Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών ΠΜΣ Γεωπληροφορική Αναλυτικές Μέθοδοι στη Γεωπληροφορική

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών ΠΜΣ Γεωπληροφορική Αναλυτικές Μέθοδοι στη Γεωπληροφορική"

Transcript

1 Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών ΠΜΣ Γεωπληροφορική Αναλυτικές Μέθοδοι στη Γεωπληροφορική «Ανάλυση νέφους βαθυµετρικών δεδοµένων περιοχής Κορινθιακού κόλπου και ανίχνευση γραµµικής συσχέτισηςµεδεδοµέναβαρύτητας, στο περιβάλλον εργασίας του λογισµικού R» Θέµα Εξαµήνου Λιώλης Δημήτριος(ΑΜ: ) Υπεύθυνος Καθηγητής: Δ. Δεληκαράογλου

2 ιάγραµµαπαρουσίασης Θεωρητικό Υπόβαθρο Καθορισμός του προβλήματος Υπολογισμός Τιμών Βαρύτητας Αναγωγές βαρύτητας Συσχετίσεις δεδομένων Τεχνικό Μέρος Προέλευση δεδομένων Παρουσίαση υπολογισμών Υποβολή Ερωτήσεων 10 min 10 min

3 ΘεωρητικόΥπόβαθρο Καθορισμός του Προβλήματος Εισαγωγή δεδοµένων στο περιβάλλον του R Λήψη δεδοµένων βαρύτητας Προβολή δεδοµένων και βασικά στατιστικά στοιχεία Παρεµβολές δεδοµένων και δειγµατοληψία Υπολογισµός διορθώσεων Bouguer Γραµµική παλινδρόµηση Υπολογισµός δεικτών συσχέτισης διορθώσεων Bouguer βαθυµετρικών δεδοµένων

4 ΘεωρητικόΥπόβαθρο Υπολογισµός Τιµών Βαρύτητας Βαρυτήµετρο Lacoste & Romberg G

5 ΘεωρητικόΥπόβαθρο Μοντέλα γήινου δυναµικού σε σφαιρικές αρµονικές EGM08 (Pavliset al, 2004) Πλήρες μέχρι βαθμό και τάξη 2159 Τελική έκδοση σειράς μοντέλων βαρύτητας Προήλθε από συνδυασμό παρατηρήσεων βαρύτητας, τόσο επίγειων, όσο και της αποστολής GRACE, για τη διόρθωση των σφαιρικών αρμονικών συντελεστών Άλλα μοντέλα: EGM96, EIGEN5-C, GGM02,EIGEN6C2 Υπολογισμός ποσοτήτων που χαρακτηρίζουν το γήινο πεδίο βαρύτητας (ενδ. ΙστοσελίδατουICGEM -International Centre for Global Earth Models: icgem.gfz-potsdam.de) Υψόµετραγεωειδούς(N) απότοegm96

6 ΘεωρητικόΥπόβαθρο Αναγωγές Βαρύτητας

7 ΘεωρητικόΥπόβαθρο Υπόθεση Βάσει των παραπάνω σχέσεων είναι φανερή η εξάρτηση των αναγωγών από το υψόμετρο του εκάστοτε σημείου. Στόχος είναι η απόδειξη της υπόθεσης πως οι παραπάνω αναγωγές είναι ισχυράσυσχετισμένεςμετουψόμετρο(στηνπερίπτωσήμαςτοβάθος) κάθεσημείου, ιδιαιτέρωςηελευθέρουαέρα(δεληκαράογλου, 2003), (Fischer, 2005). Η απόδειξη αυτή θα αναδείξει τη χρησιμότητα των λοιπών αναγωγών (τοπογραφικών, ισοστατικών κτλ.) για την αντιπροσωπευτική περιγραφή των παραλλαγών της βαρύτητας. Ο αποτελεσματικός προσδιορισμός των ανωμαλιών βαρύτητας σε μια περιοχή, μπορεί να οδηγήσει σε προσδιορισμό τυχόν συγκεντρώσεων κοιτασμάτων πετρελαίου, φυσικού αερίου, μεταλλευμάτων, κα.

8 ΘεωρητικόΥπόβαθρο Συσχετίσεις εδοµένων Συντελεστής Pearson (ρ)

9 ΘεωρητικόΥπόβαθρο Συσχετίσεις εδοµένων Συντελεστής Spearman (r)

10 ΘεωρητικόΥπόβαθρο Συσχετίσεις εδοµένων Συντελεστής Kendall(τ)

11 Προέλευση εδοµένων Δεδομένα: Βαθυμετρικά δεδομένα περιοχής Κορινθιακού κόλπου Πηγή: Σειράσυλλογήςβαθυμετρικώνδεδομένων(90801 παρατηρήσεις) πουπραγματοποιήθηκεαπό23/7 έως01/08 του2001 απότοερευνητικόσκάφοςrv Maurice Ewing, με χρήση του ηχοβολιστικού πολλαπλής δέσμης(multibeam), Atlas Hydrosweep DS-2. Προβολή βαθυµετρικών δεδοµένων ngdc.noaa.gov

12 Προέλευση εδοµένων Δεδομένα: Δεδομένα βαρύτητας, μη διορθωμένης[κλίση του δυναμικού της βαρύτητας grad(w)] Πηγή: Δεδομένα(πλέγμα σημείων) επιτάχυνσης της βαρύτητας που ισούται με την κλίση του δυναμικού της βαρύτητας(grad W). Δυναμικό της βαρύτητας(w) = Δυναμικό Έλξης(V) + Φυγόκεντρο Δυναμικό(Φ) Μοντέλο γήινου δυναμικού σε σφαιρικές αρμονικές: EGM08 Σύστημααναφοράς: WGS84, Ανάλυση: 0 ο,005, ΜέσοΝ: 33,8 m Παλίρροια: Μοντέλο ελεύθερης παλίρροιας

