορίζουμε τις παρακάτω μεταβλητές
Αναστροφέας με φορτίο Enhancement OSFE Η απλούστερη υλοποίηση OSFE αναστροφέα με ενεργό φορτίο χρησιμοποιεί δύο N-OSFES. Στην ανάλυση που ακολουθεί θα διαπιστώσουμε ότι η χαρακτηριστική μεταφοράς απέχει
Διαβάστε περισσότεραΕπιπλέον, για ευκολία στις πράξεις ορίζουμε τις παρακάτω μεταβλητές
Αναστροφέας με φορτίο Depletion MOSFET Ένας ακόμη αναστροφέας NMOS τεχνολογίας είναι ο αναστροφέας με φορτίο (ML) Depletion NMOS. Ο αναστροφέας αυτός έχει καλύτερη χαρακτηριστική μεταφοράς σε σύγκριση
Διαβάστε περισσότεραΥ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Διαβάστε περισσότεραΥ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Εισαγωγή
Διαβάστε περισσότεραΛογικά Κυκλώματα CMOS. Διάλεξη 5
Λογικά Κυκλώματα CMOS Διάλεξη 5 Δομή της διάλεξης Εισαγωγή Η τεχνολογία αντιστροφέων CMOS Λειτουργία του κυκλώματος Χαρακτηριστική μεταφοράς τάσης Περιθώρια θορύβου Κατανάλωση ισχύος Οι πύλες CMOS NOR
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Διδάσκοντες:
Διαβάστε περισσότεραΤρίτο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών. Δρ. Χ. Μιχαήλ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Τρίτο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών Δρ. Χ. Μιχαήλ Πάτρα, 2010 ΑΣΚΗΣΗ 1 Ένας μικροεπεξεργαστής πρέπει να οδηγήσει ένα δίαυλο
Διαβάστε περισσότεραΟ BJT Αναστροφέας. Στατική Ανάλυση. Δεδομένα. Ο Απλός BJT Αναστροφέας
Ο BJT Αναστροφέας Ο πιο απλός αναστροφέας που μπορούμε να υλοποιήσουμε φαίνεται στο διπλανό σχήμα και αποτελείται από ένα τρανζίστορ και δύο αντιστάσεις. Μελετώντας το κύκλωμα θα διαπιστώσουμε ότι οι επιδόσεις
Διαβάστε περισσότεραΚεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων CMOS Αναστροφέας Κεφάλαιο ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας VLSI Systems ad Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. I V χαρακτηριστική
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Περιεχόμενα Βασικά ηλεκτρικά χαρακτηριστικά
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (2 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (2 η σειρά διαφανειών) Τα ψηφιακά ηλεκτρονικά κυκλώματα χωρίζονται σε κατηγορίες ( λογικές οικογένειες ) ανάλογα με την τεχνολογία κατασκευής
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών) Διεργασίες Μικροηλεκτρονικής Τεχνολογίας, Οξείδωση, Διάχυση, Φωτολιθογραφία, Επιμετάλλωση, Εμφύτευση, Περιγραφή CMOS
Διαβάστε περισσότεραΜικροηλεκτρονική - VLSI
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 5: Αντιστροφέας CMOS Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης
Διαβάστε περισσότεραΨηφιακά Ηλεκτρονικά. Μάθηµα 2ο.. Λιούπης
Ψηφιακά Ηλεκτρονικά Μάθηµα 2ο. Λιούπης Transistor διπολικής επαφής (BJT) I B B C E I C Στα ψηφιακά κυκλώµατα χρησιµοποιείται κατά κύριο λόγο ως διακόπτης Στο σχήµαφαίνεταιένα τυπικό BJT τύπου NPN I B :
Διαβάστε περισσότεραΛογικά Κυκλώματα NMOS. Διάλεξη 4
