Συνέλιξη Κρουστική απόκριση
|
|
- Ἕκτωρ Κυπραίος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Συνέλιξη Κρουστική απόκριση Το εργαστήριο αυτό ασχολείται με τα «διασημότερα συστήματα στην επεξεργασία σήματος. Αυτά δεν είναι παρά τα γραμμικά χρονικά αμετάβλητα (ΓΧΑ) συστήματα. Ένα τέτοιο σύστημα μπορεί να περιγραφεί από την κρουστική του απόκριση (impulse response). Η κρουστική απόκριση ενός ΓΧΑ συστήματος είναι η έξοδός του όταν η είσοδος είναι το μοναδιαίο δείγμα, συμβολίζεται δε συνήθως με h(n). Συνήθως το σήμα h(n) αποτελείται από περισσότερους του ενός μη μηδενικούς όρους, παρότι το μοναδιαίο δείγμα που βάλαμε στην είσοδο έχει μόνο ένα μη μηδενικό όρο. Αυτό σημαίνει ότι το σύστημα έχει μνήμη αφού διεγέρθηκε τη χρονική στιγμή μηδέν και «αποκρίθηκε και τις επόμενες χρονικές στιγμές. Η κρουστική απόκριση είναι σημαντική διότι αν τη γνωρίζουμε μπορούμε να υπολογίσουμε την έξοδο του συστήματος οποιαδήποτε κι αν είναι η είσοδος σ αυτό. Ο υπολογισμός αυτός ονομάζεται συνέλιξη (ή συγκερασμός) και δίνεται, ουσιαστικά και συμβολικά, από την παρακάτω σχέση: y(n) = + k= x(k)h(n k) = x(n) h(n) όπου x(n) η είσοδος, y(n) η έξοδος και h(n) η κρουστική απόκριση του συστήματος. Η εντολή στο Octave/MATLAB για τη συνέλιξη δύο σημάτων είναι η conv. Κατά συνέπεια αν x είναι το διάνυσμα που παριστάνει την είσοδο στο σύστημα και h το διάνυσμα που παριστάνει την κρουστική του απόκριση, η έξοδος του συστήματος μπορεί να υπολογιστεί μέσω της y=conv(h,x) ή ισοδύναμα μέσω της y=conv(x,h) αφού η πράξη του συγκερασμού είναι αντιμεταθετική. Παράδειγμα: x=[ ]; h=[ ]; n=0:3; y=conv(x,h); subplot(311); stem(n,x); subplot(312); stem(n,h); subplot(313); stem(n,y); 1
2 H τελευταία εντολή προκάλεσε σφάλμα που οφείλεται στο ότι το διάνυσμα y έχει περισσότερα από τέσσερα στοιχεία που έχει το διάνυσμα n. Από τη θεωρία γνωρίζουμε ότι αν το διάνυσμα x έχει πλήθος όρων N και το διάνυσμα h έχει πλήθος όρων M τότε το διάνυσμα y θα έχει πλήθος όρων N+M-1. Στη συγκεκριμένη περίπτωση δηλαδή το y έχει μήκος 4+4-1=7 όρων. Για να μπορέσουμε να έχουμε αποτέλεσμα δίνουμε stem(0:6,y). Αν η ακολουθία όμως έχει άπειρους μη μηδενικούς όρους πώς θα υπολογίσουμε μια συνέλιξη; Σ αυτή την περίπτωση χρησιμοποιούμε τον εναλλακτικό τρόπο περιγραφής των ΓΧΑ συστημάτων με τη βοήθεια εξισώσεων διαφορών δηλαδή εξισώσεων της μορφής: α k y(n k) = k=0 β m x(n m) H πληροφορία που βρίσκεται στους ίσως άπειρους όρους της h(n) έχει περιέλθει στους πεπερασμένους το πλήθος συντελεστές α k και β m. Μάλιστα αν υποθέσουμε ότι α 0 = 1 τότε προκύπτει: y(n) = α k y(n k) + k=1 β m x(n m) Δηλαδή για οποιοδήποτε ΓΧΑ σύστημα μπορεί κανείς να βρει μια τέτοια εναλλακτική αναπαράσταση μόνο που δυστυχώς οι αριθμοί M και N δεν θα είναι κατ ανάγκη πεπερασμένοι! Αναγκαστικά λοιπόν περιοριζόμαστε στα συστήματα που έχουν πεπερασμένη αναπαράσταση σε εξίσωση διαφορών και ευτυχώς αυτά είναι πολλά και μας αρκούν στις εφαρμογές μας. Η περιγραφή ενός συστήματος με τον τρόπο αυτό επιτρέπει ακόμα και σε κάποιον ο οποίος δεν γνωρίζει την έννοια της συνέλιξης να κατανοήσει την λειτουργία του συστήματος. «Διαβάζοντας» τη σχέση, «διαβάζουμε» το τι κάνει το σύστημα. Για παράδειγμα το