13

14 Προέλευση εδοµένων Δεδομένα: Δεδομένα απλών ανωμαλιών βαρύτητας Bouguer Πηγή: Δεδομένα(πλέγμα σημείων) ανωμαλιών βαρύτητας Bouguer (ΔgB= g 2πGρΗ+ 0,3086*H γ) Μοντέλο γήινου δυναμικού σε σφαιρικές αρμονικές: EGM08 Σύστημααναφοράς: WGS84, Ανάλυση: 0 ο,001, ΜέσοΝ: 33,8 m Παλίρροια: Μοντέλο ελεύθερης παλίρροιας

15

16 Προβολή εδοµένων(βαθυµετρία) Προβολή 3D δεδομένων με την εντολή plot3d() του πακέτου rgl

17 Προβολή εδοµένων(βαρύτητα µη διορθωµένη)

18 Προβολή εδοµένων(ανωµαλίες Βαρύτητας Bouguer)

19 Επεξεργασία εδοµένων Εισαγωγή δεδομένων στο περιβάλλον του R, με χρήση των εντολών read.csv2() και read.csv() Αφαίρεση μηδενικών εγγραφών(na.omit()) Ανάγκη πραγματοποίησης παρεμβολής των σημείων των βαθυμετρικών δεδομένων στα δεδομένα των πλεγμάτων βαρύτητας (εντολή interp() πακέτου akima του R) Δειγματοληψία 2000 σημείων(εντολή sample()), καθώς ο μεγάλος αριθμός σημείων δεν ευνοούσε από άποψη υπολογιστικού χρόνου και φόρτου την παρεμβολή και τις λοιπές επεξεργασίες Αφαίρεση τιμών ανωμαλιών Bouguer από την παρατηρηθείσα βαρύτητα

20 Εκτέλεση Βασικών Στατιστικών Εντολών(Μεταβλητή Βάθος) Summary (m) Min. : st Qu.: Median : Mean : rd Qu.: Max. : Sd: Var: Range: , -13.0

21 Υπολογισµός συσχέτισης βαθυµετρικών δεδοµένων και δεδοµένων βαρύτητας Δεδομένα: Βαθυμετρικά δεδομένα περιοχής Κορινθιακού κόλπου Δεδομένα βαρύτητας, μη διορθωμένης[κλίση του δυναμικού της βαρύτητας grad(w)] Δεδομένα απλών ανωμαλιών βαρύτητας Bouguer Αφαιρώντας το δείγμα των ανωμαλιών βαρύτητας από τα δεδομένα βαρύτητας θα έχουμε: g ΔgB= g (g 0,1119H + 0,3086H γ) = -0,1967Η+ γ Αναμενόμενη γραμμική εξάρτηση από το Η

22 Υπολογισµός συσχέτισης βαθυµετρικών δεδοµένων και δεδοµένων βαρύτητας Με χρήση της συνάρτησης cor() του R προκύπτουν οι συντελεστές: Μέθοδος Pearson: ρ = 0,86 Μέθοδος Spearman: r = 0,89 Μέθοδος Kendall: τ = 0,69

23 Ερµηνεία Αποτελεσµάτων Ο συντελεστής Pearson ρ = 0,86 δείχνει ισχυρή γραµµικήσυσχέτισηµεταξύτωνδύοµεταβλητών. ΟσυντελεστήςSpearmanr = 0,89δείχνειότιοιδύο µεταβλητέςείναιµονοτόνωςσυσχετισµένες, δηλαδήµετηναύξησητηςµιαςέχουµε παράλληλη αύξηση της άλλης Παρόµοια ερµηνεία µπορούµε να δώσουµε για το αποτέλεσµατουσυντελεστήkendall τ= 0,69, παρόλο που η συσχέτιση δεν είναι τόσο ισχυρή όσο στους δύο προηγούµενους δείκτες

24 Υπολογισµός µοντέλου γραµµικής παλινδρόµησης Εφαρµογή ενσωµατωµένης συνάρτησης lm() του R: lm(formula = boug_corr ~ sample_data_kor$depth) Αποτέλεσµα: boug_corr = 0,0054*Depth ,5 Υπολογίστηκετογ(38 ο ) = mgal Ο συντελεστής βάθους διαφέρει από τον θεωρητικό 0,1967*Η(=0,3086*Η-0,1119*Η) Η ανάλυση έχει γίνει σε αποτελέσµατα µοντέλου και όχι µετρήσεις βαρύτητας

25 Υπολογισµός µοντέλου γραµµικής παλινδρόµησης

26 Προβολή Υπολοίπων προσαρµοσµένων τιµών της παλινδρόµησης

27 Προβολή Scale - Location

28 Προβολή Επιρροής Υπολοίπων

29 Quantile- quantile plot (QQplot) των υπολοίπων Residuals: Min 1Q Median 3Q Max Παρατηρούµε από το διάγραµµα ότι τα υπόλοιπα φαίνεται να ακολουθούν την κανονική κατανοµή

30 Βιβλιογραφία. εληκαράογλου, ιαφάνειες διαλέξεων µαθήµατος«αναλυτικές Μέθοδοι στη Γεωπληροφορική» του ΠΜΣ Γεωπληροφορική του ΕΜΠ/ΣΑΤΜ, ακ. έτους P. Dalgaard, «Introductory Statistics with R», 2 nd Ed., Springer, 2008, ISBN: I. Fischer, «Geodesy? What's That?: My Personal Involvement in the Age-old Quest for the Size and Shape of the Earth with a Running Commentary on Life in a Government Research Office»,IUniverse,Inc εληκαράογλου, «Γεωφυσικές ιασκοπήσεις Βαρυτηµετρία», Αθήνα εληκαράογλου, «Φυσική Γεωδαισία Θεωρητικές και Τεχνολογικές Βάσεις», Αθήνα 2010

