Εισαγωγή. Στατική Λειτουργία V DD Q P Q N Q N =SAT QP=LIN QN=LIN Q P =SAT. Vi (Volts)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή. Στατική Λειτουργία V DD Q P Q N Q N =SAT QP=LIN QN=LIN Q P =SAT. Vi (Volts)"

Transcript

1 Εισαγωγή Η τεχνολογία COS εφευρέθηκε από τον Δρ. Frank Wanlass (17/5/33) το 1963 και κατοχυρώθηκε με πατέντα το 1967 (Αρ. πατέντας 3,356,5). Η COS τεχνολογία είναι αυτή που έχει κάνει πραγματικότητα την επανάσταση των ηλεκτρονικών. Όλες οι σύγχρονες ηλεκτρονικές συσκευές χαμηλής κατανάλωσης βασίζονται σ' αυτή. Τα βασικά της πλεονεκτήματα είναι: η σχεδόν μηδενική στατική κατανάλωση (Low Power) Σχ. 1. Ο COS Αναστροφέας η σχετικά απλή υλοποίησή της που επιτρέπει την ολοκλήρωση μεγάλης ποσότητας ψηφιακών κυκλωμάτων σε μικρό χώρο (ery Large Scale ntegration: LS) Η πρώτη εφαρμογή της COS τεχνολογίας δημιούργησε την σειρά ολοκληρωμένων κυκλωμάτων Η σειρά 4000 έχει μία μεγάλη λίστα από πολύ απλά ως και πολύπλοκα ψηφιακά κυκλώματα που λειτουργούν σε τάσεις τροφοδοσίας από 3 ως και 15. Ο COS αναστροφέας αποτελείται από δύο συμπληρωματικά (Complementary) OSFEs όπως φαίνεται στο Σχ. 1. i Q P Q N o Στατική Λειτουργία Θεωρώντας σαν τάση τροφοδοσίας του κυκλώματος τα 5 (=5) η πιθανή κατάσταση των OSFEs ανάλογα με το ζεύγος τιμών τάσης εισόδου εξόδου φαίνονται στο Σχ.. Παρατηρήστε ότι ενώ δεν είναι δυνατόν τα FEs να βρεθούν και τα δύο στην κατάσταση OFF, μπορεί αντιθέτως να βρεθούν σε κατάσταση SA, δίνοντας έτσι πολύ μεγάλο κέρδος τάσης o/i. Παρατηρήστε επιπλέον ότι δεν μπορεί να ρέει ρεύμα μέσα από τον αναστροφέα αν η τάση εισόδου είναι μικρότερη από 1 (N) διότι το QN είναι OFF ή αν είναι μεγαλύτερη από 4 (- P ) διότι τότε το QP είναι OFF. Το N-OSFE (QN) μπορεί να βρεθεί στις καταστάσεις: OFF: Όταν i<n LN: Όταν N<i>o-N SA: Όταν i<o-n o (olts) QN=OFF QP=LN Q N =SA Q P =LN Q N =SA Q P =SA Q N =LN Q P =SA QN=LN QP=OFF i (olts) Σχ.. Οι καταστάσεις των FE

2 Το P-OSFE (QP) μπορεί να βρεθεί στις καταστάσεις: OFF: Όταν i>- P LN: Όταν - P >i<o- P SA: Όταν i>o- P Υπολογισμός της OH Για τον υπολογισμό της OH θεωρούμε ότι η τάση εισόδου είναι πολύ χαμηλή, τόση ώστε το QN να μην άγει (i<n). Συνεπώς η τάση GS του QP είναι κατ απόλυτη τιμή μία μεγάλη τάση πολύ μεγαλύτερη από την P. Επειδή το QN δεν άγει, το ρεύμα που ρέει μέσα και από τα δύο OSFE είναι μηδενικό. Άρα: D P GS P DS DS 0 i o o P P Είναι προφανές ότι μία λύση της εξίσωσης είναι o OH Υπολογισμός της OL Θεωρώντας τώρα σαν είσοδο i=oh= διαπιστώνουμε ότι το QP είναι σε κατάσταση OFF (δεν άγει) και συνεπώς το ρεύμα που ρέει μέσα από τα δύο OSFEs είναι πάλι μηδενικό. Το QN έχει τάση GS=i= και συνεπώς είναι στην ωμική περιοχή (LN) άρα: D N GS N DS DS 0 o o N N Και εδώ είναι προφανές ότι μία λύση της εξίσωσης είναι: o 0 OL ΣΗΜΑΝΤΙΚΗ ΠΑΡΑΤΗΡΗΣΗ: Όταν η τάση εισόδου είναι Low ή High (0 ή ) η τάση εξόδου είναι αντίστοιχα ( ή 0) και το ρεύμα που ρέει από τον αναστροφέα και στις δύο περιπτώσεις είναι μηδενικό! Η Τάση Με δεδομένες τις τιμές OH και OL μπορούμε να προβλέψουμε ότι η χαρακτηριστική μεταφοράς τάσης εισόδου εξόδου θα περάσει μέσα από την περιοχή όπου και τα δύο OSFEs θα είναι στην περιοχή κορεσμού (SA). Και στην περίπτωση αυτή το ρεύμα που θα ρέει μέσα από τα δύο OSFEs θα είναι ίδιο και προφανώς μη μηδενικό και συνεπώς θα ισχύει: DP DN P GS P N GS N P P N N

3 Διαπιστώνουμε ότι στην κατάσταση αυτή (SA) τα δύο OSFEs μπορούν να βρεθούν μόνο για μία πολύ συγκεκριμένη τάση εισόδου: την. Επιλύοντας ως προς βρίσκουμε: P N 1 N P N P Θεωρώντας N= P και N=P διαπιστώνουμε ότι Η θεώρηση αυτή είναι πραγματικότητα στις περισσότερες σχεδιάσεις COS αναστροφέων. Με δεδομένη την τάση μπορούμε να υπολογίσουμε τα όρια της τάσης o που και τα δύο FEs θα είναι στον κορεσμό: Για να είναι το QN στον κορεσμό θα πρέπει να ισχύει: o>-n Για να είναι το QP στον κορεσμό θα πρέπει να ισχύει: -o<-- P o<+ P Άρα όσο η τάση εισόδου είναι και η τάση εξόδου κινείται στα όρια - <o<+ τα FEs είναι στον κορεσμό ΣΗΜΑΝΤΙΚΗ ΠΑΡΑΤΗΡΗΣΗ: Η τάση εξόδου μπορεί να κινείται από - έως + όταν η τάση εξόδου είναι. Συνεπώς το κέρδος τάσης του αναστροφέα για τάση εισόδου είναι άπειρο, βέβαια στην πραγματικότητα είναι πολύ μεγάλο. Υπολογισμός της L Αυξάνοντας την τάση εισόδου από τα 0 έως και την N η τάση εξόδου παραμένει σταθερή και ίση με OH (). Αυξάνοντας επιπλέον την τάση εισόδου αρχίζει να ρέει ρεύμα μέσα από τα FEs και η τάση εξόδου αρχίζει να μειώνεται. L είναι εκείνη η τάση εισόδου όπου η παράγωγος της τάσης εξόδου (ως προς την τάση εισόδου) γίνεται -1. Μπορούμε εύκολα να δούμε ότι στην περίπτωση αυτή το QN θα είναι SA, το QP θα είναι LN και τα ρεύματα των FEs θα είναι προφανώς ίδια: DN DP N GS N P GS N DS DS i i o o N P Παραγωγίζοντας ως προς i έχουμε:

4 o o R i o i o i i Σ ένα συμμετρικό COS αναστροφέα το R=N/P=1. Επειδή ψάχνουμε να βρούμε την τάση εισόδου όπου η παράγωγος γίνεται -1 η παραπάνω σχέση μπορεί να απλοποιηθεί: i o i o i o Θέτοντας το αποτέλεσμα αυτό στην εξίσωση των ρευμάτων τελικά υπολογίζουμε ό- τι: 3 i και 7 o Θεωρώντας την τάση =5 και N= P =1 οι τιμές για τις τάσεις που μόλις υπολογίσαμε είναι i=l=.15 και o=4.65. Υπολογισμός της Η Με παρόμοιο τρόπο σκεφτόμαστε για να υπολογίσουμε την H. Μειώνοντας την τάση εισόδου από έως και την -P η τάση εξόδου παραμένει σταθερή και ίση με OL (0). Μειώνοντας επιπλέον την τάση εισόδου αρχίζει να ρέει ρεύμα μέσα από τα FEs και η τάση εξόδου αρχίζει να αυξάνεται. Σ αυτή την περίπτωση: Η είναι εκείνη η τάση εισόδου όπου η παράγωγος της τάσης εξόδου (ως προς την τάση εισόδου) γίνεται -1. Μπορούμε εύκολα να δούμε ότι στην περίπτωση αυτή το QP θα είναι SA, το QN θα είναι LN και τα ρεύματα των FEs θα είναι προφανώς ίδια: DN DP N GS N DS DS P GS N i o o i N P Παραγωγίζοντας ως προς i έχουμε: o o o i o i i i R Σ ένα συμμετρικό COS αναστροφέα το R=N/P=1. Επειδή ψάχνουμε να βρούμε την τάση εισόδου όπου η παράγωγος γίνεται -1 η παραπάνω σχέση μπορεί να απλοποιηθεί: o i o i i o

5 Θέτοντας το αποτέλεσμα αυτό στην εξίσωση των ρευμάτων τελικά υπολογίζουμε ό- τι: 5 i και o Θεωρώντας την τάση =5 και N= P =1 οι τιμές για τις τάσεις που μόλις υπολογίσαμε είναι i=h=.75 και o=0.35. Υπολογισμός των Noise argins Με δεδομένες τις τιμές L και H είναι εύκολο να υπολογίσουμε τα περιθώρια θορύβου (Noise argins): N. 15 H OH H N. 15 L L OL Διαπιστώνουμε ότι στον συμμετρικό COS αναστροφέα (δηλαδή όταν R=1 και N= P ) τα περιθώρια θορύβου είναι ίδια. Χαρακτηριστική Μεταφοράς Με βάση την ανάλυση που προηγήθηκε μπορούμε να σχηματίσουμε την χαρακτηριστική μεταφοράς τάσης εισόδου τάσης εξόδου του COS αναστροφέα. Διαπιστώνουμε ότι η χαρακτηριστική μεταφοράς μπορεί να χωριστεί σε 5 τμήματα: Τμήμα QN QP D o i A OFF LN 0μΑ B SA LN >0μΑ 5v C SA SA ax D LN SA >0μΑ E LN OFF 0μΑ Στο Σχ. 3. δίδεται η χαρακτηριστική μεταφοράς τάσης εισόδου τάσης εξόδου του COS αναστροφέα 5 4,465 4 o (olts) 3 1 NL NH 0,35 L H i (olts) Σχ. 3. Η χαρακτηριστική μεταφοράς τάσης εισόδου τάσης εξόδου του COS αναστροφέα.

6 Δυναμική Λειτουργία Η μετάβαση της εξόδου του COS αναστροφέα από την μία στάθμη στην άλλη δεν γίνεται ακαριαία αλλά σταδιακά. Η αιτία της σταδιακής μετάβασης της τάσης εξόδου είναι η παρασιτική χωρητικότητα που εφαρμόζεται στην έξοδο του αναστροφέα. Το μέγεθος της παρασιτικής χωρητικότητας εξαρτάται από τον αριθμό των πυλών που οδηγούνται από τον αναστροφέα καθώς και από την τοπολογία του κυκλώματος. Κάθε είσοδος πύλης COS συνδέεται με τα Gates δύο OSFEs που παρουσιάζουν χωρητικότητα ως προς την γη. Επιπλέον η τοπολογία του κυκλώματος, οι καλωδιώσεις που συνδέουν την έξοδο του αναστροφέα με τις εισόδους των πυλών που αυτός οδηγεί παρουσιάζουν επιπλέον παρασιτική χωρητικότητα. Για την μελέτη της δυναμικής λειτουργίας του αναστροφέα ορίζουμε τους δύο χρόνους μετάβασης της τάσης εξόδου: PHL είναι ο χρόνος που απαιτείται για την μεταβολή της τάσης εξόδου από την τάση OH μέχρι το μέσον της δυναμικής περιοχής της τάσης εξόδου, δηλαδή μέχρι την τάση (OH+OL)/. PLH είναι ο χρόνος που απαιτείται για την μεταβολή της τάσης εξόδου από την τάση OL μέχρι το μέσον της δυναμικής περιοχής της τάσης εξόδου, δηλαδή μέχρι την τάση (OH+OL)/. Παρατηρείστε ότι και στις δύο περιπτώσεις η μεταβολή της τάσης είναι (OH-OL)/ Υπολογισμός του PHL Ο χρόνος καθυστέρησης της μεταβολής της τάσης εξόδου καθώς κινείται από High σε Low (PHL)είναι ουσιαστικά ο χρόνος που χρειάζεται να εκφορτιστεί η παρασιτική χωρητικότητα Co που υπάρχει στην έξοδο του αναστροφέα από την τάση OH μέχρι το μέσον της πλήρους διακύμανσης της τάσης εξόδου του αναστροφέα. Με δεδομένο ότι η τάση OH= και OL=0 εύκολα μπορούμε να συμπεράνουμε ότι ο χρόνος PHL είναι ο χρόνος που απαιτείται για την εκφόρτιση του πυκνωτή από την τάση έως την τάση /. Κατά την διάρκεια του χρόνου αυτού η είσοδος στον αναστροφέα είναι High και συνεπώς το QP είναι OFF ενώ το QN άγει και είναι αυτό που ουσιαστικά εκφορτίζει την παρασιτική χωρητικότητα. Καθ όλη την διάρκεια της εκφόρτισης του πυκνωτή η τάση GS του QN θα είναι High, δηλαδή θα έχουμε GS=. Στην αρχή της εκφόρτισης έχουμε DS=o= και συνεπώς το QN θα είναι σε κατάσταση κόρου (SA). Άρα το ρεύμα που θα εκφορτίζει τον πυκνωτή θα είναι: D1 N N Στο τέλος του χρόνου PHL έχουμε DS=o=/ και συνεπώς το QN θα είναι στη γραμμική περιοχή (LN). Άρα το ρεύμα που θα εκφορτίζει τον πυκνωτή θα είναι: D N N Μπορούμε να θεωρήσουμε ότι η παρασιτική χωρητικότητα εκφορτίζεται σχεδόν γραμμικά (δηλαδή με σταθερό ρεύμα) κατά την διάρκεια του χρόνου PHL. Συνεπώς το μέσο ρεύμα εκφόρτισης θα είναι:

7 D1 D και άρα ο χρόνος που απαιτείται για την εκφόρτιση της παρασιτικής χωρητικότητας θα είναι: PHL Co Co Υπολογισμός του PLΗ Παρόμοιο σκεπτικό με αυτό του αναπτύξαμε για τον υπολογισμό του χρόνου PHL μπορούμε να ακολουθήσουμε για τον υπολογισμό του χρόνου PLH. Κατά την διάρκεια του χρόνου PLH η είσοδος στον αναστροφέα είναι Low και συνεπώς το QN είναι OFF ενώ το QP άγει και είναι αυτό που ουσιαστικά φορτίζει την παρασιτική χωρητικότητα. Καθ όλη την διάρκεια της φόρτισης του πυκνωτή η τάση GS του QP θα είναι. Στην αρχή της φόρτισης έχουμε DS =-o= και συνεπώς το QP θα είναι σε κατάσταση κόρου (SA). Άρα το ρεύμα που θα φορτίζει εκείνη την στιγμή τον πυκνωτή θα είναι: D1 P P Στο τέλος του χρόνου PLH έχουμε DS =-o=/ και συνεπώς το QP θα είναι στη γραμμική περιοχή (LN). Άρα το ρεύμα που θα φορτίζει τον πυκνωτή θα είναι: D P N Μπορούμε να θεωρήσουμε ότι η παρασιτική χωρητικότητα εκφορτίζεται σχεδόν γραμμικά (δηλαδή με σταθερό ρεύμα) κατά την διάρκεια του χρόνου PLH. Συνεπώς το μέσο ρεύμα φόρτισης θα είναι: D1 D και άρα ο χρόνος που απαιτείται για την φόρτιση της παρασιτικής χωρητικότητας θα είναι: PLH Co Co Παρατηρείστε ότι οι εκφράσεις για τα ρεύματα και τους χρόνους και στην περίπτωση της φόρτισης αλλά και στην περίπτωση της εκφόρτισης του πυκνωτή είναι παρόμοιες. Συμπεράνουμε λοιπόν ότι ένας συμμετρικός COS αναστροφέας έχει τους χρόνους PHL και PLH ίσους. Κατανάλωση Ισχύος

Επιπλέον, για ευκολία στις πράξεις ορίζουμε τις παρακάτω μεταβλητές

Επιπλέον, για ευκολία στις πράξεις ορίζουμε τις παρακάτω μεταβλητές Αναστροφέας με φορτίο Enhancement OSFE Η απλούστερη υλοποίηση OSFE αναστροφέα με ενεργό φορτίο χρησιμοποιεί δύο N-OSFES. Στην ανάλυση που ακολουθεί θα διαπιστώσουμε ότι η χαρακτηριστική μεταφοράς απέχει

Διαβάστε περισσότερα

Επιπλέον, για ευκολία στις πράξεις ορίζουμε τις παρακάτω μεταβλητές

Επιπλέον, για ευκολία στις πράξεις ορίζουμε τις παρακάτω μεταβλητές Αναστροφέας με φορτίο Depletion MOSFET Ένας ακόμη αναστροφέας NMOS τεχνολογίας είναι ο αναστροφέας με φορτίο (ML) Depletion NMOS. Ο αναστροφέας αυτός έχει καλύτερη χαρακτηριστική μεταφοράς σε σύγκριση

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων 6: Ταχύτητα Κατανάλωση Ανοχή στον Θόρυβο Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Εισαγωγή

Διαβάστε περισσότερα

Λογικά Κυκλώματα CMOS. Διάλεξη 5

Λογικά Κυκλώματα CMOS. Διάλεξη 5 Λογικά Κυκλώματα CMOS Διάλεξη 5 Δομή της διάλεξης Εισαγωγή Η τεχνολογία αντιστροφέων CMOS Λειτουργία του κυκλώματος Χαρακτηριστική μεταφοράς τάσης Περιθώρια θορύβου Κατανάλωση ισχύος Οι πύλες CMOS NOR

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Διδάσκοντες:

Διαβάστε περισσότερα

Τρίτο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών. Δρ. Χ. Μιχαήλ

Τρίτο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών. Δρ. Χ. Μιχαήλ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Τρίτο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών Δρ. Χ. Μιχαήλ Πάτρα, 2010 ΑΣΚΗΣΗ 1 Ένας μικροεπεξεργαστής πρέπει να οδηγήσει ένα δίαυλο

Διαβάστε περισσότερα

Ο BJT Αναστροφέας. Στατική Ανάλυση. Δεδομένα. Ο Απλός BJT Αναστροφέας

Ο BJT Αναστροφέας. Στατική Ανάλυση. Δεδομένα. Ο Απλός BJT Αναστροφέας Ο BJT Αναστροφέας Ο πιο απλός αναστροφέας που μπορούμε να υλοποιήσουμε φαίνεται στο διπλανό σχήμα και αποτελείται από ένα τρανζίστορ και δύο αντιστάσεις. Μελετώντας το κύκλωμα θα διαπιστώσουμε ότι οι επιδόσεις

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab

Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων CMOS Αναστροφέας Κεφάλαιο ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας VLSI Systems ad Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. I V χαρακτηριστική

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Οικογένειες Ολοκληρωμένων Κυκλωμάτων Ψηφιακής Λογικής Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Περιεχόμενα Βασικά ηλεκτρικά χαρακτηριστικά

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (2 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (2 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (2 η σειρά διαφανειών) Τα ψηφιακά ηλεκτρονικά κυκλώματα χωρίζονται σε κατηγορίες ( λογικές οικογένειες ) ανάλογα με την τεχνολογία κατασκευής

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (9 η σειρά διαφανειών) Διεργασίες Μικροηλεκτρονικής Τεχνολογίας, Οξείδωση, Διάχυση, Φωτολιθογραφία, Επιμετάλλωση, Εμφύτευση, Περιγραφή CMOS

Διαβάστε περισσότερα

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 5: Αντιστροφέας CMOS Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 2ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 2ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 2ο. Λιούπης Transistor διπολικής επαφής (BJT) I B B C E I C Στα ψηφιακά κυκλώµατα χρησιµοποιείται κατά κύριο λόγο ως διακόπτης Στο σχήµαφαίνεταιένα τυπικό BJT τύπου NPN I B :

Διαβάστε περισσότερα

Λογικά Κυκλώματα NMOS. Διάλεξη 4

Λογικά Κυκλώματα NMOS. Διάλεξη 4 Λογικά Κυκλώματα NMOS Διάλεξη 4 Δομή της διάλεξης Η Σχεδίαση του Αντιστροφέα NMOS με Ωμικό Φόρτο Η Στατική Σχεδίαση του Αντιστροφέα NMOS με Κορεσμένο Φόρτο ΟΑντιστροφέαςΝMOS με Γραμμικό Φόρτο ΟΑντιστροφέαςΝMOS

Διαβάστε περισσότερα

Στατική ηλεκτρική ανάλυση του αντιστροφέα CMOS. Εισαγωγή στην Ηλεκτρονική

Στατική ηλεκτρική ανάλυση του αντιστροφέα CMOS. Εισαγωγή στην Ηλεκτρονική Στατική ηλεκτρική ανάλυση του αντιστροφέα CMO Εισαγωγή στην Ηλεκτρονική Στατική (C) ηλεκτρική ανάλυση του αντιστροφέα CMO Θα εξάγουµε τη χαρακτηριστική τάσης = f( ) (καθώς και τη χαρακτηριστική ρεύµατος

Διαβάστε περισσότερα

Λογική Τρανζίστορ-Τρανζίστορ. Διάλεξη 3

Λογική Τρανζίστορ-Τρανζίστορ. Διάλεξη 3 Λογική Τρανζίστορ-Τρανζίστορ (TTL) και Schottky TTL Διάλεξη 3 Δομή της διάλεξης Το κύκλωμα της πύλης TTL Ανάλυση της πύλης TTL Χαρακτηριστικά της πύλης TTL ΗπύληNAND TTL και άλλα λογικά κυκλώματα TTL Βελτίωση

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 3ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 3ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 3ο. Λιούπης Χαρακτηριστική καµπύλη µεταφοράς τάσης TTL V out (volts) εγγυηµένη περιοχή V OH V OH(min) V OL(max) 2.4 Ηκαµπύλη µεταφοράς εξαρτάται από τη θερµοκρασία περιβάλλοντος

Διαβάστε περισσότερα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα

4.2 Αναπαράσταση δυαδικών τιμών στα ψηφιακά κυκλώματα ΚΕΦΑΛΑΙΟ 4 ΤΕΧΝΟΛΟΓΙΕΣ ΥΛΟΠΟΙΗΣΗΣ 4.1 Εισαγωγή Για την υλοποίηση των λογικών πυλών χρησιμοποιήθηκαν αρχικά ηλεκτρονικές λυχνίες κενού και στη συνέχεια κρυσταλλοδίοδοι και διπολικά τρανζίστορ. Τα ολοκληρωμένα

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ MOS KAI CMOS Α. Αναστροφέας MOSFET. Α.1 Αναστροφέας MOSFET µε φορτίο προσαύξησης. Ο αναστροφέας MOSFET (πύλη NOT) αποτελείται από

Διαβάστε περισσότερα

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο

«Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο ΤΕΙ Δυτικής Ελλάδας Τμήμα Μηχανικών Πληροφορικής ΤΕ Εργαστήριο Σχεδίασης Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων «Σχεδιασμός Ψηφιακών Συστημάτων σε FPGA» Εαρινό εξάμηνο 2016-2017 Διάλεξη 2 η :

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.

Διαβάστε περισσότερα

Καθυστέρηση στατικών πυλών CMOS

Καθυστέρηση στατικών πυλών CMOS Καθυστέρηση στατικών πυλών CMOS Πρόχειρες σημειώσεις Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Άνοιξη 2008 Παρόλο που οι εξισώσεις των ρευμάτων των MOS τρανζίστορ μας δίνουν

Διαβάστε περισσότερα

Φόρτιση πυκνωτή μέσω αντίστασης Εάν αρχικά, η τάση στο άκρο του πυκνωτή είναι 0, τότε V DD V(t) για την τάση σε χρόνο t, V(t) θα έχουμε V t ( t ) (1 e ) V DD Αποφόρτιση πυκνωτή Εάν αρχικά, η τάση στο άκρο

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.

Διαβάστε περισσότερα

Πολυσύνθετες πύλες. Διάλεξη 11

Πολυσύνθετες πύλες. Διάλεξη 11 Πολυσύνθετες πύλες NMOS και CMOS Διάλεξη 11 Δομή της διάλεξης Εισαγωγή ΗσύνθετηλογικήNMOS ΗσύνθετηλογικήCMOS Η πύλη μετάδοσης CMOS Ασκήσεις 2 Πολυσύνθετες πύλες NMOS και CMOS Εισαγωγή 3 Εισαγωγή Στη λογική

Διαβάστε περισσότερα

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0.

i C + i R i C + i R = 0 C du dt + u R = 0 du dt + u RC = 0 0 RC dt ln u = t du u = 1 RC dt i C = i R = u R = U 0 t > 0. Α. Δροσόπουλος 6 Ιανουαρίου 2010 Περιεχόμενα 1 Κυκλώματα πρώτης τάξης 2 1.1 Εκφόρτιση κυκλωμάτων RC πρώτης τάξης.................................. 2 1.2 Εκφόρτιση κυκλωμάτων RL πρώτης τάξης...................................

Διαβάστε περισσότερα

Σχεδίαση Αναλογικών Κυκλωμάτων VLSI

Σχεδίαση Αναλογικών Κυκλωμάτων VLSI Σχεδίαση Αναλογικών Κυκλωμάτων S «Διαφορικά Ζεύγη» Φώτης Πλέσσας fplessas@f.uth.r Δομή Παρουσίασης Αναθεώρηση απλής διαφορικής λειτουργίας Περιγραφή και ανάλυση του διαφορικού ζεύγους Λόγος απόρριψης κοινού

Διαβάστε περισσότερα

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ

Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Ενότητα 3 ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ Γενικές Γραμμές Οικογένειες Ψηφιακής Λογικής Τάση τροφοδοσίας Λογικά επίπεδα - Περιθώριo θορύβου Χρόνος μετάβασης Καθυστέρηση διάδοσης Κατανάλωση ισχύος Γινόμενο

Διαβάστε περισσότερα

Καθυστέρηση αντιστροφέα και λογικών πυλών CMOS. Εισαγωγή στην Ηλεκτρονική

Καθυστέρηση αντιστροφέα και λογικών πυλών CMOS. Εισαγωγή στην Ηλεκτρονική Καθυστέρηση αντιστροφέα και λογικών πυλών MOS Εισαγωγή στην Ηλεκτρονική Ορισµοί καθυστέρησης λογικών πυλών MOS Καθυστερήσεις διάδοσης (propagaion delays) εισόδουεξόδου: Καθυστέρηση ανόδου ph : η διαφορά

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 4ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 4ο. Λιούπης Λογική συζευγµένου εκποµπού Emitter-coupled logic (ECL) Χρησιµοποιούνται BJT transistor, µόνο στην ενεργή περιοχή Εµφανίζονται µικρές αλλαγές δυναµικού µεταξύ των

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΔΙΟΔΟΣ (Μάθημα 4 ο 5 ο 6 ο 7 ο ) 1/12 4 o εργαστήριο Ιδανική δίοδος n Συμβολισμός της διόδου n 2/12 4 o εργαστήριο Στατική χαρακτηριστική διόδου Άνοδος (+) Κάθοδος () Αν στην ιδανική

Διαβάστε περισσότερα

Κεφάλαιο 11. Κυκλώματα Χρονισμού

Κεφάλαιο 11. Κυκλώματα Χρονισμού Κεφάλαιο 11. Κυκλώματα Χρονισμού Σύνοψη Στο κεφάλαιο αυτό αναλύεται η λειτουργία των κυκλωμάτων χρονισμού. Τα κυκλώματα αυτά παρουσιάζουν πολύ μεγάλο πρακτικό ενδιαφέρον και απαιτείται να λειτουργούν με

Διαβάστε περισσότερα

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/e330 1 Περιεχόμενα Διαισθητική λειτουργία Χαρακτηριστικά Αντιστροφέα

Διαβάστε περισσότερα

ΗΥ335: Προχωρημένη Ηλεκτρονική. «Βαθμίδες Εξόδου» Φώτης Πλέσσας UTH ΤHMMY

ΗΥ335: Προχωρημένη Ηλεκτρονική. «Βαθμίδες Εξόδου» Φώτης Πλέσσας UTH ΤHMMY ΗΥ335: Προχωρημένη Ηλεκτρονική «Βαθμίδες Εξόδου» Φώτης Πλέσσας fplessas@inf.uth.gr ΤHMMY Σκοπός διάλεξης Γιατί χρησιμοποιούμε στάδια εξόδου Ακόλουθος εκπομπού Παρουσίαση των βασικών προδιαγραφών του Ψαλιδισμός

Διαβάστε περισσότερα

Δεύτερο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών. Δρ. Χ. Μιχαήλ

Δεύτερο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών. Δρ. Χ. Μιχαήλ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Δεύτερο Σετ Φροντιστηριακών ασκήσεων Ψηφιακών Ηλεκτρονικών Δρ. Χ. Μιχαήλ Πάτρα, 2009 ΑΣΚΗΣΗ 1 Αναλύστε τι ισχύει για την πύλη DTL του Σχ.1, ανάλογα

Διαβάστε περισσότερα

ΘΕΜΑ : ΒΑΣΙΚΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΤΕΛΕΣΤΙΚΟΥ ΕΝΙΣΧΥΤΗ. ΔΙΑΡΚΕΙΑ: 1περίοδος

ΘΕΜΑ : ΒΑΣΙΚΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΤΕΛΕΣΤΙΚΟΥ ΕΝΙΣΧΥΤΗ. ΔΙΑΡΚΕΙΑ: 1περίοδος ΘΕΜΑ : ΒΑΣΙΚΕΣ ΣΥΝΔΕΣΜΟΛΟΓΙΕΣ ΤΕΛΕΣΤΙΚΟΥ ΕΝΙΣΧΥΤΗ ΔΙΑΡΚΕΙΑ: 1περίοδος Ο τελεστικός ενισχυτής μπορεί να συνδεθεί σε διάφορες συνδεσμολογίες δημιουργώντας πολύ χρήσιμα κυκλώματα. τόσο στα αναλογικά κυκλώματα

Διαβάστε περισσότερα

Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ. Εισαγωγή σε Ενισχυτές

Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ. Εισαγωγή σε Ενισχυτές Ηλεκτρονικά Στοιχεία και Κυκλώματα ΙΙ Εισαγωγή στα Ολο. Κυκλ. Βασική Φυσική MO Ενισχυτέςενόςσταδίου Διαφορικοί Ενισχυτές Καθρέφτες Ρεύματος Απόκριση Συχνότητας Ηλεκτρικός Θόρυβος Ανατροφοδότηση Σχεδιασμός

Διαβάστε περισσότερα

Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2

Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs. Διάλεξη 2 Λογικά Κυκλώματα με Διόδους, Αντιστάσεις και BJTs Διάλεξη 2 Δομή της διάλεξης Επανάληψη άλγεβρας Boole Λογική με διόδους Λογική Αντιστάσεων-Τρανζίστορ (Resistor-Transistor Logic ή RTL) Λογική Διόδων-Τρανζίστορ

Διαβάστε περισσότερα

K14 Αναλογικά Ηλεκτρονικά 9: Διαφορικός Ενισχυτής Τελεστικός Ενισχυτής

K14 Αναλογικά Ηλεκτρονικά 9: Διαφορικός Ενισχυτής Τελεστικός Ενισχυτής K14 Αναλογικά Ηλεκτρονικά 9: Διαφορικός Ενισχυτής Τελεστικός Ενισχυτής Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Γενικά Περιεχόμενα 1 Γενικά 2 Διαφορικός

Διαβάστε περισσότερα

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας.

Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ο πυκνωτής Ο πυκνωτής είναι μια διάταξη αποθήκευσης ηλεκτρικού φορτίου, επομένως και ηλεκτρικής ενέργειας. Η απλούστερη μορφή πυκνωτή είναι ο επίπεδος πυκνωτής, ο οποίος

Διαβάστε περισσότερα

Άσκηση 7. Τρανζίστορ Επίδρασης Πεδίου Επαφής (JFET)

Άσκηση 7. Τρανζίστορ Επίδρασης Πεδίου Επαφής (JFET) ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 7 Τρανζίστορ Επίδρασης Πεδίου Επαφής (JFET) Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η κατανόηση της λειτουργία των

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΣΧΕΔΙΑΣΗ ΨΗΦΙΑΚΩΝ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1η: ΜΕΛΕΤΗ ΤΟΥ MOSFET Σκοπός της άσκησης Στην άσκηση αυτή θα μελετήσουμε το τρανζίστορ τύπου MOSFET και τη λειτουργία

Διαβάστε περισσότερα

3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική

3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική 1 3. Κυκλώματα διόδων 3.1 Η δίοδος στο κύκλωμα. Στατική και δυναμική χαρακτηριστική Στην πράξη η δίοδος προσεγγίζεται με τμηματική γραμμικοποίηση, όπως στο σχήμα 3-1, όπου η δυναμική αντίσταση της διόδου

Διαβάστε περισσότερα

Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τα τρανζίστορ επίδρασης πεδίου (FET) Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τα τρανζίστορ επίδρασης πεδίου Τα πιο βασικά στοιχεία δομής των ηλεκτρονικών κυκλωμάτων

Διαβάστε περισσότερα

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Τύποι Αναλύσεων (1 από2) Για την μελέτη της συμπεριφοράς των κυκλωμάτων

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (5 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (5 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (5 η σειρά διαφανειών) Τρανζίστορ διπολικής επαφής (Bipolar Junction Transistor BJT) Στα ψηφιακά κυκλώματα αυτό το τρανζίστορ χρησιμοποιείται

Διαβάστε περισσότερα

Άσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης

Άσκηση 5. Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΗΛΕΚΤΡΟΝΙΚΑ Ι (ΕΡ) Άσκηση 5 Τρανζίστορ Διπολικής Επαφής σε συνδεσμολογία Κοινής Βάσης Στόχος Ο στόχος της εργαστηριακής άσκησης είναι η μελέτη των

Διαβάστε περισσότερα

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής

Τελεστικοί Ενισχυτές. Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Τελεστικοί Ενισχυτές Σπύρος Νικολαΐδης Αναπληρωτής Καθηγητής Τομέας Ηλεκτρονικής & ΗΥ Τμήμα Φυσικής Ο ιδανικός τελεστικός ενισχυτής Είσοδος αντιστροφής Ισοδύναμα Είσοδος μη αντιστροφής A( ) A d 2 1 2 1

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕΤΑΓΩΓΗ ΚΥΚΛΩΜΑΤΩΝ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΙΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕΤΑΓΩΓΗ ΚΥΚΛΩΜΑΤΩΝ ΜΕΤΑΓΩΓΗ ΑΠΟ ΤΟ ΕΝΑ ΚΥΚΛΩΜΑ LC ΣΤΟ ΑΛΛΟ. ΔΥΟ ΠΥΚΝΩΤΕΣ ΚΑΙ ΕΝΑ ΠΗΝΙΟ. Στο κύκλωμα του σχήματος το πηνίο έχει συντελεστή αυτεπαγωγής L = (A) (B) mh, ο πυκνωτής () έχει χωρητικότητα C = μf, ενώ ο πυκνωτής

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (7 η σειρά διαφανειών) Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού ρεύματος είναι ενός είδους

Διαβάστε περισσότερα

Κεφάλαιο 9 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Λογικές ομές 2

Κεφάλαιο 9 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. CMOS Λογικές ομές 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Συνδυαστική Λογική Κεφάλαιο 9 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Στατική CMOS λογική και λογική 2. Διαφορική λογική 3.

Διαβάστε περισσότερα

(α) Σχ. 5/30 Σύμβολα πυκνωτή (α) με πολικότητα, (β) χωρίς πολικότητα

(α) Σχ. 5/30 Σύμβολα πυκνωτή (α) με πολικότητα, (β) χωρίς πολικότητα 5. ΗΛΕΚΤΡΟΝΙΚΑ ΕΞΑΡΤΗΜΑΤΑ Ι ( ΠΥΚΝΩΤΕΣ) Πυκνωτές O πυκνωτής είναι ένα ηλεκτρικό εξάρτημα το οποίο έχει την ιδιότητα να απορροφά και να αποθηκεύει ηλεκτρική ενέργεια και να την απελευθερώνει, σε προκαθορισμένο

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά κυκλώματα. Διάλεξη 1

Εισαγωγή στα ψηφιακά κυκλώματα. Διάλεξη 1 Εισαγωγή στα ψηφιακά κυκλώματα Διάλεξη 1 Δομή της διάλεξης Εισαγωγή στο Μάθημα Βασικές αρχές λογικών κυκλωμάτων Ο BJT ως διακόπτης Μεταβατικά φαινόμενα Παράδειγμα μεταβατικής λειτουργίας Ασκήσεις 2 Εισαγωγή

Διαβάστε περισσότερα

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Ανάλυση Κυκλωμάτων. Φώτης Πλέσσας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ανάλυση Κυκλωμάτων Στοιχεία Δύο Ακροδεκτών Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγή Αντιστάτης Πηγές τάσης και ρεύματος Πυκνωτής

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Προαιρετική εργασία

Ψηφιακά Ηλεκτρονικά. Προαιρετική εργασία Τ.Ε.Ι. ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΙΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Ψηφιακά Ηλεκτρονικά Προαιρετική εργασία «Κατασκευή δυαδικού απαριθμητή με δεκαδική απεικόνιση δεκάδων και μονάδων» Συνυπεύθυνος

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ηλεκτρικό Δυναμικό Εικόνα: Οι διαδικασίες που συμβαίνουν κατά τη διάρκεια μιας καταιγίδας προκαλούν μεγάλες διαφορές ηλεκτρικού δυναμικού ανάμεσα στα σύννεφα και στο έδαφος. Το αποτέλεσμα

Διαβάστε περισσότερα

Ψηφιακά Ηλεκτρονικά. Μάθηµα 5ο.. Λιούπης

Ψηφιακά Ηλεκτρονικά. Μάθηµα 5ο.. Λιούπης Ψηφιακά Ηλεκτρονικά Μάθηµα 5ο. Λιούπης Τεχνολογία CMOS Υλοποιεί την πλειοψηφία των µοντέρνων ψηφιακών κυκλωµάτων λογικές πύλες µνήµες επεξεργαστές άλλα σύνθετα κυκλώµατα Συνδυάζει συµπληρωµατικά pmos και

Διαβάστε περισσότερα

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή

1. Ιδανικό κύκλωμα LC εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή Εισαγωγικές ασκήσεις στις ηλεκτρικές ταλαντώσεις 1. Ιδανικό κύκλωμα L εκτελεί ηλεκτρικές ταλαντώσεις και η χρονική εξίσωση του φορτίου του πυκνωτή δίνεται από τη σχέση q = 10 6 συν(10 ) (S.I.). Ο συντελεστής

Διαβάστε περισσότερα

Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους

Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους 3. ΤΡΑΝΖΙΣΤΟΡ ΕΓΚΑΡΣΙΟΥ ΠΕΔΙΟΥ (Field Effect Transistor FET) 3.1. Γενικά Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους φορέων (ηλεκτρόνια και οπές), τα τρανζίστορ

Διαβάστε περισσότερα

Η αντιστοιχία των παραπάνω επαφών με αυτές του διπολικού τρανζίστορ είναι (προφανώς) η εξής: S E, D C, G B.

Η αντιστοιχία των παραπάνω επαφών με αυτές του διπολικού τρανζίστορ είναι (προφανώς) η εξής: S E, D C, G B. 3. ΤΡΑΝΖΙΣΤΟΡ ΕΓΚΑΡΣΙΟΥ ΠΕΔΙΟΥ (Field Effect Transistor FET) 3.1. Γενικά Σε αντίθεση με τα διπολικά τρανζίστορ, που στηρίζουν τη λειτουργία τους σε δύο τύπους φορέων (ηλεκτρόνια και οπές), τα τρανζίστορ

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΦΥΣΙΚΗΣ ( ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΙΑΣ ) ΒΑΡΝΑΒΙΔΟΥ Β. ΧΡΙΣΤΙΝΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ανάλυση λειτουργίας βασικών

Διαβάστε περισσότερα

Μνήμες RAM. Διάλεξη 12

Μνήμες RAM. Διάλεξη 12 Μνήμες RAM Διάλεξη 12 Δομή της διάλεξης Εισαγωγή Κύτταρα Στατικής Μνήμης Κύτταρα Δυναμικής Μνήμης Αισθητήριοι Ενισχυτές Αποκωδικοποιητές Διευθύνσεων Ασκήσεις 2 Μνήμες RAM Εισαγωγή 3 Μνήμες RAM RAM: μνήμη

Διαβάστε περισσότερα

Εργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε αναστροφείς CMOS VLSI

Εργαστηριακή άσκηση. Θεωρητικός και πρακτικός υπολογισμός καθυστερήσεων σε αναστροφείς CMOS VLSI Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΧΕΔΙΑΣΗ ΣΥΣΤΗΜΑΤΩΝ VLSI

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Εικόνα: Επισκευή μιας πλακέτας κυκλωμάτων ενός υπολογιστή. Χρησιμοποιούμε καθημερινά αντικείμενα που περιέχουν ηλεκτρικά κυκλώματα, συμπεριλαμβανομένων και κάποιων με πολύ μικρότερες πλακέτες από την εικονιζόμενη.