y(0) είναι το: y(0) = α k y( k) + k=1 β m x( m) Παρατηρούμε ότι για να είναι δυνατός ο υπολογισμός απαιτείται η γνώση, εκτός της παρούσας τιμής της εισόδου x(0), και των τιμών x( 1),, x( M) καθώς και των y( 1),, y( N). Ο απαραίτητος προσδιορισμός των ποσοτητών αυτών λέγεται προσδιορισμός αρχικών συνθηκών. To Octave/MATLAB θέτει τις ποσότητες αυτές ίσες με το μηδέν εκτός και αν του πούμε να κάνει κάτι διαφορετικό. Αυτή η υπόθεση είναι αρκετά συνηθισμένη διότι αντιστοιχεί σε ένα σύστημα το οποίο βρίσκεται σε ηρεμία (y( 1) = = y( N) = 0) και το οποίο διεγείρεται από ένα αιτιατό σήμα (x( 1) = = x( N) = 0). Η συνάρτηση του Octave/MATLAB που εκτελεί τον υπολογισμό της εξόδου ενός συστήματος με βάση την εξίσωση διαφορών είναι η filter. Η γενική κλήση της έχει την μορφή y=filter(b,a,x) όπου: y=[y(0) y(1)... y(n)] το διάνυσμα με τις τιμές της εξόδου που μας επιστρέφει η συνάρτηση 2
3 x=[x(0) x(1)... x(n)] το διάνυσμα με τις τιμές της εισόδου που παρέχουμε στην συνάρτηση b=[b0 b1... bm] το διάνυσμα των συντελεστών όπως φαίνονται στην σχετική διαφοροεξίσωση. a=[a0 a1... an] το διάνυσμα των συντελεστών όπως φαίνονται στην σχετική διαφοροεξίσωση. Επειδή συνήθως a 0 = 1 έχουμε ότι a=[1 a1... an] Ας δούμε τώρα την εφαρμογή της filter με ένα παράδειγμα. Έστω ότι έχουμε ένα σύστημα με εξίσωση διαφορών y(n) y(n 1) + 0.9y(n 2) = x(n) Ζητάμε να υπολογίσουμε τους όρους της κρουστικής απόκρισής του για το χρονικό παράθυρο n=0:100. Έχουμε λοιπόν:» a=[ ];» b=1;» n=0:100;» x=n==0; % Κατασκευή της δ(n)» h=filter(b,a,x);» stem(n,h); Πρέπει να παρατηρήσουμε ότι το συγκεκριμένο σύστημα έχει κρουστική απόκριση απείρων όρων, είναι δηλαδή όπως λέμε ένα σύστημα IIR (Infinite Impulse Response). Αυτό συμβαίνει εξαιτίας της ύπαρξης των όρων y(n-1) και y(n-2) στη διαφοροεξίσωση. Ακόμα δηλαδή και όταν το x(n) «πεθάνει», δηλαδή μηδενιστεί, η ύπαρξη των όρων αυτών εξασφαλίζει την παραγωγή νέων, μη μηδενικών y(n) (οι όροι αυτού μπορεί να τείνουν στο μηδέν, αλλά αυτό είναι μία άλλη ιστορία). Όποτε υπάρχουν τέτοιου είδους όροι στη διαφοροεξίσωση η κρουστική απόκριση του συστήματος είναι άπειρη. Αξίζει να κάνουμε στο σημείο αυτό και μία παρατήρηση αποκλειστικά για τη filter. Ήδη αναφέραμε ότι τα διανύσματα εισόδου-εξόδου είναι τα: x=[x(0) y=[y(0) x(1)... x(n)] y(1)... y(n)] Τα διανύσματα αυτά είναι του ίδιου μήκους. Με τη filter δηλαδή όσα στοιχεία βάζουμε στην συνάρτηση τόσα εξάγουμε απ αυτή. Αυτό συμβαίνει διότι ο υπολογισμός του y(n) βασίζεται μόνο στη γνώση του και του «παρελθόντος» του, πληροφορία που επίσης περιλαμβάνει τις μηδενικές αρχικές συνθήκες (x(- 1)=x(-2)=x(-M)=0 ). Καθ όλα λογικό αφού το σύστημα είναι αιτιατό κι επομένως δεν μπορεί να ξέρει τι υπάρχει σε μελλοντικά δείγματα εισόδου. Η διαφορά με την conv είναι ότι η τελευταία απαιτεί και τα δύο σήματα να έχουν πεπερασμένη διάρκεια. Ουσιαστικά θεωρεί όχι μόνο μηδενικά στην είσοδο πριν τη στιγμή μηδέν αλλά και μετά τη στιγμή. Το αποτέλεσμα είναι να υπολογίζει τους συντελεστές του γινομένου των πολυωνύμων k h(k)z k και n k=0 x(k)z k, κάτι που είναι 3