31 Ιστοσελίδες wikipedia.org

32 ΥποβολήΕρωτήσεων

Υπολογισμός παραμέτρων του γήινου πεδίου βαρύτητας - Εξηγήσεις και πληροφορίες χρήσης

Υπολογισμός παραμέτρων του γήινου πεδίου βαρύτητας - Εξηγήσεις και πληροφορίες χρήσης Υπολογισμός παραμέτρων του γήινου πεδίου βαρύτητας - Εξηγήσεις και πληροφορίες χρήσης Το Διεθνές Κέντρο Μοντέλων του Γήινου Δυναμικού της Βαρύτητας (International Centre for Global Earth Models, ICGEM)

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ 4 ης ΕΝΟΤΗΤΑΣ : Εισαγωγή στο γήινο πεδίο βαρύτητας

ΕΡΓΑΣΙΑ 4 ης ΕΝΟΤΗΤΑΣ : Εισαγωγή στο γήινο πεδίο βαρύτητας ΕΡΓΑΣΙΑ 4 ης ΕΝΟΤΗΤΑΣ : Εισαγωγή στο γήινο πεδίο βαρύτητας Ζήτημα 1 ο Δίνονται οι μετρήσεις γεωμετρικών υψομέτρων του δορυφορικού συστήματος GPS στα τριγωνομετρικά σημεία της ΓΥΣ με γνωστά ορθομετρικά

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση

ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση ΓΕΩΔΑΙΣΙΑ 5η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις 5. Φυσική Εισαγωγή στο πεδίο βαρύτητας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER ΜΑΘΗΜΑ 3 Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΑΓΩΓΕΣ ΤΟΥ ΜΕΤΡΗΜΕΝΟΥ ΠΕΔΙΟΥ ΒΑΡΥΤΗΤΑΣ ΑΝΩΜΑΛΙΑ BOUGUER Υπολογισμός της ανωμαλίας Bouguer Ανωμαλία Bouguer = Μετρημένη Βαρύτητα - Μοντέλο

Διαβάστε περισσότερα

Προηγούµενα είδαµε...

Προηγούµενα είδαµε... Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της Φυσικής Γεωδαισίας) Προηγούµενα είδαµε... Η επίλυση της διαφορικής εξίσωσης Laplace για το ελκτικό δυναµικό της βαρύτητας για τις µάζες έξω από τη γήινη επιφάνεια

Διαβάστε περισσότερα

Αναλυτική Στατιστική

Αναλυτική Στατιστική Αναλυτική Στατιστική Συμπερασματολογία Στόχος: εξαγωγή συμπερασμάτων για το σύνολο ενός πληθυσμού, αντλώντας πληροφορίες από ένα μικρό υποσύνολο αυτού Ορισμοί Πληθυσμός: σύνολο όλων των υπό εξέταση μονάδων

Διαβάστε περισσότερα

Χωροστάθμηση GNSS (Η αρχή του τέλους της κλασικής χωροστάθμησης;) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος Τοπογράφος Μηχανικός Α.Π.Θ.

Χωροστάθμηση GNSS (Η αρχή του τέλους της κλασικής χωροστάθμησης;) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος Τοπογράφος Μηχανικός Α.Π.Θ. Χωροστάθμηση GNSS (Η αρχή του τέλους της κλασικής χωροστάθμησης;) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος Τοπογράφος Μηχανικός Α.Π.Θ. Αντικείμενο της παρουσίασης Σχέση συστημάτων υψών Γεωδαισίας και δυνατότητες

Διαβάστε περισσότερα

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδοµένων µε χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τοµέας Μαθηµατικών, Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών Επιστηµών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόµενα Εισαγωγή στη

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;

Διαβάστε περισσότερα

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης

Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Εκπαιδευτική έρευνα Οργάνωση & Παρουσίαση Δεδομένων (Εργαστήριο SPSS) Άγγελος Μάρκος, Λέκτορας Δημοκρίτειο Πανεπιστήμιο Θράκης Σύνολα Δεδομένων - Είδη Ποσοτικής Έρευνας: Παράλογες Ιδέες Γονέων (Δειγματοληπτική)

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ

ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΛΗΡΟΦΟΡΙΩΝ ΕΡΓΑΣΤΗΡΙAKΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΡΟΒΛΕΨΗΣ ΜΕ ΤΟ MINITAB ΙΩΑΝΝΗΣ Ι.ΓΕΡΟΝΤΙΔΗΣ Καθηγητής ΚΑΒΑΛΑ 2009 Ιωάννης Ι.Γεροντίδης,

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ: ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 20 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 20 2.1.1 Αβεβαιότητα

Διαβάστε περισσότερα

Οδηγίες χρήσης του R, μέρος 2 ο

Οδηγίες χρήσης του R, μέρος 2 ο ΟδηγίεςχρήσηςτουR,μέρος2 ο Ελληνικά Ανπροσπαθήσουμεναγράψουμεελληνικάήναανοίξουμεκάποιοαρχείοδεδομένωνμε ελληνικούςχαρακτήρεςστοr,μπορείαντίγιαελληνικάναδούμελατινικούςχαρακτήρεςμε τόνουςήάλλακαλλικαντζαράκια.τότεδίνουμετηνπαρακάτωεντολήγιαναγυρίσειτοrστα

Διαβάστε περισσότερα

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.

