وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد املوضوع األول

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد املوضوع األول"

Transcript

1 وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد 15/5/1 التاريخ : قسم : السنة الثالثة علوم تجريبية االمتحان التجرييب لشهادة البكالوريا يف مادة العلوم الفيزيائية 3 المدة : 15/14 السنة الدراسية : املوضوع األول ساعات ونصف على املرتشح اختيار موضوع واحد والتقيد به أثناء اإلجابة. ينصح بتقديم العالقات احلرفية قبل التطبيقات العددية. تنبيه : الكيمياء التمرين األول : )3 نقاط( شوارد الثيوكبريتات S O 3 تتفكك ذاتيا بوجود شوارد الهيدرونيوم وتؤدي إلى ظهور راسب صلب من الكبريت S الذي يعكر المحلول وينطلق غاز SO ينمذج التحول بالمعادلة التالية: S O 3 (aq) + H 3O + (aq) = S (s) + SO (g) + 3H O (l) استخرج الثنائيتين (Ox/Red) المشتركتين في هذا التفاعل نحضر 7 بياشر)بيشر( متشابهة نضع في المزيج كل واحد منها ما يلي : V 1 (ml) V 1 من محلول ثيوكبريتات V (ml) الصوديوم V 3 (ml) (ml) من محلول حمض كلور الماء الحجم الكلي V V 3 من الماء المقطر نقترح لمتابعة هذا التحول الطريقة التالية نضع تحت كل بيشر ورقة بيضاء كتب عليها الرمز X ونقيس المجال الزمني Δt التشكل التدريجي للكبريت S. قياس المدة الزمنية أعطت النتائج التالية : الموافق الختفاء الرمز السابق منذ بداية تحضير المزيج وذلك بسبب المزيج Δt(min) CH 3 اشرح كيفيا الوسيلة لمقارنة السرع المتوسطة لظهور الكبريت S. أ- بمقارنة النتائج المتحصل عليها ما تأثير كال من ] و[ 3 S ] H] 3 O + O ب- غير مرئية n =. 5mol تصبح العالمة X عندما تصبح كمية الكبريت المتشكلة هي 3. احسب السرعة المتوسطة الحجمية لكل مزيج. أ- من خالل هذه التجربة كيف يمكننا زيادة سرعة التفاعل ب- CH O CH 3 التمرين الثاني : )6 نقاط( I. بوتانوات الميثيل معطر غذائي له رائحة التفاح صيغته H C C الجزيئية نصف المفصلة معطاة بالشكل المقابل: O 4 1

2 ما هي العائلة الكيميائية التي ينتمي إليها بوتانوات الميثيل وما هي المجموعة المميزة لجزيئه يمكن اصناع بوتانوات الميثيل من تفاعل نوعين كيميائيين A و B النوع B حمض كربوكسيلي. ما هي العائلة الكيميائية التي ينتمي إليها النوع A أعط الصيغة نصف المفصلة واسم كل من المتفاعلين A و B. 4. اكتب معادلة التفاعل المنمذج لهذا االصطناع. ما هو اسم هذا التفاعل 5. n (B) = 1, mol مع كمية A من المتفاعل n (A) = 1, mol نمزج كمية t في اللحظة =.II المتفاعل B. من درجة حرارة الوسط التفاعلي تبقى ثابتة عند 5 C. فيما يلي سنكتب معادلة تفاعل االصطناع بالشكل: A (aq) + B (aq) = C (aq) + H O (l) حيث C هو بوتانوات الميثيل n(b)(mol),6,5,4 1. أنشئ جدول تقدم تفاعل االصطناع. n(c)(mol). أوجد العالقة بين كميات المادة n(c) n(b) و (B) n ثم أكمل الجدول التالي: 3. القياسات التجريبية سمحت بتحديد n(mol) كميات المادة للحمض الكربوكسيلي و بوتانوات الميثيل المتواجدة في المزيج أثناء تفاعل االصطناع ورسم المنحنيين التاليين: حد د مع التعليل منحنى تطور كمية كل من بوتانوات الميثيل والحمض الكربوكسيلي. 4. احسب نسبة التقدم النهائي للتحو ل t(h) المدروس. 5. ما هي خواص هذا التحو ل البارزة في هذه الدراسة 6. اقترح طريقة لتقليص مد ة التفاعل دون تغيير طبيعة المتفاعالت..III لتعيين كمية مادة الحمض الكربوكسيلي المتبقي في نهاية التفاعل الذي سنرمز له AH نأخذ عينة يساوي عشر V حجمها ( 1 1 ) حجم المزبج ونعايرها بمحلول الصود (Na+ + OH ) تركيزه V b,e = 17, ml حجم محلول الصود المضاف لبلوغ التكافؤ.C b =, mol/l 1. اكتب معادلة تفاعل المعايرة.. أنشئ جدول تقدم تفاعل المعايرة. 3. عر ف التكافؤ في المعايرة. اقترح طريقة لتحديد حالة التكافؤ. 4. احسب كمية مادة الحمض (AH) n واستنتج كمية مادة الحمض n(ah) المتبقي في نهاية تفاعل االصطناع. هل هذه النتيجة موافقة للمنحنى البياني لتطور كمية مادة الحمض الكربوكسيلي الفيزياء التمرين الثالث : )3 نقاط( توجد عدة طرق لتشخيص مرض السرطان منها طريقة التصوير الطبي التي تعتمد على تتبع جزيئات سكر الغلوكوز التي تستبدل فيها مجموعة ( OH) بذرة الفلور 18 المشع. 4

3 18 يتمركز سكر الغلوكوز في الخاليا السرطانية التي تستهلك كمية كبيرة منه. تتميز نواة الفلور 9F بزمن نصف عمر 11min) t) 1/ = لذا تحضر الجرعة في وقت مناسب قبل حقن المريض بها حيث يكون نشاط العينة لحظة الحقن 1 8 Bq 6, تتفكك نواة الفلور أكتب معادلة التفكك وحدد طبيعة اإلشعاع الصادر.. 18 إلى نواة األكسجين 8O - بي ن أن ثابت التفكك λ يعطى بالعبارة: λ. = ln ثم احسب قيمته. t 1/ -3 أ- حض ر تقنيو التصوير الطبي جرعة )عي نة( D على الساعة التاسعة صباحا: ب- 18 تحتوي على 9F 18 أحسب عدد أنوية الفلور 9F لحظة الحقن. ما هو الزمن المستغرق حتى يصبح نشاط العينة مساويا 1% الساعة التاسعة التمرين الرابع : )4 نقاط( تتكون الدارة الكهربائية في الشكل المقابل من مولد لتوتر كهربائي ثابت E مكثفة سعتها C ناقلين أوميين مقاومتهما R 1 = 1kΩ و.K وبادلة R = kω.4 أ- ب- ج- توصل الدارة براسم اهتزاز مهبطي ذي مدخلين Y 1 و Y. نضع البادلة K في الوضع 1 ماذا يمثل المنحنيان المشاهدان بالمدخلين Y 1 و Y لراسم االهتزاز المهبطي يظهر على شاشة راسم االهتزاز المهبطي المنحنيان( a ) و( b ). ما هو المنحنى المعطى بالمدخل Y 1 برر اجابتك. اكتب المعادلة التفاضلية الموافقة لتطور المقدار الفيزيائي الذي يمثله المنحنى. جد قيمة ثابت الزمن τ 1 للدارة. حدد قيمة كال من E و C. احسب شدة التيار( i(t في اللحظة = t وفي اللحظة.t. 6s 5. بعد نهاية شحن المكثفة نضع البادلة K في الوضع في لحظة نعتبرها مبدأ األزمنة. أ- احسب قيمة في هذه الحالة وقارنها ب- τ بقيمة τ 1 ماذا تستنتج احسب قيمة الطاقة الكهربائية المحولة في الناقل األومي R في الساعة الثامنة صباحا لحقن مريض من النشاط الذي كان عليه في بفعل جول في اللحظة.t = τ التمرين اخلامس : )4 نقاط( I. لغرض حساب زاوية الميل α لمستو يميل عن األفق قام فوج من التالميذ بقذف جسم صلب (S) كتلته v نحو األعلى وفق خط الميل األعظم لمستو أملس m = 1 kg في اللحظة = t من النقطة O بسرعة )الشكل 4(. باستعمال تجهيز مناسب تمكن التالميذ من دراسة حركة مركز عطالة (S) والحصول على أحد مخططات السرعة f(t).v =.E.Y 1.R 1 1.C.K.Y.R 4 3

4 v(m/s) v(m/s) v(m/s) 3,5 3,5 3,5 3,5 v(m/s) t(s) t(s) t(s) t(s) المنحنى المنحنى المنحنى المنحنى -3,5-3,5 بتطبيق القانون الثاني لنيوتن ادرس طبيعة حركة الجسم (S) بعد لحظة قذفه من O. من بين المخططات األربعة ما هو المخطط الموافق لحركة الجسم ( S ) علل. احسب قيمة الزاوية α..4 احسب المسافة المقطوعة بين اللحظتين = t و.t = s.ii في الحقيقة يخضع الجسم أثناء انزالقه على المستوي المائل إلى قوة احتكاك شدتها ثابتة f. مث ل القوى الخارجية المؤثرة على الجسم (S). ادرس حركة مركز عطالة (S). ثم استنتج العبارة الحرفية لتسارع حركته. احسب قيمة التسارع من أجل f. = 8N x α الشكل 4 (S) O x تعطى: s g = 9, 8m. حكمة: أنا ال أخشى على االنسان الذي يفكر وإن ضل. ألنه سيعود إىل احلق... ولكين أخشى على االنسان الذي ال يفكر وإن اهتدى, ألنه سيكون كالقشة يف مهب الريح.. الشيخ محمد الغزالي رمحه اهلل تذكر)ي(: فهم السؤال نصف اإلجابة متنياتنا لكم بالتوفيق والنجاح يف شهادة البكالوريا أساتذة املادة 4 4

5 وزارة التربية الوطنية ثانوية الشهيد العربي بن ذهيبة قلتة سيدي سعد 15/14 السنة الدراسية : املوضوع األول قسم : السنة الثالثة علوم تجريبية العالمة حل التمرين التمرين األول : )3 نقاط( الثنائيتين (Ox/Red) المشتركتين في التفاعل: (SO و (S O 3 (aq) /S (g) /S O ) 3 (aq) (s)).. أ- الشرح:. أ- ب- المجال الزمني Δt الموافق الختفاء الرمز X منذ بداية تحضير المزيج يتوقف على تركيب المزيج االبتدائي فكلما كان الزمن قصيرا كانت سرعة تشكل الكبريت كبيرة ب- تأثير كال من: : [H 3 O + ] في البيشرات 4 و 5 و 6 و 7 نالحظ زيادة في حجم محلول الهيدرونيوم و ثبات حجم محلول الثيوكبريتات و تناقص حجم الماء بحيث يكون للمحاليل نفس الحجم الكلي و منه في البيشرات يتزايد تركيز الهيدرونيوم و نالحظ أن المدة الزمنية تتناقص و عليه : كلما زاد تركيز شوارد الهيدرونيوم زادت سرعة التفاعل. :[S O 3 ] في البيشرات 1 و و 3 نالحظ زيادة حجم محلول الثيوكبريتات و ثبات حجم محلول الهيدرونيوم مع نقصان حجم الماء بحيث يكون للمحاليل نفس الحجم الكلي و منه في البيشرات يتزايد تركيز الثيوكبريتات نالحظ أن المدة الزمنية تتناقص و عليه : كلما زاد تركيز الثيوكبريتات زادة سرعة التفاعل السرعة المتوسطة الحجمية لكل مزيج: عبارة السرعة الحجمية المتوسطة : v m = 1 x V t حيث (S) x = n كمية مادة الكبريت المتشكل: v m = =. 7 t t بالتعويض في المعادلة نشكل الجدول التالي : رقم البيشر t 1,,77,55 1,45 1,5 1,15 1,1 v m (l) 7,14 9,7 1,98 4, ,1 6,49 من خالل التجارب السابقة يتبين أن زيادة تركيز أحد المتفاعلين يزيد من سرعة التفاعل.

6 التمرين الثاني : )6 نقاط( 1. العائلة الكيميائية التي ينتمي إليها بوتانوات الميثيل: اإلسترات.المجموعة المميزة لجزيئه هي: O العائلة الكيميائية التي ينتمي إليها النوع : A الكحوالت C O الصيغة نصف المفصلة واسم كل من المتفاعلين A و B: CH 3 CH CH COOH حمض البوتانويك : B CH 3 OH ميثانول : A اكتب معادلة التفاعل المنمذج لهذا االصطناع: C 3 H 7 COOH (aq) + CH 3 OH (aq) = C 3 H 7 COO CH 3 (aq) + H O (l) التفاعل يسمى تفاعل األسترة. جدول تقدم تفاعل االصطناع: معادلة التفاعل التقدم حالة الجملة C 3 H 7 COOH (aq) + CH 3 OH (aq) = C 3 H 7 COOCH 3 (aq) + H O (l).4.i.ii x = 1mol 1. mol االبتدائية x 1 x 1 x x x االنتقالية النهائية 1 1 العالقة بين كميات المادة n(c) n(b) و (B) :n n(c) = x { n(b) = n (B) x n(b) = n (B) n(c) n(c) = n (B) n(b) n(b)(mol),6,5,4 n(c)(mol).4.6 منحنى تطور كمية بوتانوات الميثيل هو : ألنها متزايد. منحنى تطور كمية بالحمض الكربوكسيلي هو : ألنها متناقص. حساب نسبة التقدم النهائي للتحو ل المدروس: 4. من المنحنى: x f = n(c) =. 67mol من جدول التقدم: = 1mol ومنه: τ = x f. 67mol τ = τ =. 67 τ% =. 67% 1mol خواص هذا التحو ل: بطيء عكوس الحراري محدود لتقليص مد ة التفاعل دون تغيير طبيعة المتفاعالت نرفع درجة الحرارة أو نضيف وسيط شوارد + O H 3 أو نزيد كمية مادة أحد المتفاعلين..5.6

7 معادلة تفاعل المعايرة: معادلة التفاعل حالة الجملة AH (aq) + OH (aq) = A (aq) + H O (l) جدول تقدم تفاعل المعايرة: ( mol )التقدم AH (aq) + OH (aq) = A (aq) + H O (l) x = n C b V be االبتدائية.III x n x C b V be x x x االنتقالية النهائية n C b V be 3. تعر يف التكافؤ في المعايرة: هو حالة الجملة لحظة تغي ر المتفاعل المحد فيكون المتفاعالن بنسبة ستوكيومترية ( أي عند اختفاء المتفاعالن تماما (. يمكن تحديد حالة التكافؤ هنا بتغي ر لون الكاشف الملون المضاف في بداية التجربة. 4. عند التكافؤ: n (AH) = C b V be n (AH) = mol l n l (AH) = mol بما أن العينة حجمها V يساوي عشر ) 1 ( حجم المزبج ومنه: 1 n(ah) = 1 n (AH) n(ah) = mol n(ah) =. 34mol وهذه النتيجة موافقة للمنحنى البياني لتطور كمية مادة الحمض الكربوكسيلي التمرين الثالث : )3 نقاط( F 8 O + 1 n N(t) = N e λt 1- معادلة التفكك: طبيعة اإلشعاع الصادر: اإلشعاع + β - حسب قانون التناقص اإلشعاعي: حيث : t = t 1 N (t 1 ) = N e λt 1 = N e λt1 = 1 λt 1 = ln λ = N = λ = ln 11 6s λ = s 1 A =, Bq { N: عدد األنوية اإلبتدائية t عدد األنوية المتبقية عند اللحظة N: ln t 1 أ- 18 أحسب عدد أنوية الفلور 9F لحظة الحقن. A λ N = A = λn, 6 18 Bq s 1 N =

8 ب- ما هو الزمن المستغرق حتى يصبح نشاط العينة مساويا 1% من النشاط الذي كان عليه في الساعة التاسعة A(t) = A e λt A(t) { e λt = e λt =. 1 A A =. 1A { ln 1 λt = ln(. 1) t = t = s λ t = 1h1min49s التمرين الرابع: )4 نقاط( Y المنحنيان المشاهدان بالمدخلين Y 1 المنحنى المشاهد بالمدخل و لراسم االهتزاز المهبطي: ( U R1 (t)) = U R1 يمثل : (t) المنحنى المشاهد بالمدخل Y يمثل : (t) U C. يظهر على شاشة راسم االهتزاز المهبطي المنحنيان( a ) و( b ). أ- المنحنى المعطى بالمدخل Y 1 هو المنحنى (a). U R1 وهو منحنى متناقص التبرير: ألنه يمثل منحنى (t) ب- كتابة المعادلة التفاضلية الموافقة لتطور المقدار الفيزيائي الذي يمثله المنحنى: لدينا حسب قانون جمع التوترات: U R1 (t) = R 1 i(t) i(t) = dq(t) dt q(t) = CU C (t) U C (t) + U R1 = E du C (t) dt + du R 1 (t) dt U R1 (t) = R 1 C du C(t) dt = Y 1 du C(t) dt باشتقاق الطرفين نجد: = 1 R 1 C U R 1 (t) ولدينا: ومنه: du R1 (t) + 1 dt R 1 C U R 1 (t) = ج- قيمة ثابت الزمن τ 1 للدارة: من البيان: U R1 (τ 1 ) =. 37E U R1 (τ 1 ) =. V باإلسقاط: τ 1 =. 8s E = U R1 () = 6V τ 1 = R 1 C C = τ 1 R 1 C =. 8s قيمة كال من E و C : من البيان وفي النظام الدائم: ولدينا:. 4 حساب شدة التيار( i(t : 1Ω C = 8μF في اللحظة = t :

9 :t = τ U C () = U R1 () = R 1 i() = E i() = E R 1 i() = 6V 1Ω i() = A في اللحظة :t. 6s لدينا: t > 5τ 1 أي أننا في النظام الدائم ومنه: U C ( t) = E U R1 (t) = R 1 i(t) = i(t) = 5. بعد نهاية شحن المكثفة نضع البادلة K في الوضع في لحظة نعتبرها مبدأ األزمنة. أ- حساب قيمة : τ = R C τ = Ω 1 4 F τ =. s τ ب- المقارنة: τ =. s τ = τ 1 نستنتج أنه في هذه الدارة عملية الشحن أسرع بالضعف من عملية التفريغ حساب قيمة الطاقة الكهربائية المحولة في الناقل األومي بفعل جول في اللحظة R t = τ U C (τ ) =. 37E U C (τ ) =. V الطاقة الكهربائية المحولة في الناقل األومي :R E R = E E C E R = 1 C(E U C ) E R = ((6) (. ) ) E R = j بتطبيق القانون الثاني لنيوتن: التمرين الخامس: )4 نقاط( F ext = ma P + R = ma باإلسقاط على محاور المعلم :(Ox) P x = ma mg sin α = ma a = g sin α < وبما أن سرعته متناقصة الى أن تنعدم فإن: a v < ومنه الحركة مستقيمة متغيرة بانتظام متناقصة من بين المخططات األربعة ما x هو المخطط الموافق لحركة الجسم ( S ) علل. المخطط الموافق لحركة الجسم (S): R هو المخطط ألن الجسم يقذف وفق المستو y المائل بسرعة ابتدائية تبدأفي التناقص الى أن (S) P تنعدم ثم يبدأ الجسم في الهبوط وفق المستو الشكل 4 المائل فتزداد سرعته لكن بقيمة سالبة ألن اتجاه α O x y السرعة عكس اتجاه المحور المختار. حساب قيمة الزاوية α: لدينا: a = dv v t dt dv = adt v v = at v = at + v v.i

10 بالمقارنة بين العالقة النظرية والعالقة البيانية نجد أن التسارع a يمثل ميل المستقيم أي: a = v 3. 5 a = a = 3. 5m/s t 1 a = g sin α sin α = a ( 3. 5) sin α = sin α =. 357 α g 9. 8 =. 9 حساب المسافة المقطوعة بين اللحظتين = t و t: = s من البيان: { t = v = 3. 5m/s t = s v = 3. 5m/s v v = ax x = v v a x = ( 3. 5) (3. 5) = ( 3. 5) ألن الجسم المقذوف انطلق على المستو المائل صعودا ثم عاد هبوطا الى نفس نقطة االنطالق x في الحقيقة يخضع الجسم أثناء انزالقه على المستوي المائل إلى قوة احتكاك شدتها ثابتة f. (S) R 1. تمث يل القوى الخارجية المؤثرة على الجسم (S): y f P الشكل 4 α. بتطبيق القانون الثاني لنيوتن: O x y F ext = ma P + R + f = ma باإلسقاط على محاور المعلم :(Ox).4.II 1 P x f = ma mg sin α f = ma a = g sin α f m حساب قيمة التسارع من أجل f: = 8N a = g sin α f 1. 8 a = 3. 5 a = 5. 3m/s m 1

11

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت

Διαβάστε περισσότερα

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل

Διαβάστε περισσότερα

التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S

Διαβάστε περισσότερα

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5 تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )

Διαβάστε περισσότερα

فرض محروس رقم 1 الدورة 2

فرض محروس رقم 1 الدورة 2 ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في

Διαβάστε περισσότερα

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH 8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول

Διαβάστε περισσότερα

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز

Διαβάστε περισσότερα

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms ) التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي

Διαβάστε περισσότερα

تمارين توازن جسم خاضع لقوتين الحل

تمارين توازن جسم خاضع لقوتين الحل تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية

Διαβάστε περισσότερα

1 =86400 ; 1 =1,6.10 ; 1 =931.5 ; 1 = ( )

1 =86400 ; 1 =1,6.10 ; 1 =931.5 ; 1 = ( ) ثانوية صاالح الدين األيوبي امتحان البكالوريا التجريبي دورة 2014 العلوم الفيزيائية المادة : المدة : أربع ساعات ونصف (4 سا 30 د) الشعبة : رياضيات و تقني رياضي لإلجابة عليه على المترشح أن يختار أحد الموضوعين

Διαβάστε περισσότερα

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن : اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب

Διαβάστε περισσότερα

تقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH

تقين رياوي الصيغة المجممة لأللسان A الصيغة المجممة هي 6 3 صيغته نصف المفصمة : 2 CH 3 -CH=CH اإلجابة النموذجية ملووو اتحاا اخحبار تادة الحكنولوجيا (هندسة الطرائق ( البكالوريا دورة 6 الشعبة املدة 44 سا و 34 د,5 M n = M polymère monomère ; 5 نقاط ) التمرين األول ( إيجاد الصيغة المجممة لأللسان A

Διαβάστε περισσότερα

jamil-rachid.jimdo.com

jamil-rachid.jimdo.com تصحیح الامتحان الوطني الموحد للبكالوریا مسلك علوم فیزیاي یة 8 الدورة العادیة jilrchidjidoco الكیمیاء الجزء : I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء: حساب الترآيز : ( ( i ROOH ROOH i ومنه:

Διαβάστε περισσότερα

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن

Διαβάστε περισσότερα

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي

Διαβάστε περισσότερα

التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3

التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3 بكالوراي ال د و ر ة االسحثنائية: الشعبة: تقين رايوي املدة: 4 سا و 4 د عناصر اإلجابة )الموضوع األول( مج أزة م ج م و ع,5 التمرين األول: )8 نقاط( -I - أ- إيجاد الصيغ نصف المفصلة للمركبات:. M D B A A: H H

Διαβάστε περισσότερα

OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5

OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5 الكيمياء (6 نقط) - سم المرآبات الكيمياي ية التالية مع تحديد المجموعة الكيمياي ية التي ينتمي إليها آل مرآب: المرآب A المرآب B المرآب الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم. 4 الدورة الثانية المستوى:

Διαβάστε περισσότερα

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة. التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين

Διαβάστε περισσότερα

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي

Διαβάστε περισσότερα

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph 8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol

Διαβάστε περισσότερα

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف. الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3 ) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين

Διαβάστε περισσότερα

قراوي. V NaOH (ml) ج/- إذا علمت أن نسبة التقدم النهائي = 0,039 f بين أن قيمة التركيز المولي للمحلول هي C = mol/l

قراوي. V NaOH (ml) ج/- إذا علمت أن نسبة التقدم النهائي = 0,039 f بين أن قيمة التركيز المولي للمحلول هي C = mol/l دروس الدعم مستوى السنة الثالثة : عت+تر+ريا السلسلة رقم 05 تطور جملة كيميائية نحو حالة التوازن ثانوية بريكة الجديدة االستاذ : عادل التمرين األول: نحضر محلوال (S) لحمض اإليثانويك COOH) (CH 3 لهذا الغرض نذيب

Διαβάστε περισσότερα

Le travail et l'énergie potentielle.

Le travail et l'énergie potentielle. الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة

Διαβάστε περισσότερα

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين www.svt-assilah.com تصحيح تمرين 1: F1 F2 F 2 فإن : F 1 و 1- شرط توازن جسم صلب تحت تأثير قوتين : عندما يكون جسم صلب في توازن تحت تأثير قوتين 0 2 F 1 + F المجموع

Διαβάστε περισσότερα

التحوالت ت النووية. المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال الدرس 03 :تناقص النشاط اإلشعاعي

التحوالت ت النووية. المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال الدرس 03 :تناقص النشاط اإلشعاعي الدرس 03 :تناقص النشاط اإلشعاعي التحوالت ت النووية إعداد األستاذ : معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية المعادلة التفاضلية للتطور( différentiel (équation التفسير باالحتمال

Διαβάστε περισσότερα

1 +. [I 2 ]mmol/l. t(min) t (min) V H2 (ml) x (mol)

1 +. [I 2 ]mmol/l. t(min) t (min) V H2 (ml) x (mol) S, mol V = ml S : t = c = / L ( K (aq ) SO8 ) (aq ). c ( K (aq ) I (aq ) ) V = ml. [ I (aq ) ] 6. [I ]mmol/l - 4 3 3 4 6 7 8 9 - (Ox / Red) -.. -3. -4. -. -6 x -7. I ] f (t) [ (aq ) =. t = mn -8 [ I (aq

Διαβάστε περισσότερα

3as.ency-education.com

3as.ency-education.com الجمهرية الجزائرية الديمقراطية الشعبية 2017/2016 مديرية التربية لالية باتنة السنة الدراسية اختبار بكالريا التجريبي الشعبة : تقني رياضي درة ماي 2017/2016 المدة: 4 سا اختبار في مادة التكنلجيا )هندسة الطرائق(

Διαβάστε περισσότερα

المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2

المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2 التطورات المجال الرتيبة الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم سلسلة وآمية من غاز ثناي ي الهيدروجين H آتلتها g بواسطة L في مفاعل صناعي نضع حجما من غاز ثناي ي الازوت N

Διαβάστε περισσότερα

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6 1/ وحدات قياس زاوية الدرجة الراديان : (1 العلقة بين الدرجة والراديان: I الوحدة الكأثر استعمال لقياس الزوايا في المستويات السابقة هي الدرجة ونعلم أن قياس الزاوية المستقيمية هو 18 rd هناك وحدة لقياس الزوايا

Διαβάστε περισσότερα

الدورة العادية NS 03 الفيزياء والكيمياء شعبة العلوم الرياضية )أ( و)ب( دراسة محلول األمونياك و الهيدروكسيالمين 5

الدورة العادية NS 03 الفيزياء والكيمياء شعبة العلوم الرياضية )أ( و)ب( دراسة محلول األمونياك و الهيدروكسيالمين 5 4 المركز الوطني للتقويم واالمتحانات والتوجيه المادة الفيزياء والكيمياء االمتحان الوطني الموحد للبكالوريا مدة اإلنجاز 8 الدورة العادية 4 NS 3 wwwtawjihproco 7 الشعبة أو المسلك شعبة العلوم الرياضية )أ( و)ب(

Διαβάστε περισσότερα

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل

Διαβάστε περισσότερα

3as.ency-education.com

3as.ency-education.com الجمهورية الجزائرية الديمقراطية الشعبية مديرية التربية لوالية معسكر وزارة التربية الوطنية دورة : ماي 2018 امتحان بكالوريا تجريبي ثانوية الشيخ فرحاوي عبد القادر تغنيف - الشعبة : علوم تجريبية اختبار في مادة

Διαβάστε περισσότερα

3as.ency-education.com

3as.ency-education.com اإلجابة النموذجية ملوضوع اختبار مادة : التكنولوجيا (هندسة الطرائق) / الشعبة : تقين رايضي / بكالوراي / 712 : موضوع العالمة مجموع مجزأة عناصر اإلجابة (الموضوع األول) التمرين األول 8( : نقاط) ) 1 -I 2,25

Διαβάστε περισσότερα

. C 0 = 10 3 mol /l. N A = 6, mol 1

. C 0 = 10 3 mol /l. N A = 6, mol 1 مديرية التربية لولاية الشلف الشعبة : رياضيات تقني رياضي ملاحظة : يعالج المترشح ا حد الموضوعين على الخيار الجمهورية الجزاي رية الديمقراطية الشعبية متقن مرسلي عبد االله سيدي عكاشة - امتحان البكالوريا التجريبي

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع

Διαβάστε περισσότερα

االختبار الثاني في العلوم الفيزيائية

االختبار الثاني في العلوم الفيزيائية ر 3 ثانوية عبان رمضان االختبار الثاني في العلوم الفيزيائية مارس 6102 المدة 6 ساعة األقسام :3 ع 2 - التمرين األول: ي عطى عند : 25 C pka(ch3cooh/ch3coo - )=4.8 وجدنا في المخبر قارورة تحتوي على محلول (S0)

Διαβάστε περισσότερα

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة

Διαβάστε περισσότερα

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل

Διαβάστε περισσότερα

ency-education.com/exams

ency-education.com/exams الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية بكالوريا التجريبي في مادة التكنولوجيا )ماي 2018 والية غليزان ) المدة : 4 سا و 30 د ثانوية : عمي موسى + عين طارق الشعبة : تقني رياضي)هندسة الط

Διαβάστε περισσότερα

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = = -i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب

Διαβάστε περισσότερα

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.

الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة. GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف

Διαβάστε περισσότερα

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6 ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة

Διαβάστε περισσότερα

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:

Διαβάστε περισσότερα

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V 8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على

Διαβάστε περισσότερα

الجمهورية الجزائرية الديمقراطية الشعبية الشعبة دورة صفحة 1 من 8 : علوم تجريبية : ماي 1025 اختبار في مادة : العلوم الفيزيائية : 03 سا و 30 د

الجمهورية الجزائرية الديمقراطية الشعبية الشعبة دورة صفحة 1 من 8 : علوم تجريبية : ماي 1025 اختبار في مادة : العلوم الفيزيائية : 03 سا و 30 د الجمهرية الجزائرية الديمقراطية الشعبية زارة التربية الطنية امتحان تجريبي باكالريا التعليم الثاني الشعبة ثانية مفدي زكريا البياضة ثانية البياضة الجديدة درة : ماي 1025 : علم تجريبية اختبار في مادة : العلم

Διαβάστε περισσότερα

التطورات : : 05. m m .(1 14.( V( m / s ) 0,25 0, t ( s ) t ( s ) z v. V z ( mm / s )

التطورات : : 05. m m .(1 14.( V( m / s ) 0,25 0, t ( s ) t ( s ) z v. V z ( mm / s ) التطورات : المجال الرتيبة : 5 الوحدة جملة ميآانيآية تطور ر ت ت ر ع المستوى: 5 : رقم السلسلة V z mm / s. t s تم تصوير السقوط الشاقولي لآرية داخل زيت. و بعد معالجة المعطيات بالا علام الا لي تم الحصول على

Διαβάστε περισσότερα

prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( )

prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( ) الثانوية الفلاحية باولادتايمة فرض رقم الدورة الثانية يوم - 010/5/19 مدة الا نجاز: ساعتين- التمرين الا ول فيزياء : 9 نقط يمكن لجسم صلب ) S ( آتلته = 1Kg نعتبره نقطيا أن ينزلق فوق سكة ABC مكونة من : prf

Διαβάστε περισσότερα

منتديات علوم الحياة و الأرض بأصيلة

منتديات علوم الحياة و الأرض بأصيلة www.svt-assilah.com الفيزياء تمرين : 1 نحدث عند الطرف S لحبل مرن موجة مستعرضة تنتشر بسرعة 1 s. v = 10 m. عند اللحظة t = 0s يوجد مطلع الإشارة عند المنبع. S يمثل المنحنى أسفله تغيرات استطالة المنبع بدلالة

Διαβάστε περισσότερα

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { } الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة

Διαβάστε περισσότερα

حركة دوران جسم صلب حول محور ثابت

حركة دوران جسم صلب حول محور ثابت حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين

Διαβάστε περισσότερα

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM

Διαβάστε περισσότερα

التطورات الوحدة المجال يبة المستوى: 3 + ر+ رقم : 01 الدرس الرت PV = nrt. n = C = C m C 2 F = = atm 082 mole. mole 273 === ( g.mol.

التطورات الوحدة المجال يبة المستوى: 3 + ر+ رقم : 01 الدرس الرت PV = nrt. n = C = C m C 2 F = = atm 082 mole. mole 273 === ( g.mol. التطورات المجال يبة الرت الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم الدرس لية قب سبات مآت ترآيز محلول ماي ي و آمية المادة علاقة آمية المادة بالآتلة صلب أو ساي ل أو غاز حالة

Διαβάστε περισσότερα

3as.ency-education.com

3as.ency-education.com الجمهورية الجزائرية الديمقراطية الشعبية - ثانوية المجاهد رابحي محمد - البويرة - - ثانوية دحمان خالف - عين ولمان - - ثانوية تومي عبد القادر - غليزان - - ثانوية عمار مرناش - سطيف - دورة : مــــــــــــاي

Διαβάστε περισσότερα

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن

Διαβάστε περισσότερα

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C

Διαβάστε περισσότερα

أي أن [ ] [ ] محمول لحمض االيثانويك تركيزه بشوارد الييدرونيوم - االكسونيوم ] [ لممحمولين وماذا تستنتج مالحظات : عند.

أي أن [ ] [ ] محمول لحمض االيثانويك تركيزه بشوارد الييدرونيوم - االكسونيوم ] [ لممحمولين وماذا تستنتج مالحظات : عند. الحدة ال اربعة : تطر جممة كيميائية نح حالة التازن 1- تعريف الحمض االساس حسب برنشتد: أ- تعريف الحمض: ى نع كيميائي قادر عمى منح برتن أ اكثر ب- تعريف االساس : ى نع كيميائي قادر عمى التقاط برتن أ اكثر ph محمل

Διαβάστε περισσότερα

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن

Διαβάστε περισσότερα

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) ( الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )

Διαβάστε περισσότερα

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر

Διαβάστε περισσότερα

Dipôle RL. u L (V) Allal mahdade Page 1

Dipôle RL. u L (V) Allal mahdade   Page 1 ثنائي القطب ثنائي القطب Dipôle la bobine : الوشيعة I 1 التعريف الوشيعة ثنائي قطب يتكون من لفات من سلك من النحاس غير متصلة فيما بينھا لكونھا مطلية ببرنيق عازل كھربائي. رمز الوشيعة : (V) I(A) لتمثيل لوشيعة

Διαβάστε περισσότερα

Sلهما 2 نفس الكتله S 1 وبطرفه اآلخر جسم ,S 2 (S) نقذف جسما ( ) 6- أوجد إحداثيي النقطة H نقطة أصطدام القذيفة باألرض. يسحب أثناء نزوله جسما جسم

Sلهما 2 نفس الكتله S 1 وبطرفه اآلخر جسم ,S 2 (S) نقذف جسما ( ) 6- أوجد إحداثيي النقطة H نقطة أصطدام القذيفة باألرض. يسحب أثناء نزوله جسما جسم تطور جملة ميكانيكية ثانوية بريكة الجديدة االستاذ : عادل دروس الدعم مستوى السنة الثالثة : عت+تر+ريا السلسلة رقم 06 التمرين األول: جسم g 10 m/s 6- أوجد إحداثيي النقطة H نقطة أصطدام القذيفة باألرض. S 1 m

Διαβάστε περισσότερα

دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl.

دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl. الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف بن عليي صالح ثانية تجريبية علم الشعبة نصف ساعات

Διαβάστε περισσότερα

دورة : 2 3 ب : = 1, 8 10 mol. Cr : 2 dt : mol / L. t ( s ) .Cr + .Cr. 7 ( aq ) vol

دورة : 2 3 ب : = 1, 8 10 mol. Cr : 2 dt : mol / L. t ( s ) .Cr + .Cr. 7 ( aq ) vol الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة 5 ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف عليي صالح بن ثانية تجريبية علم الشعبة الا ل التمرين

Διαβάστε περισσότερα

**********************************************************

********************************************************** اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8

Διαβάστε περισσότερα

المجال الثالث: الديناميكا الحرارية الكيميائية

المجال الثالث: الديناميكا الحرارية الكيميائية األتساذ : روبة حيي chimie17000@gmailcom المجال الثالث: الديناميكا الحرارية الكيميائية النشاط العملي رقم 01: قياس الحرارة المولية للذوبان النشاط العملي رقم 20: قياس الحرارة النوعية النصهار الجليد النشاط

Διαβάστε περισσότερα

انكخهت انحجميت نهغبس انكخهت انحجميت نههىاء انغبساث في انشزوط انىظبميت : M انكخهت انمىنيت ب

انكخهت انحجميت نهغبس انكخهت انحجميت نههىاء انغبساث في انشزوط انىظبميت : M انكخهت انمىنيت ب 2016 N A عذد آفىقدر: 6 320 عذد انذراث أ انجشيئث : M انكخهت انمىنيت انكخهت g حجم انغس انحجم انمىني عذد انمىالث أ كميت انمدة انخزكيش انمىني انخزكيش انكخهي: انكخهت انحجميت أ عذد انمىالث حجم انمحهىل انكخهت

Διαβάστε περισσότερα

Site : Gmail : Page 1

Site :  Gmail : Page 1 الفيزياء األستاذ : رشيد جنكل القسم : السنة الثانية من سلك البكالوريا الشعبة : علوم تجريبية ع ف سلسلسة رقم 1 الدورة الثانية الميكانيك : جميع الدروس التحوالت التلقائية في األعمدة وتحصيل الطاقة / أمثلة لتحوالت

Διαβάστε περισσότερα

التحوالت النووية الدرس 05: تطبيقات النشاط اإلشعاعي إعداد األستاذ معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية

التحوالت النووية الدرس 05: تطبيقات النشاط اإلشعاعي إعداد األستاذ معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية الدرس 05: تطبيقات النشاط اإلشعاعي إعداد األستاذ معافي جمال ( مدير ثانوية محمد الشريف بوسام( الشعبة: رياضيات + علوم تجريبية يستعمل النشاط اإلشعاعي في التأريخ ( أي تحديد عمر األشياء أو عمر وفاتها وذلك مثال

Διαβάστε περισσότερα

1/ الزوايا: المتت امة المتكاملة المتجاورة

1/ الزوايا: المتت امة المتكاملة المتجاورة الحصة األولى الز وايا القدرات المستوجبة:* تعر ف زاويتين متكاملتين أو زاويتين متتام تين. * تعر ف زاويتين متجاورتين. المكتسبات السابقة:تعريف الزاوية كيف نستعمل المنقلة لقيس زاوية كيف نرمز للزاوية 1/ الزوايا:

Διαβάστε περισσότερα

x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 -

x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 - التطورات المجال الرتيبة جملة كيمياي ية تطور 0 الوحدة حالة التوازن نحو ر ت ر ت ع المستوى 0 رقم ملخص O الا سس حسب تعريف برونشتد و الا حماض الا حماض الحمض تعريف أو أآثر. هو آل فرد آيمياي ي شاردة جزئ بامآانه

Διαβάστε περισσότερα

C 12 *** . λ. dn A = dt. 6 هو ans

C 12 *** . λ. dn A = dt. 6 هو ans الجمهورية الجزاي رية الديمقراطية الشعبية. وزارة التربية الوطنية. ثانوية عمر بن عبد العزيز/ندرومة. مديرية التربية لولاية تلمسان. الامتحان التجريبي في العلوم الفيزياي ية. التمرين الا ول: () شعبة :العلوم

Διαβάστε περισσότερα

المجاالت المغناطيسية Magnetic fields

المجاالت المغناطيسية Magnetic fields The powder spread on the surface is coated with an organic material that adheres to the greasy residue in a fingerprint. A magnetic brush removes the excess powder and makes the fingerprint visible. (James

Διαβάστε περισσότερα

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة

Διαβάστε περισσότερα

تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية

تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية الكيمياء : الجزء الا ول والثاني مستقلين الجزء الا ول : التحليل لكهرباي ي لمحلول كلورور القصدير II 1 تبيانة التركيب التجريبي للتحليل

Διαβάστε περισσότερα

تايضاير و مولع يئاهن Version 1.1 اي ل

تايضاير و مولع يئاهن Version 1.1 اي ل ر ي ا ض ي ا ت نهائي علم Version أ ج ل م ن ب د ا ي ة ح س ن ة ك م ا ل ح ا م د ي 0 الدرجة الثانية... عمميات على الدال... 3 قاعد احلساب على املتباينات... تطبيقات...6 a مع 0 p() = a + b + c p() = a [( + b )

Διαβάστε περισσότερα

بحيث ان فانه عندما x x 0 < δ لدينا فان

بحيث ان فانه عندما x x 0 < δ لدينا فان أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x

Διαβάστε περισσότερα

أولا: ضع إشارة ) ( أمام اإلجابة األنسب فيما يلي:

أولا: ضع إشارة ) ( أمام اإلجابة األنسب فيما يلي: المدرس: محم د سيف مدرسة درويش بن كرم الثانوية القوى والمجاالت الكهربائية تدريبات الفيزياء / األولى أولا: ضع إشارة ) ( أمام اإلجابة األنسب فيما يلي: - شحنتان نقطيتان متجاورتان القوة المتبادلة بينهما )N.6(.

Διαβάστε περισσότερα

وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا اختبار في مادة الفيزياء والكيمياء

وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا اختبار في مادة الفيزياء والكيمياء الشعبة : علوم تجريبية ساعات 4 ) : الا ول ا الجزاي رية الديمقراطية الشعبية الجمهورية وزارة التربية الوطنية موضوع تجريبي لامتحان شهادة البكالوريا نقاط) اختبار في مادة الفيزياء والكيمياء المدة : حمض الميثانويك

Διαβάστε περισσότερα

أ- سلسلة تمارين حول التحكم في تطور مجموعة آيمياي ية 1 )التمرين رقم 1 الصفحة 167 المفيد في الكيمياء: عين من بين الجزيي ات التالية إلى أي مجموعة تنتمي وأعط أسماءها : CH 3 -CO-O-CO-CH 3 ( CH 3 -CO-O-CH 3

Διαβάστε περισσότερα

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح . المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل

Διαβάστε περισσότερα

متارين حتضري للبكالوريا

متارين حتضري للبكالوريا متارين حتضري للبكالريا بكالريا فرنسية بكالريا اجلزائر نظام قدمي مرتمجة ترمجة إعداد : الطالب بلناس عبد املؤمن ثانية عبد الرمحن بن خلدن عني جاسر باتنة جيلية 2102 أمتىن أن تكن هذه التمارين مفيدة للتحضري للبكالريا

Διαβάστε περισσότερα

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي

Διαβάστε περισσότερα

3as.ency-education.com

3as.ency-education.com الجمهورية الج ازئرية الديمق ارطية الشعبية ثانوية دحمان خالف ع ني ولمان و ازرة التربية الوطنية دورة: ماي 17 امتحان بكالوريا تجريبي التعليم الثانوي الشعبة: تقني رياضي المدة: 4 سا اختبار في مادة: التكنولوجيا

Διαβάστε περισσότερα

رباعيات األضالع سابعة أساسي. [www.monmaths.com]