4 ακριβώς η συνέλιξη h k όταν όμως η είσοδος είναι μηδέν εκτός του διαστήματος 0 k n. Το συμπέρασμα δηλαδή είναι ότι με χρήση της filter το MATLAB προχωρά τους υπολογισμούς τόσο μακριά όσο του επιτρέπουν τα δεδομένα εισόδου που έχει λάβει. Ας μελετήσουμε τώρα το σύστημα με εξίσωση διαφορών y(n) 1.1y(n 1) + 0.5y(n 2) + 0.3y(n 4) = 0.5x(n) 0.2x(n 1) Για το σύστημα αυτό ζητάμε: α) Την κρουστική του απόκριση στο χρονικό παράθυρο n=0:10 β) Τον υπολογισμό της εξόδου για είσοδο την x=[ ] με χρήση τόσο της conv όσο και της filter. α)» n=0:10;» a=[ ];» b=[ ];» d=n==0;» h=filter(b,a,d);» stem(n,h) b) Έχοντας λοιπόν υπολογίσει την κρουστική απόκριση η έξοδος του συστήματος θα υπολογίζεται με την βοήθεια της: y1=conv(h,x); Επειδή το διάνυσμα h έχει μήκος 11 όρων και το x μήκος 10 όρων το διάνυσμα y1 θα έχει μήκος =20 όρων. Μπορούμε όμως να υπολογίσουμε την έξοδο του συστήματος και με την εντολή: y2=filter(b,a,x); Επειδή το x έχει μήκος 10 όρων, το y2, σύμφωνα με όσα εξηγήσαμε παραπάνω, θα έχει μήκος 10 όρων επίσης. Με την κλήση αυτή δηλαδή υπολογίζουμε 10 όρους της εξόδου του συστήματος. Εμείς όμως θα θέλαμε να δούμε 20 όρους της εξόδου. Για να το κάνουμε αυτό θα πρέπει να προσθέσουμε μηδενικά στο x έτσι ώστε συνολικά να διαθέτει 20 όρους. Αν το x διαθέτει 20 όρους, τότε και το y2 θα διαθέτει 20 όρους. Η πρόσθεση μηδενικών στο x δίνει στη filter την επιπλέον πληροφορία που χρειάζεται για να συνεχίσει τους υπολογισμούς της περαιτέρω. Ένας εύκολος τρόπος για να προσθέσουμε τα απαιτούμενα μηδενικά είναι με την εντολή x(20)=0; Μπορούμε τώρα να δώσουμε την εντολή y2=filter(b,a,x) 4
5 και να πάρουμε το ζητούμενο αποτέλεσμα. Στη συνέχεια θα τυπώσουμε τα δύο εξαγόμενα προκειμένου να τα συγκρίνουμε: subplot(211) stem(0:19,y1) subplot(212) stem(0:19,y2) Αυτό είναι ένα περίεργο αποτέλεσμα!!! Υπολογίσαμε την έξοδο του ίδιου συστήματος, στο ίδιο σήμα εισόδου με δύο διαφορετικούς, αλλά απολύτως ισοδύναμους, τρόπους. Θα περιμέναμε λοιπόν να μην υπάρχει διαφορά στο εξαγόμενο. Σε αντίθεση βλέπουμε ότι υπάρχει ταύτιση στα δύο αποτελέσματα αλλά μόνο όσον αφορά στους 11 πρώτους όρους. Το αποτέλεσμα το οποίο προκύπτει από τη χρήση της filter (το y2 δηλαδή) είναι το απόλυτα σωστό. Το y1 είναι εν μέρει εσφαλμένο. Αν παρατηρήσουμε το σύστημα μας, θα διαπιστώσουμε ότι αυτό έχει κρουστική απόκριση απείρου μήκους. Εμείς όμως κάναμε προσέγγιση (δεν μπορούσαμε να κάνουμε και αλλιώς) και χρησιμοποιήσαμε 11 μόνο όρους όταν υπολογίσαμε την κρουστική απόκριση του συστήματος. Άρα με την μέθοδο αυτή 11 όροι της εξόδου θα υπολογιστούν με «απόλυτη ακρίβεια» αλλά στους υπόλοιπους θα υπάρχει σφάλμα. Μ άλλα λόγια, η conv θεώρησε όπως είπαμε ότι το σύστημα έχει πεπερασμένης διάρκειας κρουστική απόκριση, μήκους 11. Το συμπέρασμα δηλαδή είναι ότι σε IIR συστήματα αν επιχειρήσουμε να υπολογίσουμε την έξοδο με βάση την κρουστική απόκριση θα έχουμε οπωσδήποτε σφάλμα εξαιτίας της προσέγγισης που κάνουμε κατά τον προσδιορισμό του πλήθους των όρων αυτής. Γι αυτό και η αναπαράσταση με εξίσωση διαφορών (και η χρήση της filter) είναι ο καλύτερος τρόπος σ αυτά τα συστήματα. Τι γίνεται στα συστήματα FIR; Μα τότε η κρουστική απόκριση ταυτίζεται με τους συντελεστές της εξίσωσης διαφορών. 5
ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ
Συστήματα Ψηφιακής Επεξεργασίας Σήματος σε Πραγματικό Χρόνο 2009 10 ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασία Σήματος σε Πραγματικό
Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011
Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Πράξεις διακριτών σημάτων (υπενθύμιση) Πρόσθεση x(n) + y(n) Αφαίρεση x(n) y(n) Πολλαπλασιασμός
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ
x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)
Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 13: Ανάλυση ΓΧΑ συστημάτων (Ι) Περιγραφές ΓΧΑ συστημάτων Έχουμε δει τις παρακάτω πλήρεις περιγραφές ΓΧΑ συστημάτων: 1. Κρυστική απόκριση (impulse
Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων
Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής
y[n] 5y[n 1] + 6y[n 2] = 2x[n 1] (1) y h [n] = y h [n] = A 1 (2) n + A 2 (3) n (4) h[n] = 0, n < 0 (5) h[n] 5h[n 1] + 6h[n 2] = 2δ[n 1] (6)
Ασκήσεις σε Σήματα Συστήματα Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 9 Οκτωβρίου 015 1. Ενα αιτιατό ΓΧΑ σύστημα
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 2: Συστήματα διακριτού χρόνου Συστήματα διακριτού χρόνου Σύστημα διακριτού χρόνου: Μετασχηματισμός Τ που μετατρέπει το σήμα εισόδου x[] στο σήμα
2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γενικά τι είναι σύστηµα - Ορισµός. Τρόποι σύνδεσης συστηµάτων.
2. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γενικά τι είναι - Ορισµός. Τρόποι σύνδεσης συστηµάτων. Κατηγορίες των συστηµάτων ανάλογα µε τον αριθµό και το είδος των επιτρεποµένων εισόδων και εξόδων. Ιδιότητες των
Γραμμικά Χρονικά Αμετάβλητα Συστήματα. Ψ.Ε.Σ.Ε. Σ. Θεοδωρίδης 1
Γραμμικά Χρονικά Αμετάβλητα Συστήματα x T [ ] y x y Ψ.Ε.Σ.Ε. Σ. Θεοδωρίδης Γραμμικά Χρονικά Αμετάβλητα Συστήματα x T [ ] y x y Συνέλιξη y x, όπου y x η κρουστική απόκριση Ψ.Ε.Σ.Ε. Σ. Θεοδωρίδης 2 Ιδιότητες
5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 5 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΣΥΝΕΛΙΞΗ ΜΕΡΟΣ Α Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5 Α. Σχεδίαση Ψηφιακών Φίλτρων Β. Φίλτρα FIR Σχετικές εντολές του Matlab: fir, sinc, freqz, boxcar, triang, hanning, hamming, blackman, impz, zplane, kaiser. Α. ΣΧΕΔΙΑΣΗ
Διακριτός Μετασχηματισμός Fourier
Διακριτός Μετασχηματισμός Fourier 1 Διακριτός Μετασχηματισμός Fourier Ο μετασχηματισμός Fourier αποτελεί τον ακρογωνιαίο λίθο της επεξεργασίας σήματος αλλά και συχνή αιτία πονοκεφάλου για όσους πρωτοασχολούνται
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα 3: ΣΥΝΕΛΙΞΗ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα
-Μαρτ-9 ΗΜΥ 49. Παραθύρωση Ψηφιακά φίλτρα . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 Είδη παραθύρων Bartlett τριγωνικό: n, n Blacman: πn 4πn.4.5cos +.8cos, n < . Παραθύρωση / Ψηφιακά Φίλτρα -Μαρτ-9 3 Hamming:
Σήματα και Συστήματα. Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 4: Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Μελέτη των Γραμμικών και Χρονικά Αμετάβλητων Συστημάτων Η Κρουστική Απόκριση
1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης
1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα
1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.