Λογικά Κυκλώματα NMOS Διάλεξη 4 Δομή της διάλεξης Η Σχεδίαση του Αντιστροφέα NMOS με Ωμικό Φόρτο Η Στατική Σχεδίαση του Αντιστροφέα NMOS με Κορεσμένο Φόρτο ΟΑντιστροφέαςΝMOS με Γραμμικό Φόρτο ΟΑντιστροφέαςΝMOS
Διαβάστε περισσότεραΣτατική ηλεκτρική ανάλυση του αντιστροφέα CMOS. Εισαγωγή στην Ηλεκτρονική
Στατική ηλεκτρική ανάλυση του αντιστροφέα CMO Εισαγωγή στην Ηλεκτρονική Στατική (C) ηλεκτρική ανάλυση του αντιστροφέα CMO Θα εξάγουµε τη χαρακτηριστική τάσης = f( ) (καθώς και τη χαρακτηριστική ρεύµατος
Διαβάστε περισσότεραΛογική Τρανζίστορ-Τρανζίστορ. Διάλεξη 3
Λογική Τρανζίστορ-Τρανζίστορ (TTL) και Schottky TTL Διάλεξη 3 Δομή της διάλεξης Το κύκλωμα της πύλης TTL Ανάλυση της πύλης TTL Χαρακτηριστικά της πύλης TTL ΗπύληNAND TTL και άλλα λογικά κυκλώματα TTL Βελτίωση
Διαβάστε περισσότεραΨηφιακά Ηλεκτρονικά. Μάθηµα 3ο.. Λιούπης
Ψηφιακά Ηλεκτρονικά Μάθηµα 3ο. Λιούπης Χαρακτηριστική καµπύλη µεταφοράς τάσης TTL V out (volts) εγγυηµένη περιοχή V OH V OH(min) V OL(max) 2.4 Ηκαµπύλη µεταφοράς εξαρτάται από τη θερµοκρασία περιβάλλοντος
Διαβάστε περισσότερα4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα
ΚΕΦΑΛΑΙΟ 4 ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ 4.1 Εισαγωγή Για την υλοποίηση των λογικών πυλών χρησιμοποιήθηκαν αρχικά ηλεκτρονικές λυχνίες κενού και στη συνέχεια κρυσταλλοδίοδοι και διπολικά τρανζίστορ. Τα ολοκληρωμένα
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS
Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Α. Αναστροφέας MOSFET. Α.1 Αναστροφέας MOSFET µε φορτίο προσαύξησης. Ο αναστροφέας MOSFET (πύλη NOT) αποτελείται από
Διαβάστε περισσότερα«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο
ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 2 η :
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.
Διαβάστε περισσότεραΚαθυστέρηση στατικών πυλών CMOS
Καθυστέρηση στατικών πυλών CMOS Πρόχειρες σημειώσεις Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Άνοιξη 2008 Παρόλο που οι εξισώσεις των ρευμάτων των MOS τρανζίστορ μας δίνουν
Διαβάστε περισσότεραΦόρτιση πυκνωτή μέσω αντίστασης Εάν αρχικά, η τάση στο άκρο του πυκνωτή είναι 0, τότε V DD V(t) για την τάση σε χρόνο t, V(t) θα έχουμε V t ( t ) (1 e ) V DD Αποφόρτιση πυκνωτή Εάν αρχικά, η τάση στο άκρο
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.
Διαβάστε περισσότεραΠολυσύνθετες πύλες. Διάλεξη 11
Πολυσύνθετες πύλες NMOS και CMOS Διάλεξη 11 Δομή της διάλεξης Εισαγωγή ΗσύνθετηλογικήNMOS ΗσύνθετηλογικήCMOS Η πύλη μετάδοσης CMOS Ασκήσεις 2 Πολυσύνθετες πύλες NMOS και CMOS Εισαγωγή 3 Εισαγωγή Στη λογική
Διαβάστε περισσότεραi C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0.
Α. Δροσόπουλος 6 Ιανουαρίου 2010 Περιεχόμενα 1 Κυκλώματα πρώτης τάξης 2 1.1 Εκφόρτιση κυκλωμάτων RC πρώτης τάξης.................................. 2 1.2 Εκφόρτιση κυκλωμάτων RL πρώτης τάξης...................................