Διαβάστε περισσότερα

Χωροστάθμησημε GPS Βασικές αρχές, προβλήματα και προκαταρκτικά αποτελέσματα

Χωροστάθμησημε GPS Βασικές αρχές, προβλήματα και προκαταρκτικά αποτελέσματα HEPOS Workshop Χωροστάθμησημε GPS Βασικές αρχές, προβλήματα και προκαταρκτικά αποτελέσματα Χ. Κωτσάκης, Κ. Κατσάμπαλος, Δ. Αμπατζίδης Τομέας Γεωδαισίας και Τοπογραφίας Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)

Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 6: Σφαιρικές Αρμονικές Συναρτήσεις & Αναπτύγματα Συνιστωσών του Πεδίου Βαρύτητας Η.Ν. Τζιαβός - Γ.Σ.

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές I

Ηλεκτρονικοί Υπολογιστές I ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές I Κατανομές και έλεγχοι υποθέσεων με τη γλώσσα R Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός

ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» Τριανταφυλλίδου Ιωάννα Μαθηματικός ΕΠΙΣΤΗΜΟΝΙΚΟ ΕΠΙΜΟΡΦΩΤΙΚΟ ΣΕΜΙΝΑΡΙΟ «ΚΑΤΑΡΤΙΣΗ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΔΕΔΟΜΕΝΩΝ» ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΜΕ ΤΟ SPSS To SPSS θα: - Κάνει πολύπλοκη στατιστική ανάλυση σε δευτερόλεπτα -

Διαβάστε περισσότερα

ΧΡΗΣΗ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΥΚΛΟΦΟΡΙΑΣ

ΧΡΗΣΗ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΥΚΛΟΦΟΡΙΑΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΧΡΗΣΗ ΚΙΝΗΤΟΥ ΤΗΛΕΦΩΝΟΥ ΚΑΙ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΚΥΚΛΟΦΟΡΙΑΣ Παπαντωνίου Παναγιώτης και Πετρέλλης Νικόλαος Επιβλέπων:

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Πολλαπλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 7 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ ΜΑΘΗΜΑ 12β ΕΡΓΑΣΤΗΡΙΟ 4β ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΜΕ ΤΗΝ ΧΡΗΣΗ SPSS

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3 ΔΕΣΜΕΥΜΕΝΗ ΠΙΘΑΝΟΤΗΤΑ, ΟΛΙΚΗ ΠΙΘΑΝΟΤΗΤΑ ΘΕΩΡΗΜΑ BAYES, ΑΝΕΞΑΡΤΗΣΙΑ ΚΑΙ ΣΥΝΑΦΕΙΣ ΕΝΝΟΙΕΣ 71 ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΠΙΘΑΝΟΤΗΤΕΣ 11 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 13 ΚΕΦΑΛΑΙΟ 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΘΑΝΟΤΗΤΑΣ 19 2.1 Αβεβαιότητα, Τυχαία Διαδικασία, και Συναφείς Έννοιες 21 2.1.1 Αβεβαιότητα και Τυχαίο Πείραμα

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΠΑΓΚΟΣΜΙΟΥ ΟΡΥΦΟΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΕΝΤΟΠΙΣΜΟΥ ΘΕΣΗΣ (GPS)

ΕΦΑΡΜΟΓΕΣ ΠΑΓΚΟΣΜΙΟΥ ΟΡΥΦΟΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΕΝΤΟΠΙΣΜΟΥ ΘΕΣΗΣ (GPS) ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΟΠΟΓΡΑΦΙΑΣ ΕΦΑΡΜΟΓΕΣ ΠΑΓΚΟΣΜΙΟΥ ΟΡΥΦΟΡΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΕΝΤΟΠΙΣΜΟΥ ΘΕΣΗΣ (GPS) ιδακτικές σηµειώσεις Γεώργιος

Διαβάστε περισσότερα

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ

ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ ΜΕΜ264: Εφαρμοσμένη Στατιστική 1 ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ: ΑΣΚΗΣΕΙΣ 1. Σε μελέτη της επίδρασης γεωργικών χημικών στην προσρόφηση ιζημάτων και εδάφους, δίνονται στον πιο κάτω πίνακα 13 δεδομένα για το δείκτη

Διαβάστε περισσότερα

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013.

ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. ΜΙΑ ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ: ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΤΩΝ ΒΑΘΜΟΛΟΓΙΩΝ ΤΩΝ ΜΑΘΗΤΩΝ ΕΝΟΣ ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ 2000 ΩΣ ΤΟ 2013. Πρακτικές και καινοτομίες στην εκπαίδευση και την έρευνα. Άγγελος Μπέλλος Καθηγητής Μαθηματικών

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΕΡΓΑΣΤΗΡΙΟ ΜΑΘΗΜΑ 1 ο ΕΡΓΑΣΤΗΡΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΠΙΧ Οικονομετρικά Πρότυπα Διαφάνεια 1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

Γραμμικά Μοντέλα. Βιολέττα Ε. Πιπερίγκου. Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών. h p://

Γραμμικά Μοντέλα. Βιολέττα Ε. Πιπερίγκου. Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών. h p:// Γραμμικά Μοντέλα Βιολέττα Ε. Πιπερίγκου Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών vpiperig@math.upatras.gr h p://www.math.upatras.gr/ vpiperig Γραφείο 213, τηλ. 2610 997285 BEΠ (UPatras) Γραμμικά Μοντέλα 1η,

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr

Διαβάστε περισσότερα

Εργασία στο µάθηµα Ανάλυση εδοµένων

Εργασία στο µάθηµα Ανάλυση εδοµένων Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@auth.gr 30 Ιανουαρίου 2018 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο

Διαβάστε περισσότερα

Start Random numbers Distributions p-value Confidence interval.

Start Random numbers Distributions p-value Confidence interval. Υπολογιστική Στατιστική με τη γλώσσα R Κατανομές και έλεγχοι υποθέσεων Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 19 Δεκεμβρίου 2013 1 / 33 Επισκόπηση 1 1 Start 2 Random numbers 3 Distributions

Διαβάστε περισσότερα

Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS

Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS Επιµορφωτικά Σεµινάρια ΑΤΜ Μοντέλο μετασχηματισμού μεταξύ του ΕΓΣΑ87 και του συστήματος αναφοράς του HEPOS Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Πολυτεχνική Σχολή, ΑΠΘ ΚΤΗΜΑΤΟΛΟΓΙΟ

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες

Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ποσοτικές Μέθοδοι Ανάλυσης στις Κοινωνικές Επιστήμες Ενότητα 9 : Περιγραφή του ελέγχου Χ 2 Θεόδωρος Χατζηπαντελής Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 2006 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα 1. Εισαγωγή 1 2. Μέθοδοι σταθερών

Διαβάστε περισσότερα

Εργασία στο µάθηµα Ανάλυση εδοµένων

Εργασία στο µάθηµα Ανάλυση εδοµένων Μεταπτυχιακό Υπολογιστικής Φυσικής Εργασία στο µάθηµα Ανάλυση εδοµένων ηµήτρης Κουγιουµτζής E-mail: dkugiu@gen.auth.gr 31 Ιανουαρίου 2017 Οδηγίες : Σχετικά µε την παράδοση της εργασίας ϑα πρέπει : Το κείµενο

Διαβάστε περισσότερα

ΕΞΕΤΑΣΗ ΤΗΣ ΣΧΕΣΗΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

ΕΞΕΤΑΣΗ ΤΗΣ ΣΧΕΣΗΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΕΞΕΤΑΣΗ ΤΗΣ ΣΧΕΣΗΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ ΔΥΟ ΠΟΙΟΤΙΚΕΣ ΠΙΝΑΚΕΣ ΣΥΝΑΦΕΙΑΣ ΕΞΕΤΑΣΗ ΤΗΣ ΥΠΑΡΞΗΣ Ή ΟΧΙ ΣΧΕΣΗΣ ΕΝΤΑΣΗ ΚΑΙ ΦΥΣΗ ΤΗΣ ΣΧΕΣΗΣ ΔΥΟ ΠΟΙΟΤΙΚΕΣ ΔΙΑΔΙΚΑΣΙΑ CROSSTABS ΠΙΝΑΚΑΣ ΣΥΝΑΦΕΙΑΣ Ο πίνακας συνάφειας είναι

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04

ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού

Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 3 ο Εξάμηνο του Ακαδημαϊκού Έτους 2013-2014 ΟΔ 034 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Δευτέρα 10:00-13:00 Ώρες διδασκαλίας (3)

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Δεδομένων

Εισαγωγή στην Ανάλυση Δεδομένων ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 09-10-2015 Εισαγωγή στην Ανάλυση Δεδομένων Βασικές έννοιες Αν. Καθ. Μαρί-Νοέλ Ντυκέν ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 30-10-2015 1. Στατιστικοί παράμετροι - Διάστημα εμπιστοσύνης Υπολογισμός

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση Συστημάτων

HMY 799 1: Αναγνώριση Συστημάτων HMY 799 : Αναγνώριση Συστημάτων Διάλεξη Γραμμική παλινδρόμηση (Linear regression) Εμπειρική συνάρτηση μεταφοράς Ομαλοποίηση (smoothing) Y ( ) ( ) ω G ω = U ( ω) ω +Δ ω γ ω Δω = ω +Δω W ( ξ ω ) U ( ξ) G(

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Στατιστική ανάλυση του γεωχηµικού δείγµατος µας δίνει πληροφορίες για τον γεωχηµικό πληθυσµό που µελετάµε. Συνυπολογισµός σφαλµάτων Πειραµατικά

Διαβάστε περισσότερα

Στοχαστική ανάλυση και προσοµοίωση υδροµετεωρολογικών διεργασιών σχετικών µε την αιολική και ηλιακή ενέργεια

Στοχαστική ανάλυση και προσοµοίωση υδροµετεωρολογικών διεργασιών σχετικών µε την αιολική και ηλιακή ενέργεια ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Στοχαστική ανάλυση και προσοµοίωση υδροµετεωρολογικών διεργασιών σχετικών µε την αιολική και ηλιακή ενέργεια

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ

Διαβάστε περισσότερα

www.onlneclassroom.gr www.onlneclassroom.gr Α. Το διάγραμμα διασποράς των μεταβλητών διαθέσιμο εισόδημα (Χ) και κατανάλωσης (Υ), όπως σχηματίστηκε στο excel, είναι 3000 Δ ιάγραμμα Δ ιασ π οράς 500 Δ ηλω

Διαβάστε περισσότερα

UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES»

UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» UNIVERSITY OF THESSALY FACULTY OF ENGINEERING DEPARTMENT OF PLANNINGAND REGIONAL DEVELOPMENT MASTER «EUROPEAN REGIONAL DEVELOPMENT STUDIES» METHODS OF SPATIAL ECONOMIC ANALYSIS LECTURE 11 Δρ. Μαρί-Νοέλ

Διαβάστε περισσότερα

Εξετάζεται ο βαθµός στον οποίο οι παρακάτω. που αποδέχεται ο πεζός και στην επιλογή του να διασχίσει ή όχι την οδό