1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step. Α) Β) Ε) F) G) H) Ι) 2) Αν το διακριτό σήμα x(n) είναι όπως στην
a k y[n k] = b l x[n l] (12.1)
Κεφάλαιο 12 Ανάλυση Σημάτων και Συστημάτων στο Πεδίο του Διακριτού Χρόνου 12.1 Εισαγωγή Σε αυτό το κεφάλαιο, θα συζητήσουμε για το πως μπορούμε να μελετάμε γραμμικά και χρονικά αμετάβλητα ΓΧΑ) συστήματα
Ψηφιακή Επεξεργασία Σήματος
Ψηφιακή Επεξεργασία Σήματος Εργαστήριο 3 Εισαγωγή στα Σήματα Αλέξανδρος Μανουσάκης Τι είναι σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 8: Μετασχηματισμός Ζ Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Z Μετασχηματισμός Ζ (Ζ-Transform) Χρήσιμα Ζεύγη ΖT και Περιοχές Σύγκλισης (ROC) Ιδιότητες
Σήματα και Συστήματα. Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 9: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Fourier 1. Μετασχηματισμός Fourier
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z
Ο ΑΜΦΙΠΛΕΥΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Z Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Ο μετασχηματισμός αντιστοιχεί
Ψηφιακά Φίλτρα. Κυριακίδης Ιωάννης 2011
Ψηφιακά Φίλτρα Κυριακίδης Ιωάννης 2011 Συνέλιξη Convolution) Με το άθροισμα της συνέλιξης μπορούμε να βρούμε την απόκριση ενός συστήματος διακριτού χρόνου για είσοδο xn), αν γνωρίζουμε την κρουστική του
Σήµατα και συστήµατα διακριτού χρόνου
Σήµατα και συστήµατα διακριτού χρόνου Βασικές ψηφιακές πράξεις Πρόσθεση {x 1 (n)}+{x 2 (n)}={x 1 (n)+x 2 (n)} Πολλαπλασιασµός Κλιµάκωση Μετατόπιση Αναδίπλωση {x 1 (n)}.{x 2 (n)}={x 1 (n).x 2 (n)} a{x(n)}
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 06-7 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x t, t,
c xy [n] = x[k]y[n k] (1)
Συνέλιξη Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 6 Οκτωβρίου 2015 1 Εισαγωγή Η συνέλιξη αποτελεί μια πράξη πολύ σημαντική,
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 2 η : Δισδιάστατα Σήματα & Συστήματα Μέρος 1 Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Δισδιάστατα σήματα
ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ
ΣΤΟΧΑΣΤΙΚΑ ΣΗΜΑΤΑ ΚΑΙ ΕΦΑΡΜΟΓΕΣ Ακαδηµαϊκό Έτος 007-008 ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών Τµήµα Μηχανικών Ηλεκτρονικών Υπολογιστών και Πληροφορικής 1η Εργαστηριακή Άσκηση Αναγνώριση
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Ψηφιακά Φίλτρα. Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 20/5/2005 2
Ψηφιακά Φίλτρα Αναλογικά και ψηφιακά φίλτρα 20/5/2005 1 Αναλογικά και ψηφιακά φίλτρα Στην επεξεργασία σήματος, η λειτουργία ενός φίλτρου είναι να απομακρύνει τα ανεπιθύμητα μέρη ενός σήματος, όπως ένα
Ανάλυση ΓΧΑ Συστημάτων
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 9 με Μετασχηματισμούς Κεφ. 5 (εκτός 5.7.4 και 5.3 μόνο από διάλεξη) Ένα ΓΧΑ σύστημα καθορίζεται πλήρως από Κρουστική απόκριση (impulse response)
Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ. 7.0-7.2. Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 10 Κεφ. 7.0-7.2 Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες Σχεδιασμός Φίλτρου Καθορίζονται
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 3 η Τα Συστήματα στις Τηλεπικοινωνίες
x(n) h(n) = h(n) x(n)
ΣΥΝΕΛΙΞΗ Ορισμός: H συνέλιξη δύο σημάτων x(n) και h(n) είναι ένα τρίτο σήμα y(n) που ορίζεται ως yn ( ) = x(n) h(n) = x(k)h( n k) k= M yn ( ) = x(n) h(n) = lim x(k)h(n k) M (M+ ) k= M Tο κάθε δείγμα του
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ
stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn
Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ 22: Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 7: Σχεδιασμός Φίλτρων!"#!"#! "#$% Σημειώσεις διαλέξεων στο: http://www.eg.ucy.ac.cy/chadcha/
1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...
Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης
1 Oct 16 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Εισαγωγή στις Τηλεπικοινωνίες Διάλεξη 4 η Γεωμετρική Αναπαράσταση
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα : Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Συστήματα Διακριτού Χρόνου Εξισώσεις Διαφορών Επίλυση Εξισώσεων Διαφορών με Γραμμικούς Συντελεστές
6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z
6-Μαρτ-29 ΗΜΥ 429. Μετασχηματισμός . Μετασχηματισμός 6-Μαρτ-29 Μετασχηματισμός Μέθοδος εκπροσώπησης, ανάλυσης και σχεδιασμού συστημάτων και σημάτων διακριτού χρόνου. Ό,τι είναι η μέθοδος Lplce στο συνεχή
Αριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
Παρουσίαση του μαθήματος
Παρουσίαση του μαθήματος Εργαστήριο 1 Ενότητες Μαθήματος 1. Η ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ Τι είναι ψηφιακή εικόνα. Τι σημαίνει Επεξεργασία εικόνας. Ανάλυση εικόνας σε συχνότητα ( Μετασχηματισμός Fourier σε εικόνα)
2.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Έστω διανύσματα που ανήκουν στο χώρο δ i = ( a i, ai,, ai) i =,,, και έστω γραμμικός συνδυασμός των i : xδ + x δ + + x δ = b που ισούται με το διάνυσμα b,
y[n] ay[n 1] = x[n] + βx[n 1] (6)
Ασκήσεις με το Μετασχηματισμό Fourier Διακριτού Χρόνου Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 8 Οκτωβρίου 015 1. Εστω το
13-Φεβ-2009 ΗΜΥ Γραμμικά συστήματα και Συνέλιξη
ΗΜΥ 429 6. Γραμμικά συστήματα και Συνέλιξη 1 Γραμμικά συστήματα Ένα σύστημα είναι γραμμικό αν έχει τις ιδιότητες: Ομοιογένεια Προσθετικότητα Χρονική αμεταβλητότητα (δεν είναι απαραίτητη για γραμμικότητα,
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.
ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Ακαδημαϊκό Έτος Παρουσίαση Νο. 2. Δισδιάστατα Σήματα και Συστήματα #1
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 009-0 Παρουσίαση Νο. Δισδιάστατα Σήματα και Συστήματα # Βασικοί ορισμοί () Κάθε εικόνα είναι ένα δισδιάστατο (-D) σήμα. Αναλογική εικόνα: x α Ψηφιακή
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΥΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΣΥΣΤΗΜΑΤΩΝ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Αντίστροφος Μετασχηματισμός Ζ. Υλοποίηση συστημάτων Διακριτού Χρόνου. Σχεδίαση φίλτρων
Αντίστροφος Μετασχηματισμός Ζ Υλοποίηση συστημάτων Διακριτού Χρόνου Σχεδίαση φίλτρων Αντίστροφος Μετασχηματισμός Ζ Αντίστροφος ΜΖ (inverse-zt) Προσεγγίσεις εύρεσης του αντίστροφου ΜΖ Τυπικά ο i-zt γίνεται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 2016 ιδάσκοντες : Γ. Στυλιανού - Γ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-370: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 206 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων Ηµεροµηνία Ανάθεσης : 25/0/206 Ηµεροµηνία
Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης
Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση
Παραδείγματα (2) Διανυσματικοί Χώροι
Παραδείγματα () Διανυσματικοί Χώροι Παράδειγμα 7 Ελέγξτε αν τα ακόλουθα σύνολα διανυσμάτων είναι γραμμικά ανεξάρτητα ή όχι: α) v=(,4,6), v=(,,), v=(7,,) b) v=(,4), v=(,), v=(4,) ) v=(,,), v=(5,,), v=(5,,)
x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης
Διάλεξη 2. Συστήματα Εξισώσεων Διαφορών ΔιακριτάΣήματαστοΧώροτης Συχνότητας
University of Cyprus Biomedical Imaging & Applied Optics Διάλεξη 2 Συστήματα Εξισώσεων Διαφορών Συστήματα Εξισώσεων Διαφορών Γραμμικές Εξισώσεις Διαφορών με Σταθερούς Συντελεστές (Linear Constant- Coefficient
1,y 1) είναι η C : xx yy 0.
ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.
27/4/2009. Για την υλοποίηση τέτοιων αλγορίθμων επεξεργασίας απαιτείται η χρήση μνήμης. T η περίοδος δειγματοληψίας. Επίκ. Καθηγητής.
Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Διάλεξη 6 η : «Επεξεργαστές με Μνήμη (Mέρος ΙI)» Φλώρος Ανδρέας Επίκ. Καθηγητής Από προηγούμενο μάθημα... Αναπαράσταση καθυστέρησης ενός δείγματος η περίοδος δειγματοληψίας
Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον
Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 37 Αριθμητικές Μέθοδοι
Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος
Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου v 3 (t) - i 2 (t)
Λύσεις θεμάτων εξεταστικής περιόδου Ιουνίου 2015 ΘΕΜΑ 1 Ο (6,0 μονάδες) Δίνεται το κύκλωμα του σχήματος, όπου v 1 (t) είναι η είσοδος και v 3 (t) η έξοδος. Να θεωρήσετε μηδενικές αρχικές συνθήκες. v 1
X(e jω ) = x[n]e jωn (1) x[n] = 1. T s
Αναπαράσταση Σημάτων και Συστημάτων στο Χώρο της Συχνότητας Ο Μετασχηματισμός Fourier Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes
3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΔΟΥΛΕΥΟΝΤΑΣ ΜΕ ΣΗΜΑΤΑ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου
Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου 203 4 ΘΕΜΑ Ο (4,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό (λειτουργικό) διάγραμμα ενός συστήματος ελέγχου κλειστού βρόχου. α. Να προσδιοριστεί
x[n]z n = ) nu[n]z n z 1) n z 1 (5) ( 1 z(2z 1 1]z n +
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Ψηφιακή Επεξεργασία Σήµατος Χειµερινό Εξάµηνο 6 ιδάσκοντες : Γ. Στυλιανού - Γ. Καφεντζής εύτερη Σειρά Ασκήσεων - Λύσεις Ηµεροµηνία Ανάθεσης : //6 Ηµεροµηνία
Σ. Φωτόπουλος -1- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο 2 ο
Σ. Φωτόπουλος -- ΨΕΣ- AΣΚΗΣΕΙΣ-ΛΥΣΕΙΣ- Κεφάλαιο ο Άσκηση. Περιγράψτε τα σήµατα που φαίνονται στο σχήµα. χρησιµοποιώντας κατάλληλα την συνάρτηση µοναδιαίας κρούσης δ[]. x[] + x[] + + + + + (a) (b) -.5 Σχήµα.