Διαβάστε περισσότεραΣχεδίαση Αναλογικών Κυκλωμάτων VLSI
Σχεδίαση Αναλογικών Κυκλωμάτων S «Διαφορικά Ζεύγη» Φώτης Πλέσσας fplessas@f.uth.r Δομή Παρουσίασης Αναθεώρηση απλής διαφορικής λειτουργίας Περιγραφή και ανάλυση του διαφορικού ζεύγους Λόγος απόρριψης κοινού
Διαβάστε περισσότεραΕνότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ
Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Οικογένειες Ψηφιακής Λογικής Τάση τροφοδοσίας Λογικά επίπεδα - Περιθώριo θορύβου Χρόνος μετάβασης Καθυστέρηση διάδοσης Κατανάλωση ισχύος Γινόμενο
Διαβάστε περισσότεραΚαθυστέρηση αντιστροφέα και λογικών πυλών CMOS. Εισαγωγή στην Ηλεκτρονική
Καθυστέρηση αντιστροφέα και λογικών πυλών MOS Εισαγωγή στην Ηλεκτρονική Ορισµοί καθυστέρησης λογικών πυλών MOS Καθυστερήσεις διάδοσης (propagaion delays) εισόδουεξόδου: Καθυστέρηση ανόδου ph : η διαφορά
Διαβάστε περισσότεραΨηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης
Ψηφιακά Ηλεκτρονικά Μάθηµα 4ο. Λιούπης Λογική συζευγµένου εκποµπού Emitter-coupled logic (ECL) Χρησιµοποιούνται BJT transistor, µόνο στην ενεργή περιοχή Εµφανίζονται µικρές αλλαγές δυναµικού µεταξύ των
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΟΔΟΣ (Μάθημα 4 ο 5 ο 6 ο 7 ο ) 1/12 4 o εργαστήριο Ιδανική δίοδος n Συμβολισμός της διόδου n 2/12 4 o εργαστήριο Στατική χαρακτηριστική διόδου Άνοδος (+) Κάθοδος () Αν στην ιδανική
Διαβάστε περισσότεραΚεφάλαιο 11. Κυκλώματα Χρονισμού
Κεφάλαιο 11. Κυκλώματα Χρονισμού Σύνοψη Στο κεφάλαιο αυτό αναλύεται η λειτουργία των κυκλωμάτων χρονισμού. Τα κυκλώματα αυτά παρουσιάζουν πολύ μεγάλο πρακτικό ενδιαφέρον και απαιτείται να λειτουργούν με
Διαβάστε περισσότεραHY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.
HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/e330 1 Περιεχόμενα Διαισθητική λειτουργία Χαρακτηριστικά Αντιστροφέα
Διαβάστε περισσότεραΗΥ335: Προχωρημένη Ηλεκτρονική. «Βαθμίδες Εξόδου» Φώτης Πλέσσας UTH ΤHMMY
ΗΥ335: Προχωρημένη Ηλεκτρονική «Βαθμίδες Εξόδου» Φώτης Πλέσσας fplessas@inf.uth.gr ΤHMMY Σκοπός διάλεξης Γιατί χρησιμοποιούμε στάδια εξόδου Ακόλουθος εκπομπού Παρουσίαση των βασικών προδιαγραφών του Ψαλιδισμός
Διαβάστε περισσότεραΔεύτερο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών. Δρ. Χ. Μιχαήλ
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Δεύτερο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών Δρ. Χ. Μιχαήλ Πάτρα, 2009 ΑΣΚΗΣΗ 1 Αναλύστε τι ισχύει για την πύλη DTL του Σχ.1, ανάλογα
Διαβάστε περισσότεραΘΕΜΑ : ΒΑΣΙΚΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΤΕΛΕΣΤΙΚΟΥ ΕΝΙΣΧΥΤΗ. ΔΙΑΡΚΕΙΑ: 1περίοδος
ΘΕΜΑ : ΒΑΣΙΚΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΤΕΛΕΣΤΙΚΟΥ ΕΝΙΣΧΥΤΗ ΔΙΑΡΚΕΙΑ: 1περίοδος Ο τελεστικός ενισχυτής μπορεί να συνδεθεί σε διάφορες συνδεσμολογίες δημιουργώντας πολύ χρήσιμα κυκλώματα. τόσο στα αναλογικά κυκλώματα
Διαβάστε περισσότεραΗλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ. Εισαγωγή σε Ενισχυτές
Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ Εισαγωγή στα Ολο. Κυκλ. Βασική Φυσική MO Ενισχυτέςενόςσταδίου Διαφορικοί Ενισχυτές Καθρέφτες Ρεύματος Απόκριση Συχνότητας Ηλεκτρικός Θόρυβος Ανατροφοδότηση Σχεδιασμός
Διαβάστε περισσότεραΛογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2
Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs Διάλεξη 2 Δομή της διάλεξης Επανάληψη άλγεβρας Boole Λογική με διόδους Λογική Αντιστάσεων-Τρανζίστορ (Resistor-Transistor Logic ή RTL) Λογική Διόδων-Τρανζίστορ
Διαβάστε περισσότεραK14 Αναλογικά Ηλεκτρονικά 9: Διαφορικός Ενισχυτής Τελεστικός Ενισχυτής
K14 Αναλογικά Ηλεκτρονικά 9: Διαφορικός Ενισχυτής Τελεστικός Ενισχυτής Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Γενικά Περιεχόμενα 1 Γενικά 2 Διαφορικός
Διαβάστε περισσότεραΟ πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος
Διαβάστε περισσότεραΆσκηση 7. Τρανζίστορ Επίδρασης Πεδίου Επαφής (JFET)
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 7 Τρανζίστορ Επίδρασης Πεδίου Επαφής (JFET) Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η κατανόηση της λειτουργία των
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία
Διαβάστε περισσότερα3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική
1 3. Κυκλώματα διόδων 3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική Στην πράξη η δίοδος προσεγγίζεται με τμηματική γραμμικοποίηση, όπως στο σχήμα 3-1, όπου η δυναμική αντίσταση της διόδου
Διαβάστε περισσότεραΤα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής
Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τα τρανζίστορ επίδρασης πεδίου Τα πιο βασικά στοιχεία δομής των ηλεκτρονικών κυκλωμάτων
Διαβάστε περισσότεραΣχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Τύποι Αναλύσεων (1 από2) Για την μελέτη της συμπεριφοράς των κυκλωμάτων
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (5 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (5 η σειρά διαφανειών) Τρανζίστορ διπολικής επαφής (Bipolar Junction Transistor BJT) Στα ψηφιακά κυκλώματα αυτό το τρανζίστορ χρησιμοποιείται
Διαβάστε περισσότεραΆσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης
ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 5 Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η μελέτη των
Διαβάστε περισσότεραΤελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής
Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕΤΑΓΩΓΗ ΚΥΚΛΩΜΑΤΩΝ
ΜΕΤΑΓΩΓΗ ΑΠΟ ΤΟ ΕΝΑ ΚΥΚΛΩΜΑ LC ΣΤΟ ΑΛΛΟ. ΔΥΟ ΠΥΚΝΩΤΕΣ ΚΑΙ ΕΝΑ ΠΗΝΙΟ. Στο κύκλωμα του σχήματος το πηνίο έχει συντελεστή αυτεπαγωγής L = (A) (B) mh, ο πυκνωτής () έχει χωρητικότητα C = μf, ενώ ο πυκνωτής
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών) Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού ρεύματος είναι ενός είδους
Διαβάστε περισσότεραΚεφάλαιο 9 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Λογικές ομές 2
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Συνδυαστική Λογική Κεφάλαιο 9 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Στατική CMOS λογική και λογική 2. Διαφορική λογική 3.