Εξετάζεται ο βαθµός στον οποίο οι παρακάτω. που αποδέχεται ο πεζός και στην επιλογή του να διασχίσει ή όχι την οδό ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΙΕΡΕΥΝΗΣΗ ΤΟΥ ΙΑΣΤΗΜΑΤΟΣ ΑΠΟ ΤΟ ΟΧΗΜΑ ΠΟΥ ΑΠΟ ΕΧΕΤΑΙ Ο ΠΕΖΟΣ ΓΙΑ ΝΑ ΙΑΣΧΙΣΕΙ ΑΣΤΙΚΗ Ο Ο ΕΚΤΟΣ ΙΑΣΤΑΥΡΩΣΕΩΝ

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΦΟΙΤΗΤΩΝ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΦΟΙΤΗΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΑ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟΥ ΦΟΙΤΗΤΩΝ Αξιολόγηση: ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΧΕΙΜΕΡΙΝΟ 2014-2015 Τμήμα: ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΤΟΠΟΓΡΑΦΙΑΣ ΚΑΙ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων Ι

Στατιστική Επιχειρήσεων Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Στατιστική Επιχειρήσεων Ι Ενότητα 7: Παρουσίαση δεδομένων-περιγραφική στατιστική Μιλτιάδης Χαλικιάς, Επίκουρος Καθηγητής Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Kruskal-Wallis H... 176

Kruskal-Wallis H... 176 Περιεχόμενα KΕΦΑΛΑΙΟ 1: Περιγραφή, παρουσίαση και σύνοψη δεδομένων................. 15 1.1 Τύποι μεταβλητών..................................................... 16 1.2 Κλίμακες μέτρησης....................................................

Διαβάστε περισσότερα

ΓΕΩΔΑΙΣΙΑ 6η παρουσίαση

ΓΕΩΔΑΙΣΙΑ 6η παρουσίαση ΓΕΩΔΑΙΣΙΑ 6η παρουσίαση Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος Τοπογράφος Μηχανικός ΑΠΘ 4ο εξάμηνο http://eclass.survey.teiath.gr Παρουσιάσεις, Ασκήσεις, Σημειώσεις 5. Φυσική Εισαγωγή στο πεδίο βαρύτητας

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 1: Εισαγωγή Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p ΑΣΚΗΣΗ 1 ΣΕΜΦΕ 14-15 i. Έστω yi ο αριθμός των προσπαθειών κάθε μαθητή μέχρι να πετύχει τρίποντο. Ο αριθμός των προσπαθειών πριν ο μαθητής να πετύχει τρίποντο θα είναι xi = yi - 1, i = 1,,18. 2 2 3 2 1

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΝΧΕΙΟ ΣΧΟΛΗ ΠΟΛΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΟΜΕΑΣ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΝΧΕΙΟ ΣΧΟΛΗ ΠΟΛΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΟΜΕΑΣ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΝΧΕΙΟ ΣΧΟΛΗ ΠΟΛΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΤΟΜΕΑΣ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ «Πολυμεταβλητή στατιστική ανάλυση ακραίων βροχοπτώσεων και απορροών σε 400 λεκάνες απορροής από την βάση MOPEX»

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

Περιγραφή αλγορίθµων. ιαγράµµατα ροής

Περιγραφή αλγορίθµων. ιαγράµµατα ροής Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Αγρονόµων Τοπογράφων Μηχανικών Εισαγωγή στην Πληροφορική Ρωµύλος Κορακίτης Αστροφυσικός Αναπλ. Καθηγητής ΕΜΠ romylos@survey.ntua.gr Περιγραφή αλγορίθµων Η έννοια του αλγορίθµου

Διαβάστε περισσότερα

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΡΩΝ ΠΕΖΩΝ ΣΤΙΣ ΑΣΤΙΚΕΣ Ο ΟΥΣ

ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΡΩΝ ΠΕΖΩΝ ΣΤΙΣ ΑΣΤΙΚΕΣ Ο ΟΥΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΝΕΑΡΩΝ ΠΕΖΩΝ ΣΤΙΣ ΑΣΤΙΚΕΣ Ο ΟΥΣ ΤΟΥΡΟΥ ΣΟΦΙΑ Επιβλέπων:Γιώργος. Γιαννής, Επίκ.

Διαβάστε περισσότερα

Ενότητα 4 η : Ανάλυση ερευνητικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ενότητα 4 η : Ανάλυση ερευνητικών δεδομένων. Δημήτριος Σταμοβλάσης Φιλοσοφίας Παιδαγωγικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στην Ανάλυση Ερευνητικών Δεδομένων στις Κοινωνικές Επιστήμες Με χρήση των λογισμικών IBM/SPSS και LISREL Ενότητα 4 η : Ανάλυση

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ

ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ ΠΡΟΒΛΗΜΑ ΣΥΓΓΡΑΜΜΙΚΟΤΗΤΑΣ Η συγγραμμικότητα (collinearity) ή πολυσυγγραμμικότητα (multicollinearity) είναι εκείνη η ανεπιθύμητη κατάσταση (εμφανίζεται στην πολυμεταβλητή παλινδρόμηση) όπου μία ανεξάρτητη

Διαβάστε περισσότερα

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού.

ΠΡΟΛΟΓΟΣ. Εκφράζω προς όλους τις θερμές ευχαριστίες μου για την συνεργασία και την βοήθειά τους στην προετοιμασία του τεύχους αυτού. ΠΡΟΛΟΓΟΣ Το τεύχος αυτό περιέχει τα βασικά στοιχεία της Γεωδαιτικής Αστρονομίας (Geodetic Astronomy) που είναι αναγκαία στους φοιτητές της Σχολής Αγρονόμων και Τοπογράφων Μηχανικών του Ε.Μ.Πολυτεχνείου

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Είδη μεταβλητών Ποσοτικά δεδομένα (π.χ. ηλικία, ύψος, αιμοσφαιρίνη) Ποιοτικά δεδομένα (π.χ. άνδρας/γυναίκα, ναι/όχι) Διατεταγμένα (π.χ. καλό/μέτριο/κακό) 2 Περιγραφή ποσοτικών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΜΕΤΑΦΟΡΩΝ ΚΑΙ ΣΥΓΚΟΙΝΩΝΙΑΚΗΣ ΥΠΟ ΟΜΗΣ ΣΥΣΧΕΤΙΣΕΙΣ ΜΑΚΡΟΣΚΟΠΙΚΩΝ ΠΑΡΑΜΕΤΡΩΝ Ο ΙΚΗΣ ΑΣΦΑΛΕΙΑΣ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ 10000 9000 8000 ΑΡΙΘΜΟΣ ΘΑΝΑΤΩΝ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

Χωρική Ανάλυση Συμπεριφοράς Ασφάλειας Οδηγών με Δεδομένα από Έξυπνα Κινητά Τηλέφωνα

Χωρική Ανάλυση Συμπεριφοράς Ασφάλειας Οδηγών με Δεδομένα από Έξυπνα Κινητά Τηλέφωνα Χωρική Ανάλυση Συμπεριφοράς Ασφάλειας Οδηγών με Δεδομένα από Έξυπνα Κινητά Τηλέφωνα Ηλίας Αλέξανδρος Παρμακσίζογλου Επιβλέπων: Γιώργος Γιαννής, Καθηγητής ΕΜΠ Αθήνα, Μάρτιος 2018 Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17

Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 Περιεχόμενα Λίγα λόγια για τους συγγραφείς 16 Πρόλογος 17 1 Εισαγωγή 21 1.1 Γιατί χρησιμοποιούμε τη στατιστική; 21 1.2 Τι είναι η στατιστική; 22 1.3 Περισσότερα για την επαγωγική στατιστική 23 1.4 Τρεις

Διαβάστε περισσότερα

Λογιστική Παλινδρόµηση

Λογιστική Παλινδρόµηση Κεφάλαιο 10 Λογιστική Παλινδρόµηση Στο κεφάλαιο αυτό ϑα δούµε την µέθοδο της λογιστικής παλινδρόµησης η οποία χρησιµεύει στο να αναπτύξουµε σχέση µίας δίτιµης ανεξάρτητης τυχαίας µετα- ϐλητής και συνεχών

Διαβάστε περισσότερα

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 2. ΧΡΗΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΠΑΚΕΤΩΝ ΣΤΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η χρησιμοποίηση των τεχνικών της παλινδρόμησης για την επίλυση πρακτικών προβλημάτων έχει διευκολύνει εξαιρετικά από την χρήση διαφόρων στατιστικών

Διαβάστε περισσότερα

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη

Διαβάστε περισσότερα

Η ΔΟΡΥΦΟΡΙΚΗ ΑΛΤΙΜΕΤΡΙΑ ΩΣ ΓΕΩΔΑΙΤΙΚΟ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΘΑΛΑΣΣΙΟΥ ΓΕΩΕΙΔΟΥΣ. ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΕΛΛΑΔΙΚΟ ΘΑΛΑΣΣΙΟ ΧΩΡΟ.

Η ΔΟΡΥΦΟΡΙΚΗ ΑΛΤΙΜΕΤΡΙΑ ΩΣ ΓΕΩΔΑΙΤΙΚΟ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΘΑΛΑΣΣΙΟΥ ΓΕΩΕΙΔΟΥΣ. ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΕΛΛΑΔΙΚΟ ΘΑΛΑΣΣΙΟ ΧΩΡΟ. Η ΔΟΡΥΦΟΡΙΚΗ ΑΛΤΙΜΕΤΡΙΑ ΩΣ ΓΕΩΔΑΙΤΙΚΟ ΕΡΓΑΛΕΙΟ ΓΙΑ ΤΗΝ ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΘΑΛΑΣΣΙΟΥ ΓΕΩΕΙΔΟΥΣ. ΕΦΑΡΜΟΓΗ ΣΤΟΝ ΕΛΛΑΔΙΚΟ ΘΑΛΑΣΣΙΟ ΧΩΡΟ. Υ.Δ. Ι.Μιντουράκης Σχολή Αγρονόμων & Τοπογράφων Μηχανικών Ε.Μ.Π Τοπογράφων

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική

Εφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 9 ο 9.1 ηµιουργία µοντέλων πρόβλεψης 9.2 Απλή Γραµµική Παλινδρόµηση 9.3 Αναλυτικά για το ιάγραµµα ιασποράς

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

Διερεύνηση της Συμπεριφοράς Κυκλοφορίας και Ασφάλειας των Πεζών που Στέλνουν Μηνύματα ή Περιηγούνται στο Διαδίκτυο

Διερεύνηση της Συμπεριφοράς Κυκλοφορίας και Ασφάλειας των Πεζών που Στέλνουν Μηνύματα ή Περιηγούνται στο Διαδίκτυο Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τομέας Μεταφορών & Συγκοινωνιακής Υποδομής Διερεύνηση της Συμπεριφοράς Κυκλοφορίας και Ασφάλειας των Πεζών που Στέλνουν Μηνύματα ή Περιηγούνται στο

Διαβάστε περισσότερα

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017

Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017 Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης

Διαβάστε περισσότερα

Τομέας Γεωδαισίας και Τοπογραφίας Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ. Γ.Σ. Βέργος

Τομέας Γεωδαισίας και Τοπογραφίας Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ. Γ.Σ. Βέργος Σύγχρονες μέθοδοι παρακολούθησης του πεδίου βαρύτητας της Γης και εφαρμογές στη γεωδαισία, την τοπογραφία και την ωκεανογραφία Τομέας Γεωδαισίας και Τοπογραφίας Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών,

Διαβάστε περισσότερα

Γήινο πεδίο βαρύτητας Φυσική Γεωδαισία. Η Φυσική Γεωδαισία

Γήινο πεδίο βαρύτητας Φυσική Γεωδαισία. Η Φυσική Γεωδαισία Τοµέας Τοπογραφίας, Εργ. Ανώτερης ς Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της ς ς) ιδάσκοντες ηµήτρης εληκαράογλου Παρασκευάς Μήλας Γεράσιµος Μανουσάκης 7ο εξάµηνο, Ακαδ. Έτος 2018-19 Γήινο πεδίο βαρύτητας

Διαβάστε περισσότερα

Φυσική Γεωδαισία. Γεωδαισία

Φυσική Γεωδαισία. Γεωδαισία Τοµέας Τοπογραφίας, Εργ. Ανώτερης ς Εισαγωγή στο γήινο πεδίο βαρύτητας (Αρχές της ς ς) ιδάσκοντες ηµήτρης εληκαράογλου 7ο εξάµηνο, Ακαδ. Έτος 2017-18 Γήινο πεδίο βαρύτητας Η Είναι ο κλάδος της γεωδαιτικής

Διαβάστε περισσότερα

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)

Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1) Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY

Διαβάστε περισσότερα

Πίσω στα βασικά, μέρος 3 ο Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες: Συσχέτιση μεταβλητών

Πίσω στα βασικά, μέρος 3 ο Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες: Συσχέτιση μεταβλητών Πίσω στα βασικά, μέρος 3 ο Βασικές αρχές στατιστικής για κοινωνιολογικές έρευνες: Συσχέτιση μεταβλητών Σπύρος Βερονίκης Τμήμα Αρχειονομίας-Βιβλιοθηκονομίας Ιόνιο Πανεπιστήμιο spver@ionio.gr http://dlib.ionio.gr/~spver/seminars/statistics/

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΠΟΤΕ ΚΑΙ ΓΙΑΤΙ ΧΡΗΣΙΜΟΠΟΙΕΙΤΑΙ ΜΟΝΤΕΛΟ ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ ΕΡΜΗΝΕΙΑ ΤΩΝ ΕΚΤΙΜΗΤΩΝ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΩΝ ΣΥΝΤΕΛΕΣΤΩΝ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΥΠΟΘΕΣΕΙΣ ΠΙΝΑΚΑΣ ΑΝΑ ΙΑ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ ΓΙΑ ΤΙΣ ΠΑΡΑΜΕΤΡΟΥΣ

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

Εισαγωγή στο Πεδίο Βαρύτητας

Εισαγωγή στο Πεδίο Βαρύτητας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εισαγωγή στο Πεδίο Βαρύτητας Ενότητα 5: Αναγωγές της Βαρύτητας Η.Ν. Τζιαβός - Γ.Σ. Βέργος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Εισαγωγή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 8. Συνεχείς Κατανομές Πιθανοτήτων Η Κανονική Κατανομή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΟΙ ΜΕΤΡΗΣΕΙΣ ΤΩΝ ΑΠΟΣΤΑΣΕΩΝ - ΠΡΟΕΠΕΞΕΡΓΑΣΙΑ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ ΕΡΕΥΝΑΣ - ΠΕΡΙΓΡΑΜΜΑ

ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ ΕΡΕΥΝΑΣ - ΠΕΡΙΓΡΑΜΜΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 1: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΜΕΘΟΔΟΥΣ

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β

ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΠΟΛΙΤΙΚΟΥΣ ΜΗΧΑΝΙΚΟΥΣ ΜΕΡΟΣ Β ηµήτρης Κουγιουµτζής http://users.auth.gr/dkugiu/teach/civilengineer E mail: dkugiu@gen.auth.gr 1/11/2009 2 Περιεχόµενα 1 ΠΕΡΙΓΡΑΦΙΚΗ

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Ιωάννης Παραβάντης Επίκουρος Καθηγητής Τµήµα ιεθνών και Ευρωπαϊκών Σπουδών Πανεπιστήµιο Πειραιώς Φεβρουάριος 2010 Περιγραφική Στατιστική 1. εδοµένα Θεωρούµε το ακόλουθο σύνολο δεδοµένων (data set): NUM1

Διαβάστε περισσότερα

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4 Μηχανική Ι Εργασία #7 Χειμερινό εξάμηνο 8-9 Ν. Βλαχάκης. (α) Ποια είναι η ένταση και το δυναμικό του βαρυτικού πεδίου που δημιουργεί μια ομογενής σφαίρα πυκνότητας ρ και ακτίνας σε όλο το χώρο; Σχεδιάστε

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων

ΠΕΡΙΕΧΟΜΕΝΑ. Μέρος Α. ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... vii Μέρος Α ΣΤΑΤΙΣΤΙΚΗ Θεωρία και Εφαρµογές Υπολογιστικοί αλγόριθµοι στον MS-Excel: υπολογισµός και ερµηνεία στατιστικών ευρηµάτων Πρόλογος Α Μέρους... 3 Αρχικές πληροφορίες και

Διαβάστε περισσότερα