Παραδείγματα (1 ο σετ) Διανυσματικοί Χώροι
Παραδείγματα ( ο σετ) Διανυσματικοί Χώροι Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με y, V και του πολλαπλασιασμού:
Εισαγωγή στα Σήματα. Κυριακίδης Ιωάννης 2011
Εισαγωγή στα Σήματα Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Τι είναι ένα σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 11: Εφαρμογές DFT Ταχύς Μετασχηματισμός Fourier (FFT) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Διακριτός Μετασχηματισμός Fourier Υπολογισμός Γραμμικής Συνέλιξης
ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/60 Πληροφορίας
ΚΕΦΑΛΑΙΟ 2 /6 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 - -4-3 -2-2 3 4 5-2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-),x(), x(),. x()={,-2,-3,-,,, 2, 3, 4, } x()={x()}={,x(-),x(), x(),.} x()={,-2,-3, -,,, 2, 3, 4, } 2/6
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Σήματα- συμβολισμοί. x(n)={x(n)}={,x(-1),x(0), x(1),.} x(n)={0,-2,-3, -1, 0, 1, 2, 3, 4,0 }
ΚΕΦΑΛΑΙΟ 2 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 1 1-1 -4-3 -2-1 1 2 3 4 5-1 1 2 3 4 5 6 7 8-2 -2-3 -3 x()=, x(-1),x(), x(1),. x()={,-2,-3,-1,, 1, 2, 3, 4, } x()={x()}={,x(-1),x(), x(1),.} x()={,-2,-3, -1,,
Πιθανότητες & Τυχαία Σήματα. Διγαλάκης Βασίλης
Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης Γραμμικά Συστήματα Σύστημα: x(t) T y(t) Κατηγορίες: Συνεχή/Διακριτά Γραμμικά/Μη Γραμμικά Αν Τότε Γραμμικά Συστήματα Σύστημα: x(t) T y(t) Κατηγορίες: Χρονικά
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 10: Διακριτός Μετασχηματισμός Fourier (DFT) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετασχηματισμός Fourier Διακριτού Χρόνου Διακριτός Μετασχηματισμός Fourier (DFT)
Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
Ο μετασχηματισμός z αντιστοιχεί στην ακολουθία συνάρτηση: Xz ()
Ο Ρ Ι Σ Μ Ο Σ Ο μετασχηματισμός αντιστοιχεί στην ακολουθία συνάρτηση: X x x τη X O Μετασχηματισμός,, της ακολουθίας είναι μιγαδική συνάρτηση, της μιγαδικής μεταβλητής x r j Ω Ο μονόπλευρος μετασχηματισμός
Κατηγορίες των συστημάτων ανάλογα με τον αριθμό και το είδος των επιτρεπομένων εισόδων και εξόδων.
Γενικά τι είναι σύστημα - Ορισμός. Τρόποι σύνδεσης συστημάτων.. ΚΕΦΑΛΑΙΟ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Κατηγορίες των συστημάτων ανάλογα με τον αριθμό και το είδος των επιτρεπομένων εισόδων και εξόδων. Ιδιότητες
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 7 ο Εργαστήριο. Διανύσματα-Πίνακες 2 ο Μέρος
Εργαστήρια Αριθμητικής Ανάλυσης Ι 7 ο Εργαστήριο Διανύσματα-Πίνακες 2 ο Μέρος 2017 Εντολή size Σε προηγούμενο εργαστήριο είχαμε κάνει αναφορά στην συνάρτηση length, και την χρησιμότητα της όταν δουλεύουμε
Στοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 2: Ανασκόπηση Στοιχείων Γραμμικής Άλγεβρας Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση/υπενθύμιση
Κεφάλαιο 5 Μετασχηματισμός z και Συνάρτηση μεταφοράς
Κεφάλαιο Μετασχηματισμός και Συνάρτηση μεταφοράς Σύνοψη Στο κεφάλαιο αυτό δίνεται ο ορισμός του μετασχηματισμού και παρουσιάζονται οι ιδιότητες του μετασχηματισμού Δίνεται ο ορισμός της συνάρτησης μεταφοράς
Κεφάλαιο 4 Διανυσματικοί Χώροι
Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας
HMY 49: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου Διάλεξη 3: Σήματα και Συστήματα διακριτού χρόνου στο χώρο της συχνότητας Μιγαδικά εκθετικά σήματα και
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 220: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Τρεις ισοδύναμες μορφές: () = = = = Σειρές Fourier j( 2π ) t Τ.. x () t FS a jω0t xt () = ae =
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
X = {(x 1, x 2 ) x 1 + 2x 2 = 0}.