Διαβάστε περισσότερα(α) Σχ. 5/30 Σύμβολα πυκνωτή (α) με πολικότητα, (β) χωρίς πολικότητα
5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι ( ΠΥΚΝΩΤΕΣ) Πυκνωτές O πυκνωτής είναι ένα ηλεκτρικό εξάρτημα το οποίο έχει την ιδιότητα να απορροφά και να αποθηκεύει ηλεκτρική ενέργεια και να την απελευθερώνει, σε προκαθορισμένο
Διαβάστε περισσότεραΕισαγωγή στα ψηφιακά κυκλώματα. Διάλεξη 1
Εισαγωγή στα ψηφιακά κυκλώματα Διάλεξη 1 Δομή της διάλεξης Εισαγωγή στο Μάθημα Βασικές αρχές λογικών κυκλωμάτων Ο BJT ως διακόπτης Μεταβατικά φαινόμενα Παράδειγμα μεταβατικής λειτουργίας Ασκήσεις 2 Εισαγωγή
Διαβάστε περισσότεραΑνάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών
Ανάλυση Κυκλωμάτων Στοιχεία Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγή Αντιστάτης Πηγές τάσης και ρεύματος Πυκνωτής
Διαβάστε περισσότεραΨηφιακά Ηλεκτρονικά. Προαιρετική εργασία
Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΙΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Ψηφιακά Ηλεκτρονικά Προαιρετική εργασία «Κατασκευή δυαδικού απαριθμητή με δεκαδική απεικόνιση δεκάδων και μονάδων» Συνυπεύθυνος
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα
Διαβάστε περισσότεραΨηφιακά Ηλεκτρονικά. Μάθηµα 5ο.. Λιούπης
Ψηφιακά Ηλεκτρονικά Μάθηµα 5ο. Λιούπης Τεχνολογία CMOS Υλοποιεί την πλειοψηφία των µοντέρνων ψηφιακών κυκλωµάτων λογικές πύλες µνήµες επεξεργαστές άλλα σύνθετα κυκλώµατα Συνδυάζει συµπληρωµατικά pmos και
Διαβάστε περισσότερα1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή
Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής
Διαβάστε περισσότεραΣε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους
3. ΤΡΑΝΖΙΣΤΟΡ ΕΓΚΑΡΣΙΟΥ ΠΕΔΙΟΥ (Field Effect Transistor FET) 3.1. Γενικά Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους φορέων (ηλεκτρόνια και οπές), τα τρανζίστορ
Διαβάστε περισσότεραΗ αντιστοιχία των παραπάνω επαφών με αυτές του διπολικού τρανζίστορ είναι (προφανώς) η εξής: S E, D C, G B.
3. ΤΡΑΝΖΙΣΤΟΡ ΕΓΚΑΡΣΙΟΥ ΠΕΔΙΟΥ (Field Effect Transistor FET) 3.1. Γενικά Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους φορέων (ηλεκτρόνια και οπές), τα τρανζίστορ
Διαβάστε περισσότεραΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΦΥΣΙΚΗΣ ( ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΙΑΣ ) ΒΑΡΝΑΒΙΔΟΥ Β. ΧΡΙΣΤΙΝΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ανάλυση λειτουργίας βασικών
Διαβάστε περισσότεραΜνήμες RAM. Διάλεξη 12
Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη
Διαβάστε περισσότεραΕργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε αναστροφείς CMOS VLSI
Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.
Διαβάστε περισσότεραΣχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I
Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I 2 η Εργαστηριακή Άσκηση Μελέτη των Παρασιτικών Χωρητικοτήτων και της Καθυστέρησης στα Κυκλώματα CMOS Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της
Διαβάστε περισσότεραΣελίδα 1 από 8. Απαντήσεις στο φυλλάδιο 52
Σελίδα 1 από 8 Απαντήσεις στο φυλλάδιο 52 Ερώτηση 1 η : Πολυδονητές ονοµάζονται τα ηλεκτρονικά κυκλώµατα που παράγουν τετραγωνικούς παλµούς. 2 η : Ανάλογα µε τον τρόπο λειτουργίας τους διακρίνονται σε:
Διαβάστε περισσότεραΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Διαβάστε περισσότεραΜικροηλεκτρονική - VLSI
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 6.1: Συνδυαστική Λογική - Βασικές Πύλες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΚΥΚΛΩΜΑΤΟΣ ΚΟΙΝΟΥ ΕΚΠΟΜΠΟΥ ΜΕΛΕΤΗ DC ΣΥΜΠΕΡΙΦΟΡΑΣ Στο σχήμα φαίνεται ένα κύκλωμα κοινού εκπομπού από το βρόχο εισόδου Β-Ε ο νόμος του Kirchhoff δίνει: Τελικά έχουμε: I I BB B B E E BE B BB E IE
Διαβάστε περισσότερα4 η ΕΝΟΤΗΤΑ. Το MOSFET
4 η ΕΝΟΤΗΤΑ Το MOSFET Άσκηση 12η. Ενισχυτής κοινής πηγής με MOSFET, DC λειτουργία. 1. Υλοποιείστε το κύκλωμα του ενισχυτή κοινής πηγής με MOSFET (2Ν7000) του Σχ. 1. V DD = 12 V C by R g = 50 C i R A 1
Διαβάστε περισσότεραΑνάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 6: Παθητικά στοιχεία αποθήκευσης ενέργειας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.
Διαβάστε περισσότεραΚεφάλαιο 4 o και 6 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Καθυστέρηση ιάδοσης Σήματος 2
ΚΥΚΛΩΜΑΤΑ VSI Πανεπιστήμιο Ιωαννίνων Καθυστέρηση Διάδοσης Σήματος Κεφάλαιο 4 o και 6 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VSI Διάρθρωση VSI Sysems ad omuer rchiecure ab. Παρασιτικές
Διαβάστε περισσότεραΚεφάλαιο 4 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Λογικός Φόρτος 2
ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Λογικός Φόρτος Κεφάλαιο 4 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση. Μοντέλο γραμμικής καθυστέρησης. Λογικός και ηλεκτρικός φόρτος
Διαβάστε περισσότεραΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου)
ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου) 1 FET Δομή και λειτουργία Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού ρεύματος είναι ενός
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 16/02/2010 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 6/0/00 ΘΕΜΑ ο ( μονάδες) Για να ελέγξουμε την ποιότητα των ενδείξεων μιας αντλίας παροχής αέρα ενός βενζινάδικου, φουσκώνουμε τα λάστιχα δύο αυτοκινήτων με την ένδειξη
Διαβάστε περισσότεραΔυναμική συμπεριφορά των λογικών κυκλωμάτων MOS. Διάλεξη 10
Δυναμική συμπεριφορά ων λογικών κυκλωμάων MOS Διάλεξη 10 Δομή ης διάλεξης Εισαγωγή Ανισροφέας NMOS με φορίο ύπου αραίωσης Ανισροφέας CMOS Διάφορα ζηήμαα Ασκήσεις Δυναμική συμπεριφορά ων λογικών κυκλωμάων
Διαβάστε περισσότεραΑνάλυση Ηλεκτρικών Κυκλωμάτων
Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 8: Βηματική απόκριση κυκλωμάτων RL και R Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών)
ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών) Τα μοντέρνα ψηφιακά κυκλώματα (λογικές πύλες, μνήμες, επεξεργαστές και άλλα σύνθετα κυκλώματα) υλοποιούνται σήμερα
Διαβάστε περισσότεραΓιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους
Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ Κριτική Ανάγνωση: Αγγελική Αραπογιάννη Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους Copyright ΣΕΑΒ, 215 Το παρόν έργο αδειοδοτείται υπό τους
Διαβάστε περισσότεραΣχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Σχεδίαση MOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Ενότητα 5: Γινόμενο R και υπολογισμός καθυστερήσεων σε κύκλωμα Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Απεικόνιση
Διαβάστε περισσότεραΠεριεχόμενα. ΚΕΦΑΛΑΙΟ 1 Μοντέλα για Ενεργές Συσκευές Ολοκληρωμένου Κυκλώματος. 1.1 Εισαγωγή
Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Μοντέλα για Ενεργές Συσκευές Ολοκληρωμένου Κυκλώματος 1.1 Εισαγωγή 1.2 Περιοχή Απογύμνωσης μιας Επαφής pn 1.2.1 Χωρητικότητα της Περιοχής Απογύμνωσης 1.2.2 Κατάρρευση Επαφής 1.3
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα
Διαβάστε περισσότεραΣχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Β:Στοιχεία Ηλεκτρονικής Σχεδίασης VLSI Κυκλωμάτων
Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Β:Στοιχεία Ηλεκτρονικής Σχεδίασης VLSI Κυκλωμάτων Κεφάλαιο 2: Ψηφιακά Ο.Κ. MOS Αραπογιάννη Αγγελική Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Σελίδα 2 1. Δομικές
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 6. Σχ.6.1. Απλή συνδεσµολογία καθρέπτη ρεύµατος.
ΚΕΦΑΛΑΙΟ 6 6.1 ΚΑΘΡΕΠΤΕΣ ΡΕΥΜΑΤΟΣ Σε ένα καθρέπτη ρεύµατος, το ρεύµα του κλάδου της εξόδου είναι πάντα ίσο µε το ρεύµα του κλάδου της εισόδου, αποτελεί δηλαδή το είδωλο του. Μία τέτοια διάταξη δείχνει
Διαβάστε περισσότεραΔΙΔΑΣΚΩΝ: Λ. ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2015
ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 8//5 ΘΕΜΑ ο (.5 μονάδες) Η έξοδος του αισθητήρα του παρακάτω σχήματος είναι γραμμικό σήμα τάσης, το οποίο εφαρμόζεται για χρονικό διάστημα
Διαβάστε περισσότεραΥλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική
Υλοποίηση λογικών πυλών µε τρανζίστορ MOS Εισαγωγή στην Ηλεκτρονική Λογική MOS Η αναπαράσταση των λογικών µεταβλητών 0 και 1 στα ψηφιακά κυκλώµατα γίνεται µέσω κατάλληλων επιπέδων τάσης, όπου κατά σύµβαση
Διαβάστε περισσότερα.Λιούπης Μ.Στεφανιδάκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ 1 Βασικές Έννοιες Ψηφιακών Κυκλωµάτων.Λιούπης Μ.Στεφανιδάκης Πίνακας Περιεχοµένων. 1.1 Ψηφιακά ηλεκτρονικά κυκλώµατα....2
Διαβάστε περισσότεραa n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8
Διακριτά Μαθηματικά Σχέσεις Αναδρομής Ι 1 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 2 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 1ος τρόπος: Εχουμε τη
Διαβάστε περισσότεραΑΣΚΗΣΗ 2 η ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΑΥΤΟΝΟΜΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΓΧΡΟΝΗΣ ΤΡΙΦΑΣΙΚΗΣ ΓΕΝΝΗΤΡΙΑΣ ΜΕ ΦΟΡΤΙΟ
ΑΣΚΗΣΗ 2 η ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΑΥΤΟΝΟΜΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΓΧΡΟΝΗΣ ΤΡΙΦΑΣΙΚΗΣ ΓΕΝΝΗΤΡΙΑΣ ΜΕ ΦΟΡΤΙΟ Σκοπός της άσκησης: Σκοπός της άσκησης είναι η μελέτη των χαρακτηριστικών λειτουργίας μιας σύγχρονης γεννήτριας
Διαβάστε περισσότερα(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J.
4 η Ομάδα Ασκήσεων Δύο πυκνωτές C=5 μf και C=40 μf συνδέονται παράλληλα στους ακροδέκτες πηγών τάσης VS=50 V και VS=75 V αντίστοιχα και φορτίζονται Στην συνέχεια αποσυνδέονται και συνδέονται μεταξύ τους,
Διαβάστε περισσότεραΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ
Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ A. Πίνακες αληθείας λογικών πυλών. Στη θετική λογική το λογικό 0 παριστάνεται µε ένα χαµηλό δυναµικό, V L, ενώ το λογικό 1
Διαβάστε περισσότεραΦυσική για Μηχανικούς
Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε
Διαβάστε περισσότεραΑκαδημαϊκό Έτος Εξάμηνο Εαρινό Α Εξεταστική Περίοδος Σημειώσεις : ανοικτές/κλειστές Διάρκεια εξέτασης: 2 ώρες. Ημ. εξέτασης:../../.
A(dB) ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΑΘΗΝΑΣ Μάθημα: Αναλογικά Ηλεκτρονικά Εισηγητής: Ηλίας Σταύρακας Θέμα 1 ο (μονάδες 3): Ακαδημαϊκό Έτος 201112 Εξάμηνο Εαρινό Α Εξεταστική Περίοδος Σημειώσεις :
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών
Διαβάστε περισσότερα1. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ
1. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής αποτελεί την βασική δομική μονάδα των περισσοτέρων αναλογικών κυκλωμάτων. Στην ενότητα αυτή θα μελετήσουμε τις ιδιότητες του τελεστικού ενισχυτή, μερικά βασικά
Διαβάστε περισσότεραΠανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Δίοδοι, BJT και MOSFET ως Διακόπτες 2
Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Δίοδοι, BJT και MOSFET ως Διακόπτες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ιδανικός διακόπτης ΙΔΑΝΙΚΟΣ ΔΙΑΚΟΠΤΗΣ ΠΡΑΓΜΑΤΙΚΟΣ ΔΙΑΚΟΠΤΗΣ
Διαβάστε περισσότεραΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ
ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής
Διαβάστε περισσότεραΗλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο
Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.
Διαβάστε περισσότεραΥ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design
Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Διαβάστε περισσότερα