Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Νευρωνικά Δίκτυα Χρήστος Μακρόπουλος Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο
|
|
- Σαπφειρη Ζάνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Νευρωνικά Δίκτυα Χρήστος Μακρόπουλος Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο
2 Νευρωνικά Δίκτυα Βασίζονται στη χρήση μιας προσέγγισης μάλλον απλοϊκής του τρόπου λειτουργίας του νευρικού συστήματος μέσω μαθηματικών συναρτήσεων. Πρώτη αναφορά: W.S. McCulloh & W. Ps, A logcal calculus of deas mmanen n Nervous acv, Bull. Mahemacal Bophscs, Vol. 5, 943, pp.5-33.
3 Μια από τις πρώτες πετυχημένες απόπειρες machne learnng
4 Τί είναι machne learnng? Η προσπάθεια να φτιάξουμε αλγόριθμους που να έχουν τις δεξιότητες του ανθρώπινου εγκεφάλου! Πχ. Βλέπω, αναγνωρίζω, μαθαίνω, συμπεραίνω, συνθέτω elemenar m dear
5 Ποια η γενική διαδικασία του Machne Learnng?
6 Και σε τί διαφοροποιείται από τον άλλο σημαντικό όρο της εποχής το deep learnng
7 Ποια η βασική υπόθεση εργασίας στην περίπτωση των ΝΔ; Βασίζεται στην εξής απλή και μάλλον αισθητικής φύσης υπόθεση εργασίας: Γεγονός: οι άνθρωποι μαθαίνουν χρησιμοποιώντας τους νευρώνες τους εγκέφαλος Στόχος: θέλουμε να κάνουμε τους υπολογιστές να συμπεριφέρονται όπως ένας εγκέφαλος. Άρα: φτιάχνω ένα σύστημα που μοιάζει με εγκέφαλο δηλ. ένα σύνολο νευρώνων και ελπίζω οτι θα συμπεριφέρεται με τον ίδιο τρόπο...
8 Το βιολογικό πρότυπο Δενδρίτες & Συνάψεις: προσοχή όπως και στους γενετικούς εργαζόμαστε σε αρκετά αφαιρετικό επίπεδο σε σχέση με την αρχική βιολογική ιδέα
9 Το απλοποιημένο βιολογικό πρότυπο άξονας δενδρίτες συνάψεις Τα σήματα ταξιδεύουν μέσω του νευρώνα και προκαλούν την έκκριση νευροδιαβιβαστικών ουσιών στις συνάψεις. Οι νευρο-διαβιβαστικές ουσίες προκαλούν αντιδράσεις στους δενδρίτες των νευρώνων που βρίσκονται μετά τις συνάψεις. Οι αντιδράσεις αυτές προκαλούν σήματα στους νευρώνες μετά τις συνάψεις. Το μέγεθος/ένταση του σήματος εξαρτάται από τη δύναμη του συνδέσμου της σύναψης.
10 Τεχνητός Νευρώνας ή αντιληπτήρας Μοντέλο McCullogh-Ps Είσοδοι Συνάρτηση Μεταφοράς f, Έξοδος n- n- n n Μεταφράζει μια σειρά εισόδων σε μια έξοδο με τη βοήθεια: βαρών και μιας συνάρτησης «μεταφοράς» ή αλλιώς «ενεργοποίησης»
11 Παράδειγμα συνάρτησης μεταφοράς: Έξοδος: Sep Funcon Εδώ με θ 0 Το θ ονομάζεται κατώφλι ενεργοποίησης Είσοδος:
12 Ενεργοποίηση του νευρώνα Συνεχίζοντας με την βιολογική αναλογία, ο νευρώνας ενεργοποιείται μόνο όταν το «σήμα» είναι αρκετα «δυνατό». Αυτό προκύπτει: Είτε από τη μορφή της συνάρτησης ενεργοποίησης πχ. sep funcon hreshold Είτε μετά από σύγκριση με μια «συνθήκη ενεργοποίησης»
13 Στην ουσία τι κάνει ένας αντιληπτήρας με αυτή τη απλή συνάρτηση μεταφοράς; Μπορεί να πεί Ναι/Οχι ή αλλιώς Ανήκει/Δεν Ανήκει. Αρα μπορεί να «αποφασίσει» αν ένα δείγμα με κάποια χαρακτηριστικά ανήκει σε ένα σύνολο ή όχι χωρίζοντας το δείγμα σε δυο μέρη. Πως ξέρει ποιό δείγμα ανήκει σε ποιό μέρος; του δίνουμε εμείς ένα σετ σωστών απαντήσεων και προσαρμόζουμε τα βάρη έτσι ώστε να απαντά σωστά.
14 Ένα παράδειγμα πιο κοντά στα δικά μας: πχ σύστημα έγκαιρης προειδοποίησης πλημμυρών: Να στείλω SMS για έγκαιρη προειδοποίηση από πλημμύρα ή όχι; 5 X βροχή W SUM με κατώφλι θ4 f HL O X παροχή W Η σημασία της παραμέτρου Χ στο πρόβλημα είναι μεγαλύτερη βλ. Flood forecasng: : βροχή, : παροχή, στο προηγούμενο βήμα
15 Πώς όμως υπολογίζουμε τα βάρη; Εκπαίδευση Διαδικασία η οποία με δεδομένα «σωστά» σύνολα εισόδων-εξόδων, τροποποιεί τις μεταβλητές του ΝΔ πχ τα βάρη για να αναγκάσει το ΝΔ να δώσει τη «σωστή» απάντηση εξόδου. Στην ουσία: ένα πρόβλημα βαθμονόμησης σε ένα «γενικό» μοντέλο. Τύποι εκπαίδευσης: Αυτόνομη, Μη Αυτόνομη, Επιβεβλημένη, Ανταγωνιστική, Κανόνας Δέλτα LMS, Hll-Clmbng
16 Εποπτευόμενη Εκπαίδευση supervsed ranng Κατά την εποπτευόμενη εκπαίδευση η απόκριση του ΝΔ σε ένα σύνολο εισόδου συγκρίνεται με την επιθυμητή απόκριση. Αν αυτές διαφέρουν τότε το ΝΔ υπολογίζει ένα σφάλμα. Το σφάλμα χρησιμοποιείται ώστε να γίνουν οι απαραίτητες τροποποιήσεις των συντελεστών βάρους, ώστε η απόκριση να πλησιάσει την επιθυμητή και το σφάλμα να προσεγγίσει ή δυνατόν το μηδέν. Η τροποποίηση γίνεται με κάποιο βήμα βλ. κάναβο δεξιά που ονομάζεται learnng rae Οι χρησιμοποιούμενες μέθοδοι για την ελαχιστοποίηση του σφάλματος είναι οι ίδιες που εφαρμόζονται σε διάφορες τεχνικές ελαχιστοποιήσεως
17 Μη εποπτευόμενη εκπαίδευση unsupervsed ranng Δεν δίνουμε «σωστές» τιμές εξόδου και το ΑΝΝ πρέπει να αποφασίσει μόνο του τί είναι σωστό: στην ουσία να βρεί κρυμμένες δομές. Self-organzaon: selforganzng map SOM, Kohonen neorks/maps
18 Περιγραφή του προβλήματος Δεδομένα: Σύνολα τιμών είσοδοι, έξοδος:,, Για παράδειγμα ως: g + z ; Όπου z τυχαίος θόρυβος Πρόβλημα: Yπολογίστε τα βάρη [,, k] με τα οποία ελαχιστοποιείται το σφάλμα. Με άλλα λόγια: υπολογίστε ένα ΝΔ δηλ. ένα F, το οποίο προσομοιώνει την άγνωστη συνάρτηση g για κάθε.
19 Πρόκειται για περίπτωση βελτιστοποίησης ελαχιστοποίησης με μέγιστη κλιση seepes descend
20 Με άλλα λόγια: Αν ακολουθήσουμε την αρνητική κλίση, κατεβαίνουμε πιο γρήγορα και άρα για κάθε: Έχουμε πάντα:
21 Seepes descen για ένα νευρώνα Νευρώνας: T ou Δεδομένα:,,...,,,, N N Σφάλμα: T ou E Μάθηση: ελαχιστοποίηση με σταδιακή με κάποιο βήμα μεταβολή βαρών κατα τη μέγιστη κλίση της επιφάνειας απόκρισης: T T c c E c + + Inpus Weghs Oupu Bas p 3 p p f a b p f b p p p f a 3 3
22 απλή εκπαίδευση ΝΔ Learnng Threshold Rae Sensor values Desred Oupu Weghs Response of NN TH LR X X Z C C S N X X C+C IFS>TH,,0 0,50 0,0 0,00 0,00 0,00 0,0 0,30 0,00 0,00 0,00 0,00 0,50 0,0 0,00,00,00 0,0 0,30 0,00 0,30 0,30 0,00 0,50 0,0,00 0,00,00 0,30 0,50 0,30 0,00 0,30 0,00 0,50 0,0,00,00,00 0,50 0,70 0,50 0,70,0,00 0,50 0,0 0,00 0,00 0,00 0,50 0,70 0,00 0,00 0,00 0,00 0,50 0,0 0,00,00,00 0,50 0,70 0,00 0,70 0,70,00 0,50 0,0,00 0,00,00 0,50 0,70 0,50 0,00 0,50 0,00 0,50 0,0,00,00,00 0,70 0,90 0,70 0,90,60,00 0,50 0,0 0,00 0,00 0,00 0,70 0,90 0,00 0,00 0,00 0,00 0,50 0,0 0,00,00,00 0,70 0,90 0,00 0,90 0,90,00 0,50 0,0,00 0,00,00 0,70 0,90 0,70 0,00 0,70,00 0,50 0,0,00,00,00 0,70 0,90 0,70 0,90,60,00 Error Correcon Ne Weghs E R W W Z-N LR E R+ R+ 0,00 0,00 0,0 0,30,00 0,0 0,30 0,50,00 0,0 0,50 0,70 0,00 0,00 0,50 0,70 0,00 0,00 0,50 0,70 0,00 0,00 0,50 0,70,00 0,0 0,70 0,90 0,00 0,00 0,70 0,90 0,00 0,00 0,70 0,90 0,00 0,00 0,70 0,90 0,00 0,00 0,70 0,90 0,00 0,00 0,70 0,90
23 Συνηθισμένες Συναρτήσεις Μεταφοράς ή αλλιώς Ενεργοποίησης Έξοδος Έξοδος Έξοδος Είσοδος Έξοδος Είσοδος Είσοδος Είσοδος Προφανώς το αποτέλεσμα δεν χρειάζεται να είναι 0-. Μπορεί να είναι και οποιαδήποτε ενδιάμεση τιμή Με τον κατάλληλο πολλαπλασιαστή μπορεί να είναι επίσης τιμή σε οποιοδήποτε διάστημα Επίσης το αποτέλεσμα μπορεί να είναι ή να μεταφράζεται ως πιθανότητα: μια Gauss συνάρτηση μεταφοράς μπορεί να θεωρηθεί συνάρτηση πυκνότητας πιθανότητας. Σε αυτή τη περίπτωση το αποτέλεσμα είναι;
24 Παρόλα αυτά, τι δεν μπορεί να κάνει ποτέ ένας αντιληπτήρας μόνος του όσο καλά κι αν ορίσουμε τα βάρη; Οι αντιληπτήρες είναι γραμμικοί διαχωριστές και κατα συνέπεια δεν μπορούν να διαχωρίσουν κατηγορίες που δεν διαχωρίζονται γραμμικά πχ περνώντας μια ευθεία/ένα επίπεδο κτλ ανάμεσα στις κατηγορίες
25 Νευρωνικά Δίκτυα Σε ποιο σύνθετα προβλήματα μπορώ βάλω πολλούς νευρώνες αντιληπτήρες μαζί σε ένα δίκτυο: Είσοδοι Έξοδος Ένα ΝΔ αποτελείται από πολλούς νευρώνες οι οποίοι συνδέονται μέσω μιας συγκεκριμένης αρχιτεκτονικής. Στόχος είναι η «μετάφραση» των εισόδων σε συγκεκριμένες «σωστές» εξόδους μέσω κυρίως - του προσδιορισμού βαρών.
26 Συναρτήσεις ΝΔ Είσοδοι Έξοδοι,,,, f f f f,,, 3 3 f f f 4 3, 3 f Ou 3 Επίπεδο Είσοδος/Εξοδος κόμβου
27 Βασικά Χαρακτηριστικά Συσχετίζει οποιεσδήποτε εισόδους-εξόδους. Υπολογίζει άγνωστες και εν δυνάμη πολυδάπανες συναρτήσεις σε ελάχιστο χρόνο RT, GA Εκπαιδεύεται συγκρίνει την νέα πληροφορία με την ήδη υπάρχουσα γνώση Ταξινομεί την νέα πληροφορία Δημιουργεί νέες κατηγορίες όταν πρέπει Έχει Baesan aude belef funcons
28 Τι κάνουμε με ΝΔ και τι όχι Οι δύο βασικές χρήσεις είναι: α κατηγοριοποίηση και β προσομοίωση άγνωστης συνάρτησης Συγκεκριμένα με ένα ΝΔ μπορούμε να προσομοιώσουμε οποιαδήποτε συνάρτηση μέχρι οποιοδήποτε βαθμό ακρίβειας Unversal Appromaon Theorem, Cbenko, 989 Δεν χρησιμοποιούνται για την λύση προβλημάτων που έχουν να κάνουν με συμβολικά μαθηματικά Χρησιμοποιούνται μόνο αν υπάρχουν δεδομένα daa drven mehods που να χρησιμοποιούνται για μάθηση. Δεν μπορούν να προσομοιώσουν φαινόμενα που δεν «περιέχονται» μέσα στα δεδομένα μάθησης ranng daa.
29 Έχουμε αγνωστες συναρτήσεις που θα θέλαμε να υπολογίσουμε χωρίς να γράψουμε τις εξισώσεις τους;. Μουσώνες: snofall n Asa, emperaure degrees n Norhes Europe, pressure zones occurrng n Europe and Asa, surface emperaures occurrng n Araban sea, emperaure values occurrng a ear before n Indan Ocean. Βραχυπρόθεσμη πρόβλεψη ζήτησης: prevous da demand, populaon sze, las ear s monhl average, eek da 3. Ανίχνευση προβλήματος στην ποιότητα νερού ύδρευσης: πχ ρίψη ουσιών τρομοκρατικό χτύπημα ph, urbd, emperaure, chlorne resdual, oal organc carbon
30 Εφαρμογές: Αναγνώριση γραφής: OCR Opcal Characer Recognon Που βρίσκει ο αλγόριθμος τις τιμές εκπαίδευσης; To ίδιο και με τη φωνή Sr Και βέβαια
31 Τύποι ΝΔ Δίκτυα πρόσθιας τροφοδότησης feedforard ANN Αντιληπτήρας Πολλαπλών Επιπέδων mullaer percepron Δίκτυα ανάστροφης τροφοδότησης feedback/recurren ANN
32 Αντιληπτήρες πολλαπλών επιπέδων MLP Ένα από τα πιο συνηθισμένα Νευρωνικά Δίκτυα Δίκτυο πρόσθιας τροφοδότησης feed forard Γενίκευση του μονοστρωματικού percepron Εποπτευόμενη supervsed μάθηση Αρχιτεκτονική: επίπεδο εισόδου ή περισσότερα «κρυμμένα» επίπεδα επίπεδο εξόδου Εκπαίδευση με τον αλγόριθμο ανάστροφης διάδοσης σφάλματος Back Propagaon 33
33 MLP Ένα mul level percepron έχει τα εξής χαρακτηριστικά: Κάθε κρυμμένος νευρώνας περιέχει μια ΜΗ-ΓΡΑΜΜΙΚΗ συνάρτηση ενεργοποίησης acvaon funcon Η συνάρτηση αυτή είναι ΔΙΑΦΟΡΙΣΙΜΗ Τα κρυμμένα επίπεδα προσδίδουν στο δίκτυο την δυνατότητα να «μάθει» πολύπλοκα πρότυπα Δεν επιτρέπονται συνδέσεις μεταξύ επιπέδων που δεν ανήκουν σε διαδοχικά επίπεδα Δεν επιτρέπονται συνδέσεις μεταξύ νευρώνων του ίδιου επιπέδου 34
34 Γιατί πολλαπλά επίπεδα; Όρια αποφάσεων MLP -laer: Επίπεδα A B B A A B -laer: Κυρτά A B B A A B 3-laer: Οτιδήποτε A B B A A B
35 Μάθηση στα ΝΔ: Κανόνας Δέλτα Σφάλμα: N W F N E ; Κανόνας διόρθωσης βαρών: j j ne j j j W E c +, c είναι κάποια σταθερή συνήθως παράμετρος «μάθησης»
36 Διαδικασία Inpu Desred Oupu
37 Ο υπολογισμός των βαρών όμως γίνεται δύσκολος... MLP με p επίπεδα τα ενδιάμεσα λέγονται κρυφά Δεδομένα:,,...,,,, N N Σφάλμα: ; ou W F E ;...,...,,...,,,...,,...,, + + p pt ou T M a k T M a k W F M k e M k e k kt k kt Ο κανόνας είναι κάπως πιο δύσκολος ou p- p
38 Υπολογισμός με ολική βελτιστοποίηση Αρκεί ακόμα και ένα επίπεδο για να προσομοιώσουμε μη-γραμμικές συναρτήσεις. Στη περίπτωση αυτή το πρόβλημα υπολογισμού βαρών μπορεί να λυθεί με βελτιστοποίηση Πχ. Για τη συνάρτηση: ou F ; W M k k + e, kt a k
39 Βελτιστοποίηση βαθμονόμηση T a e W F E E c + +,, Βάρη για το επίπεδο εξόδου ένας νευρώνας: Βάρη για το κρυφό επίπεδο πολλοί νευρώνες,,,,,,,,,,,,,,,,,,,, j a a j j j T j T j a a a j a j j j j j e e W F c a a e e e e W F E E c T T T T T T Ή βέβαια με γενετικούς!
40 Εναλλακτικά μάθηση «προς τα πίσω» backpropagaon Αυτή είναι η πιο γενική περίπτωση και πιο συνηθισμένη για τα MLP και βασίζεται σε επίλυση σε βήματα/επαναλήψεις. Υπολογίζουμε πρώτα τις αλλαγές των βαρών στον νευρώνα εξόδου Υπολογίζουμε τις υπόλοιπες αλλαγές προς τα πίσω ξεκινώντας από το επίπεδο p-, και περνώντας προς τα πίσω το τοπικό σφάλμα.