Γραμμική Άλγεβρα ΙΙ Διάλεξη 4 Χρήστος Κουρουνιώτης Πανεπιστήμιο Κρήτης 26/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 4 26/2/2014 1 / 12 Υποσύνολα ενός διανυσματικού χώρου. Πότε είναι ένα υποσύνολο X ενός
Σήματα και Συστήματα. Διάλεξη 3: Εισαγωγή στα Συστήματα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 3: Εισαγωγή στα Συστήματα Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Εισαγωγή στα Συστήματα 1. Ορισμός και Κατηγορίες Συστημάτων Συστήματα Συνεχούς Χρόνου Συστήματα Διακριτού
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ z
7 ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ο μετασχηματισμός είναι ο αντίστοιχος Laplace για σήματα διακριτού χρόνου και αποτελεί γενίκευση του μετασχηματισμού Fourier διακριτού χρόνου. Σκοπός του Κεφαλαίου είναι να ορίσει
Εργαστήρια Αριθμητικής Ανάλυσης Ι. 9 ο Εργαστήριο. Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη
Εργαστήρια Αριθμητικής Ανάλυσης Ι 9 ο Εργαστήριο Απαλοιφή Gauss με μερική οδήγηση - Παρεμβολη 2018 Απαλοιφή Gauss Με Μερική Οδήγηση Για την εύρεση του οδηγού στοιχείου στο k ο βήμα, αναζητούμε το μέγιστο
S D. y[n] x [n] y. s D2. Microphone feedback into amplifier
Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ : Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 3: Συστήματα διακριτού χρόνου!"#!"#! "#$% Σημειώσεις διαλέξεων
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΚ. ΕΤΟΣ 2009-2010 Μαθηματικά για Οικονομολόγους ΙI-Μάθημα 4 Γραμμικά Συστήματα ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Ένα σύνολο m εξισώσεων n αγνώστων που έχει την ακόλουθη
Μετασχηματισμός Z. Κυριακίδης Ιωάννης 2011
Μετασχηματισμός Z Κυριακίδης Ιωάννης 20 Τελευταία ενημέρωση: /2/20 Εισαγωγή Ο μετασχηματισμός- είναι ένα πολύ ισχυρό μαθηματικό εργαλείο για τη μελέτη διακριτών σημάτων και συστημάτων. Μπορεί να χρησιμοποιηθεί:
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές
Συστήµατα τα οποία χαρακτηρίζονται από γραµµικές εξισώσεις διαφορών µε σταθερούς συντελεστές x h γραµµική εξίσωση διαφορών µε σταθερούς συντελεστές της µορφής x µπορεί να θεωρηθεί ως ένας αλγόριθµος υπολογισµού
HMY 220: Σήματα και Συστήματα Ι
Σύγκλιση Σειρών Fourier Ιδιότητες Σειρών Fourier Παραδείγματα HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ #10 Σειρές Fourier: Προσέγγιση Οι Σειρές Fourier μπορούν να αναπαραστήσουν μια πολύ μεγάλη κλάση περιοδικών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE
6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει
Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ
Ο Μετασχηματισμός Ζ Ανάλυση συστημάτων με το μετασχηματισμό Ζ Ο μετασχηματισμός Z (Ζ-Τransform: ZT) χρήσιμο μαθηματικό εργαλείο για την ανάλυση των διακριτών σημάτων και συστημάτων αποτελεί ό,τι ο μετασχηματισμός
1.2 Εξισώσεις 1 ου Βαθμού
1.2 Εξισώσεις 1 ου Βαθμού Διδακτικοί Στόχοι: Θα μάθουμε: Να κατανοούμε την έννοια της εξίσωσης και τη σχετική ορολογία. Να επιλύουμε εξισώσεις πρώτου βαθμού με έναν άγνωστο. Να διακρίνουμε πότε μια εξίσωση
Ψηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 13: Ψηφιακά Φίλτρα IIR Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ψηφιακά Φίλτρα IIR Εισαγωγή στα Φίλτρα Άπειρης Κρουστικής Απόκρισης (IIR) Σχεδίαση IIR Φίλτρων Γενική
Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.
Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για
Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου
ΚΕΣ : Αυτόµατος Έλεγχος ΚΕΣ Αυτόµατος Έλεγχος Περιγραφή Συστηµάτων Αυτοµάτου Ελέγχου ΚΕΣ : Αυτόµατος Έλεγχος Βιβλιογραφία Ενότητας Παρασκευόπουλος [5]: Κεφάλαιο 3, Ενότητες 3. 3.8 Παρασκευόπουλος [5]: