ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
|
|
- Αἴολος Κορνάρος
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ Webpage: 1
2 Εισαγωγή α υποδείγματα πολυμεταβλητής παλινδρόμησης του πληθυσμού είναι επεκτάσεις των υποδειγμάτων απλής παλινδρόμησης, όπου η εξαρτημένη μεταβλητή Y επηρεάζεται από ένα σύνολο ερμηνευτικών (ανεξάρτητων) μεταβλητών Χ 1, Χ,.., Χ k. H γραμμική μορφή του πολυμεταβλητού υποδείγματος του πληθυσμού είναι: Y t = β 0 + β 1 Χ 1t + β Χ t + + β k Χ kt + e t Για k = 1, προκύπτει το απλό γραμμικό υπόδειγμα παλινδρόμησης. Οι μέθοδοι εκτίμησης και ελέγχου του πολλαπλού γραμμικού υποδείγματος είναι μια γενίκευση της απλής περίπτωσης για k = 1.
3 ο γραμμικό υπόδειγμα παλινδρόμησης με τρεις μεταβλητές Αν στο απλό γραμμικό υπόδειγμα προσθέσουμε μια επιπλέον ανεξάρτητη μεταβλητή, τότε προκύπτει το πολλαπλό γραμμικό υπόδειγμα παλινδρόμησης του πληθυσμού με τρεις μεταβλητές, που είναι: Y t = β 0 + β 1 Χ 1t + β Χ t + e t όπου Y t είναι η εξαρτημένη μεταβλητή, Χ 1t, Χ t είναι οι ανεξάρτητες μεταβλητές, e t ο διαταρακτικός όρος και β 0, β 1, β οι συντελεστές της πολλαπλής γραμμικής παλινδρόμησης του πληθυσμού. Ο συντελεστής β 0 είναι η σταθερά και προσδιορίζει το σημείο τομής του άξονα των Υ και του επιπέδου της παλινδρόμησης του πληθυσμού. Οι συντελεστές β 1, β λέγονται συντελεστές μερικής παλινδρόμησης, επειδή μετρούν μερικές μεταβολές του Ε(Y t X 1t, X t ). 3
4 Έστω β 0, β 1, β είναι οι εκτιμήσεις των β 0, β 1, β που προέρχονται από ένα δείγμα που πάρθηκε τυχαία από έναν πληθυσμό. ότε, η συνάρτηση του πολλαπλού γραμμικού υποδείγματος της παλινδρόμησης του δείγματος είναι: Y t = β 0 + β 1 Χ 1t + β Χ t + u t όπου u t είναι η εκτίμηση του διαταρακτικού όρου. Οι συντελεστές β 0, β 1, β λέγονται μερικοί συντελεστές της παλινδρόμησης (partial regression coefficients) και έχουν τη μικρότερη διακύμανση από κάθε άλλον αμερόληπτο εκτιμητή. Ο εκτιμητής β 1 μετράει την μεταβολή της εξαρτημένης μεταβολής Y t λόγω μιας μεταβολής της ανεξάρτητης μεταβλητής Χ 1t, εφόσον η ανεξάρτητη μεταβλητή Χ t παραμένει σταθερή. 4
5 Περιγραφή του υποδείγματος τριών μεταβλητών με μήτρες Η σχέση Y t = β 0 + β 1 Χ 1t + β Χ t + e t μπορεί να γραφεί ως: Y t = β 0 Χ 0t + β 1 Χ 1t + β Χ t + e t όπου Χ 0t = 1 για κάθε t = 1,.., T. Για δείγμα T παρατηρήσεων, θα έχουμε το παρακάτω σύστημα εξισώσεων: Y 1 = β 0 Χ 01 + β 1 Χ 11 + β Χ 1 + e 1 Y = β 0 Χ 0 + β 1 Χ 1 + β Χ + e.. Y T = β 0 Χ 0T + β 1 Χ 1T + β Χ T + e T 5
6 ο σύστημα αυτό μπορεί να γραφεί με μορφή μητρών ως: Υ 1 Υ T = X 10 X 11 X 1 X T0 X T1 X T β 0 β 1 β + e 1 e T ή Υ = Χβ + e όπου Υ, Χ, β, e είναι μήτρες. Υ: διάνυσμα T 1 Χ: μήτρα (k + 1) δηλ. T 3 β: διάνυσμα (k + 1) 1 δηλ. 3 1 e: διάνυσμα T 1 6
7 Περιγραφή του υποδείγματος k μεταβλητών με μήτρες Αν στο προηγούμενο υπόδειγμα προσθέσουμε και άλλες ανεξάρτητες μεταβλητές, θα πάρουμε το παρακάτω πολυμεταβλητό υπόδειγμα: Y t = β 0 + β 1 Χ 1t + β Χ t + + β k Χ kt + e t Y t = β 0 Χ 0t + β 1 Χ 1t + β Χ t + β k Χ kt + e t, t = 1,..,. Για δείγμα παρατηρήσεων, θα έχουμε το παρακάτω σύστημα εξισώσεων: Y 1 = β 0 Χ 01 + β 1 Χ 11 + β Χ β k Χ k1 + e 1 Y = β 0 Χ 0 + β 1 Χ 1 + β Χ + + β k Χ k + e.. Y = β 0 Χ 0 + β 1 Χ 1 + β Χ + + β k Χ k + e ή 7
8 ο σύστημα αυτό μπορεί να γραφεί με μορφή μητρών ως: Υ 1 Υ = X 10 X 11 X 1 X 1k X 0 X 1 X X k β 0 β 1 β β k + e 1 e ή Υ = Χβ + e όπου Υ, Χ, β, e είναι μήτρες. Υ: διάνυσμα στήλης 1 Χ: μήτρα (k + 1) β: διάνυσμα στήλης (k + 1) 1 e: διάνυσμα στήλης 1 8
9 ο e είναι το διάνυσμα στήλης ( 1) του διαταρακτικού όρου του υποδείγματος πληθυσμού. ο Ε(e) είναι η προσδοκώμενη τιμή του διανύσματος του διαταρακτικού όρου. ο 0 είναι το μηδενικό διάνυσμα διαστάσεων 1. ο Ι είναι η μοναδιαία ή ταυτοτική μήτρα διαστάσεων. ο ee είναι μια συμμετρική μήτρα διαστάσεων : ee = e 1 e 1 e = e e 1 e T e e 1 e e T e T e 1 e T e 1 9
10 ο Ε(ee ) είναι μήτρα διαστάσεων και ονομάζεται μήτρα διακύμανσης - συνδιακύμανσης: E ee = Ee 1 Ee 1 e T Ee e 1 Ee e T Ee T e 1 Ee T = σ e
11 Οι βασικές υποθέσεις του πολλαπλού γραμμικού υποδείγματος 1. Η μεταβλητή e t (διαταρακτικός όρος υποδείγματος πολλαπλής παλινδρόμησης του πληθυσμού) είναι τυχαία μεταβλητή με μέσο το μηδέν: Ε(e t ) = 0, για t = 1,,.. Η διακύμανση της τυχαίας μεταβλητής e t είναι σταθερή (ομοσκεδαστικός όρος): Var(e t ) = σ e, για t = 1,,. 3. Δεν υπάρχει αυτοσυσχέτιση (autocorrelation) στους διαταρακτικούς όρους, δηλαδή οι τιμές των διαταρακτικών όρων είναι ανεξάρτητες Cov(e t, e s ) = 0, για t s. 4. O διαταρακτικός όρος δεν συσχετίζεται με τις ανεξάρτητων μεταβλητές Χ: Cov(X 1t, X t,, X kt, e t ) = 0, για t = 1,,. 11
12 5. Η τυχαία μεταβλητή e t ακολουθεί την κανονική κατανομή με μέσο μηδέν και σταθερή διακύμανση: e t ~N(0, σ e ). 6. Η μαθηματική (προσδιοριστική) σχέση μεταξύ των μεταβλητών Y t και X 1t, X t,, X kt είναι γραμμική. 7. Δεν υπάρχουν γραμμικές σχέσεις μεταξύ των ερμηνευτικών μεταβλητών. Η υπόθεση αυτή αποκλείει την ύπαρξη πολυσυγγραμικότητας μεταξύ των ερμηνευτικών μεταβλητών. 8. Ο αριθμός των παρατηρήσεων του δείγματος n είναι μεγαλύτερος από τον αριθμό των ανεξάρτητων μεταβλητών k ο υπόδειγμα της πολλαπλής γραμμικής παλινδρόμησης είναι σωστά εξειδικευμένο. 10. Οι ανεξάρτητες μεταβλητές μετρούνται χωρίς σφάλμα. 1
13 Ολοκληρωμένη εξειδίκευση του πολλαπλού γραμμικού υποδείγματος Y t = β 0 + β 1 Χ 1t + β Χ t + + β k Χ kt + e t e t ~Ν(0, σ ) α) e t : τυχαία μεταβλητή β) Ε(e t ) = 0 γ) Var e t = E(e t ) = σ Cov e t, e s = E e t e s = 0, για t s (ανεξαρτησία τυχαίων όρων) Οι ερμηνευτικές μεταβλητές δεν είναι στοχαστικές. Οι τιμές τους παραμένουν σταθερές και δεν είναι ίσες όλες μεταξύ τους. Δεν υπάρχουν ακριβείς γραμμικές σχέσεις ανάμεσα στις ερμηνευτικές μεταβλητές. Ο αριθμός των παρατηρήσεων του δείγματος είναι μεγαλύτερος από τον αριθμό των συντελεστών του υποδείγματος. 13
14 Η μέθοδος των ελαχίστων τετραγώνων Με τη μέθοδο ελαχίστων τετραγώνων εκτιμούμε τους συντελεστές της γραμμής παλινδρόμησης και ελαχιστοποιούμε το άθροισμα των τετραγώνων των καταλοίπων: min n = min n e t = min n (Y t Y t ) (Y t β 0 β 1 Χ 1t β Χ t β k Χ kt ) 14
15 Για το γραμμικό υπόδειγμα παλινδρόμησης με τρεις μεταβλητές, οι εκτιμήσεις των συντελεστών β 0, β 1, β γίνεται με τη μέθοδο ελαχίστων τετραγώνων λύνοντας το σύστημα εξισώσεων που προκύπτει αν μηδενίσουμε τις παρακάτω μερικές παραγώγους n n β 0 β 1 n β e t e t e t = = = n n n (Y t β 0 β 1 X 1t β X t ) = 0 X 1t (Y t β 0 β 1 X 1t β X t ) = 0 X t (Y t β 0 β 1 X 1t β X t ) = 0 15
16 Λύνοντας αυτό το σύστημα εξισώσεων, προκύπτουν οι εκτιμητές των συντελεστών της γραμμής παλινδρόμησης του δείγματος β 1 = ( β = ( x 1 y)( ( x y)( ( x ) ( x 1 )( x ) ( x 1) ( x 1 )( x ) ( β 0 = Y t β 1 X 1t β X t x y)( x 1 x ) x 1 x ) x 1 y)( x 1 x ) x 1 x ) όπου y = Υ t Y t, x 1 = X 1t X 1t, x = X t X t 16
17 Oι εκτιμητές των συντελεστών της γραμμής παλινδρόμησης του δείγματος για k μεταβλητές δίνονται από την σχέση: β j = Δ j Δ όπου Δ = x 1 x 1 x x 1 x k x 1 x x x x k x 1 x k x x k x k και Δ j η ορίζουσα που προκύπτει από την Δ, όταν η στήλη που αντιστοιχεί στο συντελεστή β j αντικατασταθεί με τα αθροίσματα x j y, π.χ. για j = 1 17
18 x 1 y x 1 x x 1 x k Δ 1 = x y x x x k x k y x x k x k και β 0 = Y β 1 Χ 1 β k Χ k 18
19 Θεώρημα των GAUSS-MARKOV Δεδομένου ότι ισχύουν οι υποθέσεις του πολλαπλού γραμμικού υποδείγματος της παλινδρόμησης, οι εκτιμητές β 0, β 1,, β k που προκύπτουν από την μέθοδο ελαχίστων τετραγώνων είναι οι καλύτεροι γραμμικοί αμερόληπτοι εκτιμητές. ο τυπικό σφάλμα του εκτιμητή β (standard error of the estimate) ή το τυπικό σφάλμα της παλινδρόμησης ισούται με την εκτίμηση της τετραγωνικής ρίζας της διακύμανσης του διαταρακτικού όρου: s e = u u k 19
20 Διακυμάνσεις εκτιμητών Οι γραμμικοί αμερόληπτοι εκτιμητές των διακυμάνσεων συνδιακυμάνσεων των εκτιμώμενων συντελεστών του υποδείγματος είναι: s β = s e (Χ Χ) 1 Π.χ. Στην περίπτωση Κ= ανεξάρτητων τυχαίων μεταβλητών: s x β = s 1 e Δ s x 1 β = s e Δ s e = u t 3 όπου Δ = x 1 x 1 x x 1 x x 0
21 Διάστημα εμπιστοσύνης των συντελεστών του πολλαπλού γραμμικού υποδείγματος Όπως και στο απλό γραμμικό υπόδειγμα, έτσι και στο πολλαπλό υπόδειγμα μπορούμε να κατασκευάσουμε διαστήματα εμπιστοσύνης για τους συντελεστές (παραμέτρους) του πληθυσμού με βάση τις ιδιότητες των εκτιμητών ελαχίστων τετραγώνων: β j t a k+1, s β j < β j < β j + t a k+1, s β j, j = 0,,.., k + 1 s β j το τυπικό σφάλμα του εκτιμητή β j t a k+1, η κριτική τιμή (τιμή των πινάκων) από κατανομή student με k + 1 βαθμούς ελευθερίας a το επίπεδο σημαντικότητας k το πλήθος των ανεξάρτητων μεταβλητών 1
22 Έλεγχος υποθέσεως για τους συντελεστές του πολλαπλού γραμμικού υποδείγματος Η 0 :β j = 0 Η 1 :β j 0 Στατιστικό ελέγχου t = β j s β j t a k+1, η κριτική τιμή (τιμή των πινάκων) από κατανομή student με k + 1 βαθμούς ελευθερίας a το επίπεδο σημαντικότητας k το πλήθος των ανεξάρτητων μεταβλητών Αν t > t k+1, a, η Η 0 απορρίπτεται.
23 Έλεγχος στατιστικής σημαντικότητας του υποδείγματος της πολλαπλής γραμμικής παλινδρόμησης Ο έλεγχος της στατιστικής σημαντικότητας του υποδείγματος της πολλαπλής παλινδρόμησης του πληθυσμού αποτελεί ένα από τα κυριότερα στάδια στη μεθοδολογία της οικονομετρίας. Έστω ότι έχουμε το παρακάτω υπόδειγμα της πολλαπλής παλινδρόμησης του πληθυσμού: Y t = β 0 + β 1 Χ 1t + β Χ t + + β k Χ kt + e t Η υπόθεση που θέλουμε να ελέγξουμε είναι αν οι συντελεστές του παραπάνω υποδείγματος είναι ίσοι με μηδέν, δηλαδή Η 0 : β 1 = β = = β k = 0 Η 1 : ένας τουλάχιστον συντελεστής είναι διάφορος του μηδενός 3
24 Στην υπόθεση που εξετάζουμε δεν περιλαμβάνεται ο σταθερός όρος β 0, καθώς θέλουμε να ελέγξουμε είναι αν οι ανεξάρτητες μεταβλητές του υποδείγματος μπορούν να ερμηνεύσουν την εξαρτημένη μεταβλητή Υ. Ο έλεγχος της Η 0 γίνεται με την στατιστική F (F-statistics): F = ( Y Y) k (Y t Y) (k + 1) = SSR k SSE (k + 1) F k, k+1,a : μέγεθος του δείγματος k: πλήθος ανεξάρτητων μεταβλητών SSR : ερμηνευτικό μέρος συνολικής μεταβλητότητας της Υ από την παλινδρόμηση SSΕ: ανερμήνευτο μέρος συνολικής μεταβλητότητας της Υ F k, k+1,a : κριτική τιμή κατανομής F (από πίνακα) 4
25 Αν F > F k, k+1,a, τότε η Η 0 απορρίπτεται. Για δεδομένο επίπεδο σημαντικότητας α (συνήθως α = 0. 05), αν η τιμή της F είναι μεγαλύτερη από την κριτική τιμή F k, k+1,a, τότε η τιμή της F είναι υψηλή, καθώς το SSR = ( Y Y) είναι μεγάλο σε σχέση με το άθροισμα των τετραγώνων των καταλοίπων SSΕ = (Y t Y). Αν F < F k, k+1,a, τότε η Η 0 δεν απορρίπτεται. Δηλαδή οι ανεξάρτητες μεταβλητές δεν ερμηνεύουν επαρκώς τη μεταβολή της εξαρτημένης μεταβλητής στο υπόδειγμα πολλαπλής γραμμικής παλινδρόμησης. Στην περίπτωση αυτή, το SSR είναι μικρό σε σχέση με το άθροισμα των τετραγώνων των καταλοίπων SSΕ, και η τιμή της F είναι χαμηλή. 5
26 Σε ορισμένα υποδείγματα πολλαπλής γραμμικής παλινδρόμησης, παρατηρούμε ότι ενώ οι συντελεστές είναι στατιστικά σημαντικοί (διάφοροι του μηδενός), η τιμή της στατιστικής F είναι πολύ χαμηλή, το οποίο σημαίνει ότι στο σύνολο τους οι συντελεστές του υποδείγματος είναι μη στατιστικά σημαντικοί. Η ύπαρξη αυτού του φαινομένου οφείλεται στο πρόβλημα της πολυσυγγραμικότητας (multicollinearity). 6
27 Παράδειγμα Θέλουμε να εξετάσουμε αν η εξαρτημένη μεταβλητή Υ σχετίζεται γραμμικά με τις ανεξάρτητες μεταβλητές Χ 1 : λόγος των τιμών των εισαγόμενων καταναλωτικών τιμών προς τις εγχώριες τιμές (σχετικές τιμές) και Χ : διαθέσιμο εισόδημα, για την περίοδο Να εκτιμηθεί η γραμμή πολλαπλής παλινδρόμησης του δείγματος, οι συντελεστές του υποδείγματος, οι προβλεφθείσες τιμές της Υ ( Υ) και οι προβλεφθείσες τιμές του διαταρακτικού όρου ( u t ), η ελαστικότητα ως προς τις σχετικές τιμές και ως προς το εισόδημα. α στοιχεία του παραδείγματος δίνονται στον παρακάτω πίνακα: 7
28 Έτος Αξία εισαγωγών καταναλωτικών αγαθών (δισ. Δρχ.) Σχετικές τιμές Διαθέσιμο εισόδημα ,11 0, , ,134 0, , ,653 0, , ,6 0,896 14, ,499 0, , ,453 0,897 14, ,093 0, , ,907 0, , ,65 0,931 18, ,04 0,919 19, ,647 0,90 04, ,167 0,89 1, ,961 1,000 40, ,580 1,045 67, ,658 1,140 89, ,139 1,05 318,550 8
29 Οι βασικοί υπολογισμοί που είναι απαραίτητοι για την εκτίμηση του υποδείγματος είναι οι ακόλουθοι: ΣΥ = 19, 463 ΣΥ = 1151, 018 Σy = 103, 476 ΣΧ 1 = 15, 381 ΣΧ 1 = 14, 91 Σx 1 = 0, 135 ΣΧ = 966, 315 ΣΧ = , 6 Σx = 67706, 579 Υ = 8, 091 ΣΧ 1 Υ = 16, 957 Σx 1 y =, 50 Χ 1 = 0, 961 ΣΧ Υ = 6541, 949 Σx y = 540, 196 Χ = 185, 394 ΣΧ 1 Χ = 97, 634 Σx 1 x = 76, 078 όπου y = Υ t Y t, x 1 = X 1t X 1t, x = X t X t 9
30 Οπότε: β 1 = ( β = ( x 1 y)( ( x y)( ( x ) ( x 1 )( x ) ( x 1) ( x 1 )( x ) ( x y)( x 1 x ) x 1 x ) = 7, 00 x 1 y)( β 0 = Y t β 1 X 1t β X t = 6, 409 x 1 x ) x 1 x ) = 0, 0453 Η γραμμή παλινδρόμησης του δείγματος είναι: Υ t = 6, 409 7, 00Χ 1t + 0, 0453Χ t 30
31 Οι προβλεφθείσες τιμές Υ t προκύπτουν από την γραμμή παλινδρόμησης του δείγματος Υ t = 6, 409 7, 00Χ 1t + 0, 0453Χ t, για t = 1,, 16 Για t = 1: Υ 1 = 6, 409 7, 00Χ , 0453Χ 1 = 4, 615 κτλ Οι προβλεφθείσες τιμές του διαταρακτικού όρου u t προκύπτουν από την σχέση u t = Υ t Υ t, για t = 1,, 16 Για t = 1: u 1 = Υ 1 Υ 1 = 0, 506 κτλ 31
32 Ερμηνεία των μερικών συντελεστών παλινδρόμησης Ο συντελεστής β j στο πολυμεταβλητό γραμμικό υπόδειγμα παριστάνει τη μεταβολή στην προσδοκώμενη τιμή της εξαρτημένης μεταβλητής όταν η ερμηνευτική μεταβλητή Χ j μεταβάλλεται κατά μια μονάδα και οι υπόλοιπες ερμηνευτικές μεταβλητές παραμένουν σταθερές. Δηλαδή, όταν όλες οι υπόλοιπες ερμηνευτικές μεταβλητές είναι σταθερές, εκτιμάμε την επίδραση της μεταβλητής Χ j επί της Υ. Ο μερικός συντελεστής παλινδρομήσεως β j του πολυμεταβλητού γραμμικού υποδείγματος είναι ο συντελεστής της απλής παλινδρόμησης ανάμεσα στην Υ και στην Χ j όταν έχουν αφαιρεθεί οι γραμμικές επιδράσεις όλων των υπολοίπων ερμηνευτικών μεταβλητών επί της Χ j και της Υ. 3
33 Βιβλιογραφία Χρήστου Κ. Γεώργιος (007) Εισαγωγή στην Οικονομετρία, όμος 1, Εκδότης: Γ. ΔΑΡΔΑΝΟΣ - Κ. ΔΑΡΔΑΝΟΣ Ο.Ε. Stock H. James, Watson W. Mark, επιμέλεια Πραγγίδης Ιωάννης - Χρυσόστομος (017) Εισαγωγή στην Οικονομετρία, Εκδότης: Γ. ΔΑΡΔΑΝΟΣ - Κ. ΔΑΡΔΑΝΟΣ Ο.Ε. Χρήστου Κ. Γεώργιος (006) Εισαγωγή στην Οικονομετρία Ασκήσεις, Εκδόσεις Gutenberg. Δριτσάκη Ν. Χάιδω, Δριτσάκη Ν. Μελίνα (013) Εισαγωγή στην Οικονομετρία με τη Χρήση του Λογισμικού EViews, Κλειδάριθμος ΕΠΕ Εκδόσεις. 33
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa
Διαβάστε περισσότεραΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική
ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 6: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 3: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (2 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Β μέρος: Ετεροσκεδαστικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 10: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Β μέρος: Ετεροσκεδαστικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Α μέρος: Πολυσυγγραμμικότητα. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 9: Οικονομετρικά προβλήματα: Παραβίαση των υποθέσεων Α μέρος: Πολυσυγγραμμικότητα Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: Ανάλυση γραμμικού υποδείγματος Απλή παλινδρόμηση (3 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 12: Σφάλματα μέτρησης στις μεταβλητές Η μέθοδος των βοηθητικών μεταβλητών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. σε μη γραμμικές μορφές. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 7: Επεκτάσεις του γραμμικού υποδείγματος σε μη γραμμικές μορφές Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 4.1 Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Γενικεύοντας τη διμεταβλητή (Y, X) συνάρτηση
Διαβάστε περισσότεραΕισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500
Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΧ. Εμμανουηλίδης, 1
Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2
013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ
Διαβάστε περισσότεραΠολλαπλή παλινδρόμηση (Multivariate regression)
ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 4: Διάστημα Εμπιστοσύνης - Έλεγχος Υποθέσεων Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Έλεγχοι σταθερότητας των συντελεστών. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 8: Η τεχνική των ψευδομεταβλητών - Έλεγχοι σταθερότητας των συντελεστών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων Γρεβενά Μάθημα: Οικονομετρία Διάλεξη 3η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Ιδιότητες εκτιμώμενης ευθείας παλινδρόμησης με τη μέθοδο των ελαχίστων
Διαβάστε περισσότεραΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα
Διαβάστε περισσότεραΠρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21
Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 3: Θεώρημα των Gauss Markov. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 3: Θεώρημα των Gauss Markov Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών
ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ MSc Τραπεζικής & Χρηματοοικονομικής ΑΥΤΟΣΥΣΧΕΤΙΣΗ Στις βασικές υποθέσεις των γραμμικών υποδειγμάτων (απλών και πολλαπλών), υποθέτουμε ότι δεν υπάρχει αυτοσυσχέτιση (autocorrelation
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Το Γενικευμένο Γραμμικό Υπόδειγμα (Α) ΔΙΑΛΕΞΗ 05 Μαρί-Νοέλ Ντυκέν,
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από
Διαβάστε περισσότεραΔιαχείριση Υδατικών Πόρων
Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική
Διαβάστε περισσότεραΕρωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις)
Ερωτήσεις κατανόησης στην Οικονομετρία (Με έντονα μαύρα γράμματα είναι οι σωστές απαντήσεις) 1. Έχοντας στη διάθεσή μας ένα δείγμα, προκύπτει ότι το 95% διάστημα εμπιστοσύνης για το μέσο μ ενός κανονικού
Διαβάστε περισσότεραΠολλαπλή παλινδρόµηση. Μάθηµα 3 ο
Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση II
. Ο Συντελεστής Προσδιορισμού Η γραμμή Παλινδρόμησης στο δείγμα, αποτελεί μία εκτίμηση της γραμμής παλινδρόμησης στον πληθυσμό. Αν και από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν εκτιμητές που έχουν
Διαβάστε περισσότεραΣτασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή
Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική
Διαβάστε περισσότεραΧρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2)
Χρονικές σειρές 6 Ο μάθημα: Αυτοπαλίνδρομα μοντέλα (2) Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα,
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 5: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΑΓΩΓΙΚΗ
Διαβάστε περισσότεραΜΑΘΗΜΑ 3ο. Βασικές έννοιες
ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής
Διαβάστε περισσότεραΑναπλ. Καθηγήτρια, Ελένη Κανδηλώρου. Αθήνα Σημειώσεις. Εκτίμηση των Παραμέτρων β 0 & β 1. Απλό γραμμικό υπόδειγμα: (1)
Σημειώσεις Αναπλ. Καθηγήτρια, Ελένη Κανδηλώρου Αθήνα -3-7 Εκτίμηση των Παραμέτρων β & β Απλό γραμμικό υπόδειγμα: Y X () Η αναμενόμενη τιμή του Υ, δηλαδή, μέση τιμή του Υ, δίνεται παρακάτω: EY ( ) X EY
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση I
Απλή Γραμμική Παλινδρόμηση I. Εισαγωγή Έστω ότι θέλουμε να ερευνήσουμε εμπειρικά τη σχέση που υπάρχει ανάμεσα στις δαπάνες κατανάλωσης και στο διαθέσιμο εισόδημα, των οικογενειών. Σύμφωνα με την Κεϋνσιανή
Διαβάστε περισσότεραΑπλή Γραμμική Παλινδρόμηση και Συσχέτιση 19/5/2017
Απλή Γραμμική Παλινδρόμηση και Συσχέτιση 2 Εισαγωγή Η ανάλυση παλινδρόμησης περιλαμβάνει το σύνολο των μεθόδων της στατιστικής που αναφέρονται σε ποσοτικές σχέσεις μεταξύ μεταβλητών Πρότυπα παλινδρόμησης
Διαβάστε περισσότεραΤεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100
Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 9: Αυτοσυσχέτιση. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 9: Αυτοσυσχέτιση Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ
Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά
Διαβάστε περισσότεραΧρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,
Διαβάστε περισσότεραΑν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν
ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 4: ΔΙΑΛΕΞΗ 04 Μαρί-Νοέλ Ντυκέν Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης
ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 5: Ανάλυση της Διακύμανσης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 5: Ανάλυση της Διακύμανσης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΣτατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες
Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού
Διαβάστε περισσότεραΑπλή Παλινδρόμηση και Συσχέτιση
Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : σ =Ε(Χ )-µ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : Cov(X,Υ)=Ε(ΧΥ)-Ε(Χ)Ε(Υ) ΑΣΚΗΣΗ 3 Να δείξετε ότι
Διαβάστε περισσότεραΑντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης
Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να
Διαβάστε περισσότεραΜέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)
Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 07-08 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 6.1 Ετεροσκεδαστικότητα: Εισαγωγή Συχνά, η υπόθεση της σταθερής διακύμανσης των όρων σφάλματος,
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Παλινδρόμηση Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΟικονομετρία. Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης. Διδάσκων: Λαζαρίδης Παναγιώτης
Οικονομετρία Απλή Παλινδρόμηση Βασικές έννοιες και τυχαίο σφάλμα Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση των εισαγωγικών εννοιών που
Διαβάστε περισσότεραΠΑΛΙΝΔΡΟΜΗΣΗ. Απλή Παλινδρόμηση. (Όγκος πωλήσεων = α +b έξοδα διαφήμησης +e ) Εκτίμηση Απλής Παλινδρόμησης. α= εκτίμηση της τεταγμένης για χ=0
ΠΑΛΙΝΔΡΟΜΗΣΗ ΓΡΑΜΜΙΚΟ ΜΗ ΓΡΑΜΜΙΚΟ ΔΕΝ ΥΠΑΡΧΕΙ ΣΧΕΣΗ Απλή Παλινδρόμηση Y = a + bx + e (Όγκος πωλήσεων = α +b έξοδα διαφήμισης +e ) Εκτίμηση Απλής Παλινδρόμησης Y = a + bx (Όγκος πωλήσεων = α +b έξοδα διαφήμησης
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 5.1 Αυτοσυσχέτιση: Εισαγωγή Συχνά, η υπόθεση της μη αυτοσυσχέτισης ή σειριακής συσχέτισης
Διαβάστε περισσότεραΧρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ
Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.
Διαβάστε περισσότεραΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙI (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116)
Σελίδα 1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΑΘΗΜΑ: ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΙΙ (ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ) (ΟΔΕ 2116) ΠΑΝΕΠΙΣΤΗΜΙΑΚΟΣ ΥΠΟΤΡΟΦΟΣ ΠΑΝΑΓΙΩΤΗΣ
Διαβάστε περισσότεραΧρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές
Χρονικές σειρές 2 Ο μάθημα: Εισαγωγή στις χρονοσειρές Εαρινό εξάμηνο 2018-2019 μήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό μήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΧρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου
Χρονικές σειρές 8 Ο μάθημα: Μοντέλα κινητού μέσου Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ. & Οικονομικό Τμήμα, Πανεπιστήμιο
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
Διαβάστε περισσότεραΠανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας & Περιφερειακής Ανάπτυξης ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ: ΟΙΚΟΝΟΜΕΤΡΙΑ Οι παραβιάσεις των σημαντικότερων υποθέσεων των γραμμικών υποδειγμάτων
Διαβάστε περισσότεραΤμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΡΜΟΣΜΕΝΕΣ ΕΠΙΣΤΗΜΕΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΚΑΤΕΥΘΥΝΣΗ : «ΕΦΑΡΜΟΣΜΕΝΑ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΑ
Διαβάστε περισσότεραΠροσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)
ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutra@fme.aegea.gr Τηλ: 7035468 Θα μελετήσουμε
Διαβάστε περισσότερα9. Παλινδρόμηση και Συσχέτιση
9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ
ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Διαβάστε περισσότεραΕισαγωγή στην Γραμμική Παλινδρόμηση
ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΔΙΑΛΕΞΗ 13-11-015 Εισαγωγή στην Γραμμική Παλινδρόμηση Γραμμική σχέση μεταξύ μεταβλητών Αν. Καθ. Μαρί-Νοέλ Ντυκέν Στόχος Πολύ συχνά, η Τ.Μ. που εξετάζουμε π.χ. η κατανάλωση των νοικοκυριών
Διαβάστε περισσότεραΣτατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)
Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΟικονομετρία. Πολλαπλή Παλινδρόμηση. Υποθέσεις, ιδιότητες εκτιμητών και μέθοδος Ελαχίστων Τετραγώνων. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Πολλαπλή Παλινδρόμηση Υποθέσεις ιδιότητες εκτιμητών και μέθοδος Ελαχίστων Τετραγώνων Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Διαβάστε περισσότεραΣυνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος
ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή
Διαβάστε περισσότεραΟικονομετρία. Απλή Παλινδρόμηση. Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης
Οικονομετρία Απλή Παλινδρόμηση Υποθέσεις του γραμμικού υποδείγματος και ιδιότητες των εκτιμητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία 7.1 Πολυσυγγραμμικότητα: Εισαγωγή Παραβίαση υπόθεσης Οι ανεξάρτητες μεταβλητές δεν πρέπει
Διαβάστε περισσότεραΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής
ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΜΠΣ Τραπεζικής & Χρηματοοικονομικής Διαγνωστικοί Έλεγχοι Διαπίστωσης της Αυτοσυσχέτισης Οι περισσότεροι από τους διαγνωστικούς ελέγχους της αυτοσυσχέτισης αναφέρονται σε αυτοσυσχέτιση
Διαβάστε περισσότεραY Y ... y nx1. nx1
6 ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΠΙΚΑΚΩΝ Η χρησιμοποίηση και ο συμβολισμός πινάκων απλοποιεί σημαντικά τα αποτελέσματα της γραμμικής παλινδρόμησης, ιδίως στην περίπτωση της πολλαπλής παλινδρόμησης Γενικά,
Διαβάστε περισσότεραΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 6: ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ - ΟΙΚΟΝΟΜΕΤΡΙΑ (Ι)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΧΩΡΟΤΑΞΙΑΣ, ΠΟΛΕΟΔΟΜΙΑΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΜΣ «ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΠΕΡΙΦΕΡΕΙΑΚΗ ΑΝΑΠΤΥΞΗ» ΜΕΘΟΔΟΙ ΕΡΥΕΝΑΣ ΔΙΑΛΕΞΗ 6: ΠΟΛΛΑΠΛΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπισ τήμιο Κρήτης 2 Μαΐου /23
Εφαρμοσμένη Στατιστική Δημήτριος Μπάγκαβος Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Μαΐου 2017 1/23 Ανάλυση Διακύμανσης. Η ανάλυση παλινδρόμησης μελετά τη στατιστική σχέση ανάμεσα
Διαβάστε περισσότεραΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ. Οικονομετρία
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΜΗΜΑ ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΔΑΣΚΩΝ: ΘΑΝΑΣΗΣ ΚΑΖΑΝΑΣ Οικονομετρία I.1 Τι Είναι η Οικονομετρία; Η κυριολεκτική ερμηνεία της λέξης, οικονομετρία είναι «οικονομική
Διαβάστε περισσότεραΕλένη Κανδηλώρου Αναπλ. Καθηγήτρια. Γραμμικά Μοντέλα. Λύσεις Ασκήσεων
Ελένη Κανδηλώρου Αναπλ. Καθηγήτρια Αθήνα, 6-4-7 Γραμμικά Μοντέλα Λύσεις Ασκήσεων η Άσκηση: (α) Eίναι η σχέση μεταξύ των δύο μεταβλητών γραμμική; Διάγραμμα Διασποράς Για το Υψόμετρο & τις Αρνητικές Τιμές
Διαβάστε περισσότεραΟικονομετρία Ι. Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής
Οικονομετρία Ι Ενότητα 7: Συντελεστής πολλαπλού προσδιορισμού Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότεραΕφαρμοσμένη Στατιστική: Συντελεστής συσχέτισης. Παλινδρόμηση απλή γραμμική, πολλαπλή γραμμική
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕΡΟΣ B Δημήτρης Κουγιουμτζής e-mal: dkugu@auth.gr Ιστοσελίδα αυτού του τμήματος του μαθήματος: http://uer.auth.gr/~dkugu/teach/cvltraport/dex.html Εφαρμοσμένη Στατιστική:
Διαβάστε περισσότεραΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ Τμήμα Επιστήμης Φυσικής Αγωγής και Αθλητισμού Πρόγραμμα Διδακτορικών Σπουδών ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Προχωρημένη Στατιστική 2. ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ
Διαβάστε περισσότεραΕπαυξημένος έλεγχος Dickey - Fuller (ADF)
ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια
Διαβάστε περισσότεραΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 5 ΟΥ ΕΞΑΜΗΝΟΥ
ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΗΣ ΕΠΙΣΤΗΜΗΣ SOS & ΘΕΜΑΤΑ ΕΞΕΤΑΣΤΙΚΩΝ 5 ΟΥ ΕΞΑΜΗΝΟΥ www.dap papei.gr 2 ΔΗΜΟΣΙΑ ΟΙΚΟΝΟΜΙΚΗ Ι Τι θα γράψω: Στις εξετάσεις τα θέματα περιλαμβάνουν ερωτήσεις και ασκήσεις (κυρίως ασκήσεις) όπου
Διαβάστε περισσότεραΕργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο
Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν
Διαβάστε περισσότεραΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά
ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 05 Έλεγχος διακυμάνσεων Μας ενδιαφέρει να εξετάσουμε 5 δίαιτες που δίνονται
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΣυνολοκλήρωση και VAR υποδείγματα
ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων
Διαβάστε περισσότεραΣτατιστική Συμπερασματολογία
4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε
Διαβάστε περισσότεραΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαβάστε περισσότερα