41 Παράδειγμα v 0 0 v X v Y v X Y v 0 v 0
42 Παράδειγμα v 0 0 v - X v 0 0 Y X v 0 - Y v 0 v 0
43 Παράδειγμα v - X 0 v 0 0 Y X v 0 - Y v Είσοδος: 0 Επιθυμητή Έξοδος: 0
44 Παράδειγμα u v - X 0 v 0 0 Y X v 0 - Y v Πέρασμα κατά την ΕΥΘΕΙΑ φορα Υπολογίζουμε τις ενεργοποιήσεις ου επιπέδου u u u
45 Παράδειγμα z v - X 0 v 0 0 Y X v 0 v z - Υπολογίζουμε τις εξόδους του πρώτου επιπέδου, περνώντας τις ενεργοποιήσεις που υπολογίσαμε προηγουμένως στη συνάρτηση ενεργοποίησης: Y Εδώ για λόγους απλότητας: z u z u
46 Παράδειγμα z v - X 0 v 0 - Y v 0 X v 0 z Υπολογίζουμε τις εξόδους του ου laer: Y a a + +
47 Παράδειγμα v - X 0 X v 0 v 0 v d d 0 - Διόρθωση Βαρών κατά cδ cσωστό απάντηση. Δ - -, Δ η z j j j
48 για c0. v - Παράδειγμα z - z z Δ- Δ- X 0 v 0 - z - X v 0 v 0 z - z -4 Υπολογίζουμε τις αλλαγές στα βάρη για το ο επίπεδο, με βάση τον κανόνα: + η z j j j 49
49 Παράδειγμα για c0. X 0 v 0 v X v 0 v Οι αλλαγές στα βάρη είναι: *
50 Παράδειγμα v - - X 0 - v 0 X v v - δ Υπολογίζουμε τα : δ g' u k k k δ δ + 0 5
51 Παράδειγμα δ v - X 0 - v 0 X v 0 - v δ - Τα διαδίδονται προς την αντίθετη κατεύθυνση: δ δ + 0
52 Παράδειγμα δ 0 v - X 0 v 0 δ - X v 0 δ 0 - v δ - Και πολλαπλασιάζοντας με τις εισόδους: v + v ηδ j j j 53
53 Παράδειγμα v X 0 v 0 -. v 0. X v 0.8 Τέλος, αλλάζουμε τα βάρη v + v ηδ j j j 54
54 Παράδειγμα z. X 0 v - v X v 0. v z.8 Επαναλαμβάνουμε την διαδικασία χρησιμοποιώντας το ίδιο πρότυπο 55
55 Παράδειγμα z. v X v 0 X v v z.8 Τώρα, οι έξοδοι βρίσκονται πιο κοντά στις επιθυμητές: 0 56
56 Γενική Διαδικασία Επιλογή της αρχιτεκτονικής του δικτύου κρυμμένα επίπεδα, αριθμός νευρώνων, συνάρτηση μάθησης, συνάρτηση ενεργοποίησης: Δυστυχώς δεν υπάρχει σωστή απάντηση σ αυτό ral and error + Οcham s razor Αρχικοποίηση του δικτύου βάρη, παράμετροι Έλεγχος και προεπεξεργασία δεδομένων Παρουσίαση του συνόλου δεδομένων Εκπαίδευση του δικτύου Επαναλήψεις εώς κάποιο καθορισμένο σημείο με βάση προκαθορισμένα κριτήρια Παρουσίαση του συνόλου ελέγχου Αξιολόγηση αποτελεσμάτων και αν χρειαστεί, αλλαγή παραμέτρων και/ή αρχιτεκτονικής και εκ νέου εκπαίδευση του δικτύου Τι πρόβλημα προβλέπετε να έχουμε με αυτή την διαδικασία μάθησης; Τι πρόβλημα θα έχουμε πάντα; 57
57 Malab. nnsar. nfool. load es daa save ne see eghs ne.l. Creae ranng daa npus, oupus, ran an ANN 3. To run oupusnenpus 3. nsool. Load es daa polluon moral, ran. Evaluae for polluoninpu 3. Command lne: oupus nepolluoninpus 4. nprool:. nes check confuson mar.. Φτιάξτε ένα νέο vneard and add o se 3. Θυμηθείτε: [a;b] [a b]
58 Αναφορές Η παρουσίαση χρησιμοποίησε υλικό, σχήματα και παραδείγματα από αντίστοιχες παρουσιάσεις των συναδέλφων: Α. Αργυρίου. Εργαστήριο Φυσικής της Ατμόσφαιρας, Παν/μιο Πάτρας P. Andras, Unvers of Necasle Ν. Σίμου και Β. Σπύρου, Εργαστήριο Εικόνας, Βίντεο και Πολυμέσων, ΕΜΠ Γ. Παπαδουράκη, ΤΕΙ Κρήτης
59 Αξίζει επίσης να δείτε αυτό: hps://.ouube.com/ach?varcaruvnk k&0s
Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Νευρωνικά Δίκτυα Χρήστος Μακρόπουλος Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο
Βελτιστοποίηση Συστημάτων & Υδροπληροφορική Νευρωνικά Δίκτυα Χρήστος Μακρόπουλος Τομέας Υδατικών Πόρων και Περιβάλλοντος Εθνικό Μετσόβιο Πολυτεχνείο Νευρωνικά Δίκτυα Βασίζονται στη χρήση μιας προσέγγισης
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Το μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από
Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο
Ασκήσεις Φροντιστηρίου 4 o Φροντιστήριο Πρόβλημα 1 ο Ο πίνακας συσχέτισης R x του διανύσματος εισόδου x( στον LMS αλγόριθμο 1 0.5 R x = ορίζεται ως: 0.5 1. Ορίστε το διάστημα των τιμών της παραμέτρου μάθησης
Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ
Α.Τ.ΕΙ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΠΟΛΥΜΕΣΩΝ. ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΗΤΩΝ ΝΕΥΡΩΝΙΚΩΝ ΔΙΚΤΥΩΝ ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΕΚΜΑΘΗΣΗ ΤΑ ΔΙΚΤΥΑ KOHONEN A. ΕΙΣΑΓΩΓΗ Στα προβλήματα που έχουμε αντιμετωπίσει μέχρι τώρα
Τεχνητή Νοημοσύνη. 17η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 17η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Artificia Inteigence A Modern Approach των S. Russe και
ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ
ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ Κατευθυνόμενη ταξινόμηση (supervsed cassfcaton) Μη-κατευθυνόμενη ταξινόμηση (unsupervsed cassfcaton) Γραμμική: Lnear Dscrmnant Anayss Μη- Γραμμική: Νευρωνικά δίκτυα κλπ. Ιεραρχική
Τεχνητά Νευρωνικά Δίκτυα. Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης
Τεχνητά Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης Ο Βιολογικός Νευρώνας Δενδρίτες Συνάψεις Πυρήνας (Σώμα) Άξονας 2 Ο Βιολογικός Νευρώνας 3 Βασικά Χαρακτηριστικά
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης Περιεχόμενα Εισαγωγή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Οκτωβρίου 23 ιάρκεια: 2 ώρες Έστω το παρακάτω γραµµικώς
Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες
4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων
Ασκήσεις μελέτης της 19 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 19 ης διάλεξης 19.1. Δείξτε ότι το Perceptron με (α) συνάρτηση ενεργοποίησης
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία
Πληροφοριακά Συστήματα Διοίκησης
Πληροφοριακά Συστήματα Διοίκησης Τρεις αλγόριθμοι μηχανικής μάθησης ΠΜΣ Λογιστική Χρηματοοικονομική και Διοικητική Επιστήμη ΤΕΙ Ηπείρου @ 2018 Μηχανική μάθηση αναγνώριση προτύπων Η αναγνώριση προτύπων
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία
Τεχνητή Νοημοσύνη. 18η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 18η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται: στο βιβλίο Machine Learning του T. Mitchell, McGraw- Hill, 1997,
Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα.
Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. 1 ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Χαρακτηριστικά Είδη εκπαίδευσης Δίκτυα
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Πληροφοριακά Συστήματα & Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης
Υπολογιστική Νοημοσύνη. Μάθημα 12: Παραδείγματα Ασκήσεων 2
Υπολογιστική Νοημοσύνη Μάθημα 12: Παραδείγματα Ασκήσεων 2 Δίκτυα Πολλών Επιπέδων Με μη γραμμικούς νευρώνες Έστω ένα πρόβλημα κατηγοριοποίησης, με δύο βαθμούς ελευθερίας (x, y) και δύο κατηγορίες (A, B).
Υπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)
Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ Ι Συμπληρωματικές Σημειώσεις Δημήτριος Παντελής ΣΤΑΤΙΣΤΙΚΕΣ ΕΚΤΙΜΗΣΕΙΣ Οι συναρτήσεις πιθανότητας ή πυκνότητας πιθανότητας των διαφόρων τυχαίων μεταβλητών χαρακτηρίζονται από κάποιες
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση
Ενδεικτική πολυ-εργασία 1 - εφαρμογή στην υπολογιστική όραση Εντοπισμός ενός σήματος STOP σε μια εικόνα. Περιγράψτε τη διαδικασία με την οποία μπορώ να εντοπίσω απλά σε μια εικόνα την ύπαρξη του παρακάτω
Υπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning
Υπολογιστική Νοημοσύνη Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Κεντρική ιδέα Τα παραδείγματα μάθησης παρουσιάζονται στο μηεκπαιδευμένο δίκτυο και υπολογίζονται οι έξοδοι. Για
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro
ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON
3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.
HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΜΣΕ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΚΑΙ ΕΞΕΛΙΚΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΟΜΑ Α ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ Στην εικόνα παρακάτω φαίνεται ένα νευρωνικό
MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής
MATLAB Εισαγωγή στο SIMULINK Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής Εισαγωγή στο Simulink - Βιβλιοθήκες - Παραδείγματα Εκκίνηση BLOCKS click ή Βιβλιοθήκες Νέο αρχείο click ή Προσθήκη block σε αρχείο
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)
ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί
FORTRAN και Αντικειμενοστραφής Προγραμματισμός
FORTRAN και Αντικειμενοστραφής Προγραμματισμός Παραδόσεις Μαθήματος 2016 Δρ Γ Παπαλάμπρου Επίκουρος Καθηγητής ΕΜΠ georgepapalambrou@lmentuagr Εργαστήριο Ναυτικής Μηχανολογίας (Κτίριο Λ) Σχολή Ναυπηγών
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Στη C++ υπάρχουν τρεις τύποι βρόχων: (a) while, (b) do while, και (c) for. Ακολουθεί η σύνταξη για κάθε μια:
Εργαστήριο 6: 6.1 Δομές Επανάληψης Βρόγχοι (Loops) Όταν θέλουμε να επαναληφθεί μια ομάδα εντολών τη βάζουμε μέσα σε ένα βρόχο επανάληψης. Το αν θα (ξανα)επαναληφθεί η εκτέλεση της ομάδας εντολών καθορίζεται
Σειρά: Επεξεργασία Δεδομένων Εκδοση/Ημ.νία: #3.1/ Συγγραφέας: Μίχος Θεόδωρος, Φυσικός
Σειρά: Επεξεργασία Δεδομένων Εκδοση/Ημ.νία: #3.1/018-0-15 Συγγραφέας: Μίχος Θεόδωρος, Φυσικός 1. Μέθοδος Ελαχίστων Τετραγώνων Μια από τις πρώτες δουλειές που μαθαίνει ένας φοιτητής θετικών επιστημών μόλις
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι
Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:
Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:
Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να
1.2 Εξισώσεις 1 ου Βαθμού
1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση
Πληροφορική 2. Τεχνητή νοημοσύνη
Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο
Μοντέλα Παλινδρόμησης. Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ
Μοντέλα Παλινδρόμησης Άγγελος Μάρκος, Λέκτορας ΠΤ Ε, ΠΘ Εισαγωγή (1) Σε αρκετές περιπτώσεις επίλυσης προβλημάτων ενδιαφέρει η ταυτόχρονη μελέτη δύο ή περισσότερων μεταβλητών, για να προσδιορίσουμε με ποιο
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015
Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 205 ΘΕΜΑ Ο (2,0 μονάδες) Ο ηλεκτρικός θερμοσίφωνας χρησιμοποιείται για τη θέρμανση νερού σε μια προκαθορισμένη επιθυμητή θερμοκρασία (θερμοκρασία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω
Μαθηματικά. Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 3: Εξισώσεις και Ανισώσεις 1 ου βαθμού Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ
ΚΕΦΑΛΑΙΟ 10 Όπως είδαμε και σε προηγούμενο κεφάλαιο μια από τις βασικότερες τεχνικές στον Δομημένο Προγραμματισμό είναι ο Τμηματικός Προγραμματισμός. Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ ο (.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Πέµπτη 7 Ιανουαρίου 8 5:-8: Σχεδιάστε έναν αισθητήρα (perceptron)
Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες
Κεφάλαιο 4: Επιλογή σημείου παραγωγής
Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει
Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14
1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής
3.7 Παραδείγματα Μεθόδου Simplex
3.7 Παραδείγματα Μεθόδου Simplex Παράδειγμα 1ο (Παράδειγμα 1ο - Κεφάλαιο 2ο - σελ. 10): Το πρόβλημα εκφράζεται από το μαθηματικό μοντέλο: max z = 600x T + 250x K + 750x Γ + 450x B 5x T + x K + 9x Γ + 12x
Ιωάννα Ανυφαντή, Μηχανικός Περιβάλλοντος Επιβλέπων: Α. Ευστρατιάδης, ΕΔΙΠ ΕΜΠ. Αθήνα, Ιούλιος 2018
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Δ.Π.Μ.Σ. «ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ» ΥΔΡΟΛΟΓΙΑ & ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Ιωάννα Ανυφαντή, Μηχανικός Περιβάλλοντος
Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων
Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο
Αριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ
Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου
Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική
94 Η χρήση των νευρωνικών µοντέλων για την κατανόηση της δοµής και λειτουργίας τού εγκεφάλου. = l b. K + + I b. K - = α n
Nευροφυσιολογία Η μονάδα λειτουργίας του εγκεφάλου είναι ένας εξειδικευμένος τύπος κυττάρου που στη γλώσσα της Νευροφυσιολογίας ονομάζεται νευρώνας. Το ηλεκτρονικό μικροσκόπιο αποκαλύπτει ότι ο ειδικός
Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU
Παραδείγματα Απαλοιφή Gauss Απαλοιφή Gauss-Jordan Παραγοντοποίηση LU, LDU Επιμέλεια: Ι. Λυχναρόπουλος Παράδειγμα x y Να επιλυθεί το ακόλουθο σύστημα: x+ y 6 Σε μορφή πινάκων το σύστημα γράφεται ως: x y
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Θ.Ε. ΠΛΗ31 (2004-5) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #3 Στόχος Στόχος αυτής της εργασίας είναι η απόκτηση δεξιοτήτων σε θέματα που αφορούν τα Τεχνητά Νευρωνικά Δίκτυα και ποιο συγκεκριμένα θέματα εκπαίδευσης και υλοποίησης.