رباعيات األضالع سابعة أساسي. [www.monmaths.com] سابعة أساسي [www.monmaths.com] الحص ة األولى رباعيات األضالع القدرات المستوجبة:.. المكتسبات السابقة:... المعي ن- المستطيل ) I المرب ع الرباعي هو مضل ع له... 4 للرباعي... 4 و... 4 و... نشاط 1 صفحة 180 الحظ

Διαβάστε περισσότερα

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة

Διαβάστε περισσότερα

. Conservation of Energy

. Conservation of Energy و ازرة التربية التوجيو الفني العام لمعموم المجنة الفنية المشتركة لمفيزياء - بنك أسئمة الصف الثاني عشر العممي/ الجزء األول - صفحة 1 الدرس 1 3 ) السؤال األول : حفظ أكتب بين القوسين االسم بقاء ) الطاقة الوحدة

Διαβάστε περισσότερα

ا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا

ا و. ر ا آ!ار نذإ.ى أ م ( ) * +,إ ك., م (ا يأ ) 1 آ ا. 4 ا + 9 ;). 9 : 8 8 و ء ر ) ا : * 2 3 ك 4 ا الميكاني ك La mécanque قوانين نيوتن I متجهة السرعة ومتجهة التسارع: ) تذآير: : الحرآة نسبية أي الا جسام لا تتحرك إلا بالنسبة لا جسام أخرى.إذن لدراسة حرآة جسم يجب اختيار جسم مرجعي. ولتحديد موضع الجسم المتحرك

Διαβάστε περισσότερα

ﺔﻴﻭﻀﻌﻟﺍ ﺕﺎﺒﻜﺭﻤﻟﺍ ﻥﻴﺒ ﺕﻼﻴﻭﺤﺘﻟﺍ لﻭﺤ ﺔﻴﺯﻴﺯﻌﺘ ﺔﻗﺎﻁﺒ

ﺔﻴﻭﻀﻌﻟﺍ ﺕﺎﺒﻜﺭﻤﻟﺍ ﻥﻴﺒ ﺕﻼﻴﻭﺤﺘﻟﺍ لﻭﺤ ﺔﻴﺯﻴﺯﻌﺘ ﺔﻗﺎﻁﺒ بطاقة تعزيزية حول التحويلات بين المركبات العضوية مبتدي ا من الاسيتلين ) الا يثاين ( وضح بالمعادلات الكيمياي ية مع ذكر شروط التفاعل كيف يمكنك س ١ : الحصول على : ( ٣ اسيتات الفينيل ) ( ) الفينول ٢ ميثيل

Διαβάστε περισσότερα

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من. عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في

Διαβάστε περισσότερα

الوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran

الوحدة 05. uuur dog dt. r v= uuur r r r الدرس الا ول. uuur. uuur. r j. G (t) المسار. GUEZOURI Aek lycée Maraval - Oran GUEZOURI Aek lcée Ml - O الكتاب الا ول الوحدة 05 التطورات الرتيبة تطور جملة ميكانيكية الدرس الا ول ما يجب أن أعرفه حتى أقول : إني استوعبت هذا الدرس يجب أن أعرف آيفية تحديد جملة ميكانيكية حسب ما ي طل ب

Διαβάστε περισσότερα

الوحدة 08. GUEZOURI A. Lycée Maraval - Oran الدرس H + بروتونا... . CH 3 NH 3 HSO 4 NH 4

الوحدة 08. GUEZOURI A. Lycée Maraval - Oran الدرس H + بروتونا... . CH 3 NH 3 HSO 4 NH 4 المستوى : السنة الثانية ثانوي الوحدة 08 تعيين آمية المادة بواسطة المعايرة GUEZOURI Lycée Maraval - Oran ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - 1 يجب أن أفر ق بين حمض وأساس حسب تعريف برونشتد

Διαβάστε περισσότερα

1/7

1/7 I الحركة 1 نسبیة الحركة الحركة النشاط التجريبي : 1 في التبيانة جانبه حافلة النقل المدرسي يجلس بداخلها أحمد بينما ليلى ما زالت تنتظر حافلة نقل أخرى وتشاهد حافلة صديقها تبتعد عنها الجسم R مرتبط بالا رض و

Διαβάστε περισσότερα

إسالم بوزنية ISLEM BOUZENIA الفهرس

إسالم بوزنية ISLEM BOUZENIA الفهرس ISLEM إسالم بوزنية إسالم بوزنية ISLEM BOUZENIA ISLEM إسالم بوزنية الفهرس مقدمة... الدوال العددية... ص 1 كثيرات الحدود... ص 11 االشتقاقية...ص 11 تطبيقات االشتقاقية...ص 12 فرض أول للفصل األول...ص 33 فرض

Διαβάστε περισσότερα

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف

Διαβάστε περισσότερα

التفسير الهندسي للمشتقة

التفسير الهندسي للمشتقة 8 5 األدبي الفندقي والياحي المنير في الرياضيات الأتاذ منير أبوبكر 55505050 التفير الهندي للمشتقة من الشكل نلاحظ أنه عندما تتحرك النقطة ب من باتجاه أ حتى تنطبق عليها فإن القاطع أب ينطبق على مما المنحنى

Διαβάστε περισσότερα

الموافقة : v = 100m v(t)

الموافقة : v = 100m v(t) مراجعة القوة والحركة تصميم الدرس 1- السرعة المتوسطة 2- السرعة اللحظية 3- النموذج الرياضي : شعاع السرعة 4- شعاع السرعة والحركة المستقيمة 5- الحالة الخاصة 1 1 السرعة المتوسطة سيارة تقطع مسافة L بين مدينة

Διαβάστε περισσότερα

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7. الكتاب الا ول الوحدة 01 التطورات الرتيبة تطور آميات مادة المتفاعلات والنواتج خلال تحول آيمياي ي في محلول ماي ي الدرس الا ول GUEZOURI Aek lycée Maraval Oran - Ι مراجعة - Ι الا آسدة والا رجاع المو آسد :

Διαβάστε περισσότερα

الفصل الثالث عناصر تخزين الطاقة الكهربائية

الفصل الثالث عناصر تخزين الطاقة الكهربائية قانون كولون الفصل الثالث عناصر تخزين الطاقة الكهربائية - - مقدمة : من المعروف أن ذرة أي عنصر تتكون من البروتونات واإللكترونات والنيترونات وتتعلق الشحنة الكهربائية ببنية الذرة فالشحنة الموجبة أو السالبة

Διαβάστε περισσότερα