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI I 2 η Εργαστηριακή Άσκηση Μελέτη των Παρασιτικών Χωρητικοτήτων και της Καθυστέρησης στα Κυκλώματα CMOS Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της

Διαβάστε περισσότερα

Σελίδα 1 από 8. Απαντήσεις στο φυλλάδιο 52

Σελίδα 1 από 8. Απαντήσεις στο φυλλάδιο 52 Σελίδα 1 από 8 Απαντήσεις στο φυλλάδιο 52 Ερώτηση 1 η : Πολυδονητές ονοµάζονται τα ηλεκτρονικά κυκλώµατα που παράγουν τετραγωνικούς παλµούς. 2 η : Ανάλογα µε τον τρόπο λειτουργίας τους διακρίνονται σε:

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Μικροηλεκτρονική - VLSI

Μικροηλεκτρονική - VLSI ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μικροηλεκτρονική - VLSI Ενότητα 6.1: Συνδυαστική Λογική - Βασικές Πύλες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΚΥΚΛΩΜΑΤΟΣ ΚΟΙΝΟΥ ΕΚΠΟΜΠΟΥ ΜΕΛΕΤΗ DC ΣΥΜΠΕΡΙΦΟΡΑΣ Στο σχήμα φαίνεται ένα κύκλωμα κοινού εκπομπού από το βρόχο εισόδου Β-Ε ο νόμος του Kirchhoff δίνει: Τελικά έχουμε: I I BB B B E E BE B BB E IE

Διαβάστε περισσότερα

4 η ΕΝΟΤΗΤΑ. Το MOSFET

4 η ΕΝΟΤΗΤΑ. Το MOSFET 4 η ΕΝΟΤΗΤΑ Το MOSFET Άσκηση 12η. Ενισχυτής κοινής πηγής με MOSFET, DC λειτουργία. 1. Υλοποιείστε το κύκλωμα του ενισχυτή κοινής πηγής με MOSFET (2Ν7000) του Σχ. 1. V DD = 12 V C by R g = 50 C i R A 1

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 6: Παθητικά στοιχεία αποθήκευσης ενέργειας Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 978-960-93-7110-0 κωδ.

Διαβάστε περισσότερα

Κεφάλαιο 4 o και 6 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Καθυστέρηση ιάδοσης Σήματος 2

Κεφάλαιο 4 o και 6 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Καθυστέρηση ιάδοσης Σήματος 2 ΚΥΚΛΩΜΑΤΑ VSI Πανεπιστήμιο Ιωαννίνων Καθυστέρηση Διάδοσης Σήματος Κεφάλαιο 4 o και 6 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VSI Διάρθρωση VSI Sysems ad omuer rchiecure ab. Παρασιτικές

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Λογικός Φόρτος 2

Κεφάλαιο 4 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Λογικός Φόρτος 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Λογικός Φόρτος Κεφάλαιο 4 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση. Μοντέλο γραμμικής καθυστέρησης. Λογικός και ηλεκτρικός φόρτος

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου)

ΗΛΕΚΤΡΟΝΙΚΑ Ι. ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου) ΗΛΕΚΤΡΟΝΙΚΑ Ι ΚΕΦΑΛΑΙΟ 4 Ο : FET (Τρανζίστορ επίδρασης πεδίου) 1 FET Δομή και λειτουργία Τα τρανζίστορ επίδρασης πεδίου είναι ηλεκτρονικά στοιχεία στα οποία οι φορείς του ηλεκτρικού ρεύματος είναι ενός

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 16/02/2010 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 16/02/2010 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ 6/0/00 ΘΕΜΑ ο ( μονάδες) Για να ελέγξουμε την ποιότητα των ενδείξεων μιας αντλίας παροχής αέρα ενός βενζινάδικου, φουσκώνουμε τα λάστιχα δύο αυτοκινήτων με την ένδειξη

Διαβάστε περισσότερα

Δυναμική συμπεριφορά των λογικών κυκλωμάτων MOS. Διάλεξη 10

Δυναμική συμπεριφορά των λογικών κυκλωμάτων MOS. Διάλεξη 10 Δυναμική συμπεριφορά ων λογικών κυκλωμάων MOS Διάλεξη 10 Δομή ης διάλεξης Εισαγωγή Ανισροφέας NMOS με φορίο ύπου αραίωσης Ανισροφέας CMOS Διάφορα ζηήμαα Ασκήσεις Δυναμική συμπεριφορά ων λογικών κυκλωμάων

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 8: Βηματική απόκριση κυκλωμάτων RL και R Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISBN: 9789609371100 κωδ. ΕΥΔΟΞΟΣ:

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ. Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών) ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΗΛΕΚΤΡΟΝΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Δρ. Δ. Λαμπάκης (8 η σειρά διαφανειών) Τα μοντέρνα ψηφιακά κυκλώματα (λογικές πύλες, μνήμες, επεξεργαστές και άλλα σύνθετα κυκλώματα) υλοποιούνται σήμερα

Διαβάστε περισσότερα

Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους

Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ. Κριτική Ανάγνωση: Αγγελική Αραπογιάννη. Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους Γιάννης Λιαπέρδος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ Κριτική Ανάγνωση: Αγγελική Αραπογιάννη Επιμέλεια πολυμεσικού διαδραστικού υλικού: Γιώργος Θεοφάνους Copyright ΣΕΑΒ, 215 Το παρόν έργο αδειοδοτείται υπό τους

Διαβάστε περισσότερα

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων

Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Σχεδίαση MOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων Ενότητα 5: Γινόμενο R και υπολογισμός καθυστερήσεων σε κύκλωμα Αγγελική Αραπογιάννη Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Απεικόνιση

Διαβάστε περισσότερα

Περιεχόμενα. ΚΕΦΑΛΑΙΟ 1 Μοντέλα για Ενεργές Συσκευές Ολοκληρωμένου Κυκλώματος. 1.1 Εισαγωγή

Περιεχόμενα. ΚΕΦΑΛΑΙΟ 1 Μοντέλα για Ενεργές Συσκευές Ολοκληρωμένου Κυκλώματος. 1.1 Εισαγωγή Περιεχόμενα ΚΕΦΑΛΑΙΟ 1 Μοντέλα για Ενεργές Συσκευές Ολοκληρωμένου Κυκλώματος 1.1 Εισαγωγή 1.2 Περιοχή Απογύμνωσης μιας Επαφής pn 1.2.1 Χωρητικότητα της Περιοχής Απογύμνωσης 1.2.2 Κατάρρευση Επαφής 1.3

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ρεύμα και Αντίσταση Εικόνα: Οι γραμμές ρεύματος μεταφέρουν ενέργεια από την ηλεκτρική εταιρία στα σπίτια και τις επιχειρήσεις μας. Η ενέργεια μεταφέρεται σε πολύ υψηλές τάσεις, πιθανότατα

Διαβάστε περισσότερα

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Β:Στοιχεία Ηλεκτρονικής Σχεδίασης VLSI Κυκλωμάτων

Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Β:Στοιχεία Ηλεκτρονικής Σχεδίασης VLSI Κυκλωμάτων Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Β:Στοιχεία Ηλεκτρονικής Σχεδίασης VLSI Κυκλωμάτων Κεφάλαιο 2: Ψηφιακά Ο.Κ. MOS Αραπογιάννη Αγγελική Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Σελίδα 2 1. Δομικές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6. Σχ.6.1. Απλή συνδεσµολογία καθρέπτη ρεύµατος.

ΚΕΦΑΛΑΙΟ 6. Σχ.6.1. Απλή συνδεσµολογία καθρέπτη ρεύµατος. ΚΕΦΑΛΑΙΟ 6 6.1 ΚΑΘΡΕΠΤΕΣ ΡΕΥΜΑΤΟΣ Σε ένα καθρέπτη ρεύµατος, το ρεύµα του κλάδου της εξόδου είναι πάντα ίσο µε το ρεύµα του κλάδου της εισόδου, αποτελεί δηλαδή το είδωλο του. Μία τέτοια διάταξη δείχνει

Διαβάστε περισσότερα

ΔΙΔΑΣΚΩΝ: Λ. ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2015

ΔΙΔΑΣΚΩΝ: Λ. ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 28/01/2015 ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 8//5 ΘΕΜΑ ο (.5 μονάδες) Η έξοδος του αισθητήρα του παρακάτω σχήματος είναι γραμμικό σήμα τάσης, το οποίο εφαρμόζεται για χρονικό διάστημα

Διαβάστε περισσότερα

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική

Υλοποίηση λογικών πυλών µε τρανζίστορ MOS. Εισαγωγή στην Ηλεκτρονική Υλοποίηση λογικών πυλών µε τρανζίστορ MOS Εισαγωγή στην Ηλεκτρονική Λογική MOS Η αναπαράσταση των λογικών µεταβλητών 0 και 1 στα ψηφιακά κυκλώµατα γίνεται µέσω κατάλληλων επιπέδων τάσης, όπου κατά σύµβαση

Διαβάστε περισσότερα

.Λιούπης Μ.Στεφανιδάκης

.Λιούπης Μ.Στεφανιδάκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΨΗΦΙΑΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ 1 Βασικές Έννοιες Ψηφιακών Κυκλωµάτων.Λιούπης Μ.Στεφανιδάκης Πίνακας Περιεχοµένων. 1.1 Ψηφιακά ηλεκτρονικά κυκλώµατα....2

Διαβάστε περισσότερα

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8

a n + 6a n a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 Διακριτά Μαθηματικά Σχέσεις Αναδρομής Ι 1 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 2 / 17 a n + 6a n 1 + 12a n 2 + 8a n 3 = 0, a 0 = 1, a 1 = 2, a 2 = 8 1ος τρόπος: Εχουμε τη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2 η ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΑΥΤΟΝΟΜΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΓΧΡΟΝΗΣ ΤΡΙΦΑΣΙΚΗΣ ΓΕΝΝΗΤΡΙΑΣ ΜΕ ΦΟΡΤΙΟ

ΑΣΚΗΣΗ 2 η ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΑΥΤΟΝΟΜΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΓΧΡΟΝΗΣ ΤΡΙΦΑΣΙΚΗΣ ΓΕΝΝΗΤΡΙΑΣ ΜΕ ΦΟΡΤΙΟ ΑΣΚΗΣΗ 2 η ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΑΥΤΟΝΟΜΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΣΥΓΧΡΟΝΗΣ ΤΡΙΦΑΣΙΚΗΣ ΓΕΝΝΗΤΡΙΑΣ ΜΕ ΦΟΡΤΙΟ Σκοπός της άσκησης: Σκοπός της άσκησης είναι η μελέτη των χαρακτηριστικών λειτουργίας μιας σύγχρονης γεννήτριας

Διαβάστε περισσότερα

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J.

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J. 4 η Ομάδα Ασκήσεων Δύο πυκνωτές C=5 μf και C=40 μf συνδέονται παράλληλα στους ακροδέκτες πηγών τάσης VS=50 V και VS=75 V αντίστοιχα και φορτίζονται Στην συνέχεια αποσυνδέονται και συνδέονται μεταξύ τους,

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ Εισαγωγή στη Μικροηλεκτρονική (ΕΤΥ-482) 1 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗΣ A. Πίνακες αληθείας λογικών πυλών. Στη θετική λογική το λογικό 0 παριστάνεται µε ένα χαµηλό δυναµικό, V L, ενώ το λογικό 1

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Χωρητικότητα Εικόνα: Όλες οι παραπάνω συσκευές είναι πυκνωτές, οι οποίοι αποθηκεύουν ηλεκτρικό φορτίο και ενέργεια. Ο πυκνωτής είναι ένα είδος κυκλώματος που μπορούμε να συνδυάσουμε

Διαβάστε περισσότερα

Ακαδημαϊκό Έτος Εξάμηνο Εαρινό Α Εξεταστική Περίοδος Σημειώσεις : ανοικτές/κλειστές Διάρκεια εξέτασης: 2 ώρες. Ημ. εξέτασης:../../.

Ακαδημαϊκό Έτος Εξάμηνο Εαρινό Α Εξεταστική Περίοδος Σημειώσεις : ανοικτές/κλειστές Διάρκεια εξέτασης: 2 ώρες. Ημ. εξέτασης:../../. A(dB) ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΤΕΙ ΑΘΗΝΑΣ Μάθημα: Αναλογικά Ηλεκτρονικά Εισηγητής: Ηλίας Σταύρακας Θέμα 1 ο (μονάδες 3): Ακαδημαϊκό Έτος 201112 Εξάμηνο Εαρινό Α Εξεταστική Περίοδος Σημειώσεις :

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι. Σημειώσεις Εργαστηριακών Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Ηλεκτρικών Βιομηχανικών Διατάξεων και Συστημάτων Αποφάσεων ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ Ι Σημειώσεις Εργαστηριακών

Διαβάστε περισσότερα

1. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ

1. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ 1. ΤΕΛΕΣΤΙΚΟΙ ΕΝΙΣΧΥΤΕΣ Ο τελεστικός ενισχυτής αποτελεί την βασική δομική μονάδα των περισσοτέρων αναλογικών κυκλωμάτων. Στην ενότητα αυτή θα μελετήσουμε τις ιδιότητες του τελεστικού ενισχυτή, μερικά βασικά

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Δίοδοι, BJT και MOSFET ως Διακόπτες 2

Πανεπιστήμιο Πατρών Τμήμα Φυσικής Εργαστήριο Ηλεκτρονικής. Ψηφιακά Ηλεκτρονικά. Δίοδοι, BJT και MOSFET ως Διακόπτες 2 Πανεπιστήμιο Πατρών Τμήμα Φυσικής Ψηφιακά Ηλεκτρονικά Δίοδοι, BJT και MOSFET ως Διακόπτες Επιμέλεια Διαφανειών: Δ. Μπακάλης Πάτρα, Φεβρουάριος 2009 Ιδανικός διακόπτης ΙΔΑΝΙΚΟΣ ΔΙΑΚΟΠΤΗΣ ΠΡΑΓΜΑΤΙΚΟΣ ΔΙΑΚΟΠΤΗΣ

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ 1 .1 ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΚΙΝΟΥΜΕΝΟΥ ΦΟΡΤΙΟΥ Ας θεωρούμε το μαγνητικό πεδίο ενός κινούμενου σημειακού φορτίου q. Ονομάζουμε τη θέση του φορτίου σημείο πηγής

Διαβάστε περισσότερα

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο Στο σχήμα φαίνεται μια γνώριμη διάταξη δύο παράλληλων αγωγών σε απόσταση, που ορίζουν οριζόντιο επίπεδο, κάθετο σε ομογενές μαγνητικό πεδίο έντασης.

Διαβάστε περισσότερα

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design

Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων. Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design Υ52 Σχεδίαση Ψηφιακών Ολοκληρωμένων Κυκλωμάτων και Συστημάτων Δεληγιαννίδης Σταύρος Φυσικός, MsC in Microelectronic Design TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε.

Διαβάστε περισσότερα