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ
ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,
Κεφάλαιο 4: Επιλογή σημείου παραγωγής
Κεφάλαιο 4: Επιλογή σημείου παραγωγής Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός.
ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΜΑΤΑ Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός / Βασικές Έννοιες Η επιστήμη της Φυσικής συχνά μελετάει διάφορες διαταραχές που προκαλούνται και διαδίδονται στο χώρο.
Κάθε φορά, που νιώθουμε τρελή λαχτάρα να μιλήσουμε για ευθείες, φανταζόμαστε εξισώσεις της παρακάτω μορφής : y = αx + β
ΕΥΘΕΙΕΣ Κάθε φορά, που νιώθουμε τρελή λαχτάρα να μιλήσουμε για ευθείες, φανταζόμαστε εξισώσεις της παρακάτω μορφής : y = αx + β Η εξίσωση αυτή θα πρέπει να γίνει στο μυαλό μας συνώνυμη της λέξης και του
Συνέλιξη Κρουστική απόκριση
Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί
Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
QR είναι ˆx τότε x ˆx. 10 ρ. Ποιά είναι η τιµή του ρ και γιατί (σύντοµη εξήγηση). P = [X. 0, X,..., X. (n 1), X. n] a(n + 1 : 1 : 1)
ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΟΛΟΓΙΣΜΟΣ I (22 Σεπτεµβρίου) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ 1ο ΘΕΜΑ 1. Αφού ορίσετε ακριβώς τι σηµαίνει πίσω ευσταθής υπολογισµός, να εξηγήσετε αν ο υ- πολογισµός του εσωτερικού γινοµένου δύο διανυσµάτων
Εφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2. Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΗ ΔΙΑΤΥΠΩΣΗ, Διαλ. 2 Ανωτάτη Σχολή Παιδαγωγικής και Τεχνολογικής Εκπαίδευσης 8/4/2017 Αντικειμενικοί στόχοι Η μελέτη των βασικών στοιχείων που συνθέτουν ένα πρόβλημα βελτιστοποίησης
6. Στατιστικές μέθοδοι εκπαίδευσης
6. Στατιστικές μέθοδοι εκπαίδευσης Μία διαφορετική μέθοδος εκπαίδευσης των νευρωνικών δικτύων χρησιμοποιεί ιδέες από την Στατιστική Φυσική για να φέρει τελικά το ίδιο αποτέλεσμα όπως οι άλλες μέθοδοι,
ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ. ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ
ΤΕΙ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΟΙΚΗΣΗ ΠΑΡΑΓΩΓΗΣ ΕΝΟΤΗΤΑ 4η ΠΡΟΒΛΕΨΗ ΖΗΤΗΣΗΣ ΓΙΑΝΝΗΣ ΦΑΝΟΥΡΓΙΑΚΗΣ ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΣΥΝΕΡΓΑΤΗΣ ΤΕΙ ΚΡΗΤΗΣ ΔΟΜΗ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγή
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων:
Πανεπιστήμιο Ιωαννίνων ΟΙΚΟΝΟΜΙΚΑ ΤΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Διδάσκων: Φάμπιο Αντωνίου Στοιχεία Επικοινωνίας: email: fantoniou@cc.uoi.gr Τηλ:651005954 Προσωπική Ιστοσελίδα: fantoniou.wordpress.com Γραφείο: Κτίριο
Παραδείγματα (2) Διανυσματικοί Χώροι
Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)
Μαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,
Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo