ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ"

Transcript

1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΟΜΑΔΟΠΟΙΗΣΗ ΑΡΙΘΜΗΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΒΥΡΩΝΑΣ ΝΑΚΟΣ ΑΘΗΝΑ 2006

2 ΠΕΡΙΕΧΟΜΕΝΑ Περιεχόμενα 1. Εισαγωγή 1 2. Μέθοδοι σταθερών τιμών ή ίσων διαστημάτων Μέθοδος ίσων αριθμητικών διαστημάτων Μέθοδος παραμέτρων κανονικής κατανομής Μέθοδος κανονικής τμηματοποίησης (quantiles) Μέθοδος ίσων διαστημάτων εμβαδού 3 3. Μέθοδοι συστηματικά άνισων διαστημάτων 3 4. Μέθοδοι ακανόνιστων ή μεταβαλλόμενων διαστημάτων Γραφικές τεχνικές ομαδοποίησης Επαναληπτικές τεχνικές ομαδοποίησης 5 5. Μεθοδολογία ομαδοποίησης δεδομένων 5 6. Βιβλιογραφία 7 i

3 ii ΠΕΡΙΕΧΟΜΕΝΑ

4 Ομαδοποίηση αριθμητικών δεδομένων 1. Εισαγωγή Οι διάφορες μέθοδοι ομαδοποίησης δεδομένων είναι τρόποι ταξινόμησης ενός συνόλου αριθμητικών δεδομένων σε διαδοχικές ομάδες δεδομένων, οι οποίες περιέχουν αριθμό παρατηρήσεων όσο το δυνατόν περισσότερο «γεωγραφικά» ισοδύναμο. Ο αριθμός των ομάδων εξαρτάται στενά από το όριο διαφοροποίησης της οπτικής μεταβλητής των συμβόλων που υλοποιούν την οπτικοποίηση των ομάδων. Στους χωροπληθείς χάρτες η χρησιμοποιούμενη οπτική μεταβλητή είναι η ένταση. Το ανθρώπινο μάτι λόγω της οπτικής αντίληψης μπορεί να διαβάζει αποτελεσματικά από το χάρτη πέντε έως το πολύ οκτώ διαφορετικούς τόνους του γκρι ή εντάσεις μιας απόχρωσης ανάλογα με το μέσο απόδοσης (π.χ. εκτυπωτή ψεκασμού μελάνης ή μονάδα εκτύπωσης τετραχρωμίας). Σε ορισμένες περιπτώσεις τα όρια των ομάδων των δεδομένων πρέπει να συμπίπτουν με τιμές των φαινομένων που προέρχονται από εξωγενείς παράγοντες της διαδικασίας της απεικόνισης (κρίσιμες τιμές). Οι παράγοντες αυτοί εξαρτώνται από το χαρακτήρα του απεικονιζόμενου γεωγραφικού φαινομένου (π.χ. το εισόδημα που χαρακτηρίζει το επίπεδο πτώχευσης). Γενικότερα, το πρόβλημα της ομαδοποίησης εστιάζεται στην ταξινόμηση ενός συνόλου δεδομένων σε διακριτές ομάδες ανάλογα με την κατανομή που εμφανίζουν οι τιμές των δεδομένων. Κατά τη διαδικασία της ομαδοποίησης πρέπει να ταξινομούνται τα δεδομένα με τρόπο που οι τιμές τους να παρουσιάζουν ομοιογένεια μέσα στις ομάδες και σημαντικές διαφορές μεταξύ των ομάδων. Οι διάφορες μέθοδοι ομαδοποίησης δεδομένων κατατάσσονται σε τρεις μεγάλες κατηγορίες: Μέθοδοι σταθερών τιμές ή ίσων διαστημάτων, Μέθοδοι συστηματικά άνισων διαστημάτων, Μέθοδοι ακανόνιστων ή μεταβαλλόμενων διαστημάτων. Παρά το γεγονός ότι έχει αναπτυχθεί μεγάλος αριθμός μεθόδων ομαδοποίησης δεδομένων στη χαρτογραφία, δεν είναι εύκολο να χαρακτηριστεί 1

5 μία από αυτές ως η «καλύτερη». Αντίθετα, κάθε φορά χρειάζεται να γίνει ανάλυση του συνόλου των δεδομένων με σκοπό να προσδιοριστεί η «βέλτιστη» μέθοδος για την ομαδοποίησή του συγκεκριμένου συνόλου δεδομένων. 2. Μέθοδοι σταθερών τιμών ή ίσων διαστημάτων Στην κατηγορία αυτή περιλαμβάνονται τέσσερεις μέθοδοι για την ομαδοποίηση αριθμητικών δεδομένων. 2.1 Μέθοδος ίσων αριθμητικών διαστημάτων Με τη μέθοδο αυτή, το διάστημα μεταξύ της μικρότερης και μεγαλύτερης τιμής των αριθμητικών δεδομένων υποδιαιρείται σε τμήματα ίσου εύρους ανάλογα με τον αριθμό των ομάδων. Είναι η πιο απλή μέθοδος ομαδοποίησης αριθμητικών δεδομένων τόσο στο στάδιο της εφαρμογής αλλά και στο στάδιο της ερμηνείας. Η μέθοδος αυτή είναι κατάλληλη για δεδομένα που εμφανίζουν ομοιόμορφη κατανομή. Tα όρια των διαστημάτων προσδιορίζονται από αριθμητικές προόδους με βάση τη σχέση: a n = a1 + ( n 1) ω, όπου a: τα όρια των διαστημάτων, n: ο αριθμός των ομάδων και ω: το εύρος των διαστημάτων. 2.2 Μέθοδος παραμέτρων κανονικής κατανομής Η μέθοδος αυτή βασίζεται στις παραμέτρους της κανονικής κατανομής. Η μέση τιμή και η τυπική απόκλιση των αριθμητικών δεδομένων χρησιμοποιείται για τον ορισμό των ορίων των διαστημάτων της ομαδοποίησης. Η μέθοδος των παραμέτρων κανονικής κατανομής είναι κατάλληλη για δεδομένα που εμφανίζουν κανονική κατανομή. 2.3 Μέθοδος κανονικής τμηματοποίησης (quantiles) Με τη μέθοδο αυτή το σύνολο των παρατηρήσεων των αριθμητικών δεδομένων ταξινομείται κατά αύξουσα ή φθίνουσα σειρά και στη συνέχεια υποδιαιρείται σε τμήματα με ίσο αριθμό παρατηρήσεων το καθένα. Η μέθοδος της κανονικής 2

6 τμηματοποίησης είναι κατάλληλη για δεδομένα που αναφέρονται σε ισοδύναμες επιφάνειες ή για δεδομένα που διαφοροποιούνται ως προς την κλίμακα τάξης. Η μέθοδος είναι ακατάλληλη για αριθμητικά δεδομένα που αναφέρονται σε επιφάνειες των οποίων το εμβαδόν διαφοροποιείται σημαντικά. 2.4 Μέθοδος ίσων διαστημάτων εμβαδού Η μέθοδος των ίσων διαστημάτων εμβαδού είναι παραλλαγή της μεθόδου των ίσων αριθμητικών διαστημάτων με χρήση του εμβαδού των επιφανειών στις οποίες αναφέρονται τα δεδομένα ως βάρος για την ταξινόμηση. Με τη μέθοδο αυτή ταξινομούνται τα αριθμητικά δεδομένα κατά αύξουσα ή φθίνουσα σειρά και προσδιορίζονται τα όρια των διαστημάτων με τρόπο που να περιλαμβάνουν ισοδύναμες ως προς το εμβαδόν παρατηρήσεις. Ο προσδιορισμός των ορίων των διαστημάτων μπορεί να γίνει με τη βοήθεια του αθροιστικού διαγράμματος του εμβαδού. 3. Μέθοδοι συστηματικά άνισων διαστημάτων Οι μέθοδοι των συστηματικά άνισων διαστημάτων βασίζονται στην εφαρμογή αναγωγικών σχέσεων ακολουθιών ή γεωμετρικών προόδων για τον προσδιορισμό των ορίων τους. Η εφαρμογή τους μπορεί να γίνει με τους ακόλουθους συνδυασμούς: Αύξουσες με σταθερό ρυθμό Αύξουσες με αυξανόμενο ρυθμό Αύξουσες με φθίνοντα ρυθμό Φθίνουσες με σταθερό ρυθμό Φθίνουσες με αυξανόμενο ρυθμό Φθίνουσες με φθίνοντα ρυθμό Στις περιπτώσεις που τα αριθμητικά δεδομένα εμφανίζουν σημαντικές διαφοροποιήσεις τα όρια των διαστημάτων προσδιορίζονται από αναγωγικές σχέσεις ακολουθιών: an = an 1 + ( n 1) ω, όπου a i : τα όρια των διαστημάτων, n: ο αριθμός των ομάδων και ω: ο συντελεστής μεταβολής του εύρους των διαστημάτων. 3

7 Στις περιπτώσεις που τα αριθμητικά δεδομένα εμφανίζουν πολύ μεγάλες διαφοροποιήσεις τα όρια των διαστημάτων προσδιορίζονται από γεωμετρικές προόδους με βάση τη σχέση: n 1 1 bn = b ω όπου b i : τα όρια των διαστημάτων, n: ο αριθμός των ομάδων και ω: ο συντελεστής μεταβολής του εύρους των διαστημάτων. 4. Μέθοδοι ακανόνιστων ή μεταβαλλόμενων διαστημάτων Οι μέθοδοι των ακανόνιστων ή μεταβαλλόμενων διαστημάτων διακρίνονται σε δύο κατηγορίες. Στην πρώτη κατηγορία, τα όρια των διαστημάτων προσδιορίζονται με τη βοήθεια γραφικών τεχνικών ενώ στη δεύτερη με επαναληπτικές τεχνικές. 4.1 Γραφικές τεχνικές ομαδοποίησης Οι γραφικές τεχνικές στηρίζονται στην αξιοποίηση τεσσάρων διαγραμμάτων στατιστικής προέλευσης, με τη βοήθεια των οποίων προσδιορίζονται τα όρια των διαστημάτων. Τα χρησιμοποιούμενα διαγράμματα είναι: Το ιστόγραμμα: Στο διάγραμμα αυτό οι παρατηρήσεις απεικονίζονται στον άξονα: x και οι τιμές τους στον άξονα: y. Η κλινογραφική καμπύλη: Στην κλινογραφική καμπύλη απεικονίζεται το σύνολο των παρατηρήσεων στον άξονα: x και οι αθροιστικές τιμές τους στον άξονα: y. Κρίσιμα σημεία της κλινογραφικής καμπύλης είναι εκείνα στα οποία εμφανίζονται απότομες αλλαγές της κλίσης της. Τα κρίσιμα αυτά σημεία λαμβάνονται υπόψη για τον προσδιορισμό των ορίων των διαστημάτων. Το διάγραμμα συχνοτήτων: Στο διάγραμμα συχνοτήτων στον άξονα: x απεικονίζονται ομαδοποιημένες οι τιμές των αριθμητικών δεδομένων ενώ στον άξονα: y οι συχνότητες που εμφανίζουν οι αντίστοιχες ομαδοποιημένες τιμές. Το διάγραμμα αυτό αναπαριστά με παραστατικό τρόπο τα αριθμητικά χαρακτηριστικά της κατανομής των δεδομένων. Το διάγραμμα των αθροιστικών συχνοτήτων: 4

8 Στο αθροιστικό διάγραμμα των συχνοτήτων στον άξονα: x απεικονίζονται ομαδοποιημένες οι τιμές των αριθμητικών δεδομένων ενώ στον άξονα: y οι αθροιστικές συχνότητες που εμφανίζουν οι ομαδοποιημένες τιμές. Κρίσιμα σημεία του διαγράμματος αθροιστικών συχνοτήτων αποτελούν οι «οροφές» και τα «πατώματα» των χαρακτηριστικών μοτίβων που παρουσιάζει η καμπύλη, δεδομένου ότι εκφράζουν τις συσσωρεύσεις των τιμών των δεδομένων. 4.2 Επαναληπτικές τεχνικές ομαδοποίησης Οι επαναληπτικές τεχνικές βασίζονται σε στατιστική επεξεργασία των αριθμητικών δεδομένων. Πιο συγκεκριμένα, ο προσδιορισμός των ορίων των διαστημάτων της ομαδοποίησης προκύπτει με την εφαρμογή ενός στατιστικού κριτηρίου. Συνήθως χρησιμοποιούνται δύο κριτήρια: Το κριτήριο της βέλτιστης προσαρμογής της μεταβλητότητας. (Goodness of the variance fit GVF). Με το κριτήριο της βέλτιστης προσαρμογής της μεταβλητότητας προσδιορίζονται τα όρια των διαστημάτων της ομαδοποίησης με ελαχιστοποίηση των τετραγώνων των αποκλίσεων από τη μέση τιμή του κάθε διαστήματος. Το κριτήριο της βέλτιστης προσαρμογής της απόλυτης απόκλισης. (Goodness of absolute deviation fit - GADF) Με το κριτήριο της βέλτιστης προσαρμογής της απόλυτης απόκλισης προσδιορίζονται τα όρια των διαστημάτων της ομαδοποίησης με μεγιστοποίηση της βέλτιστης προσαρμογής των απολύτων αποκλίσεων από τη μέση τιμή του κάθε διαστήματος. Το μεγαλύτερο πλεονέκτημα των επαναληπτικών τεχνικών αποτελεί η μεγιστοποίηση της ομοιογένειας που επιτυγχάνεται στις παρατηρήσεις που κατατάσσονται σε κάδε διάστημα της ομαδοποίησης και η σημαντική διαφοροποίηση των παρατηρήσεων που κατατάσσονται σε διαφορετικά διαστήματα της ομαδοποίησης, όπως καθορίζονται από το στατιστικό κριτήριο που έχει εφαρμοστεί. 5. Μεθοδολογία ομαδοποίησης δεδομένων Μια μεθοδολογία ομαδοποίησης αριθμητικών δεδομένων πρέπει να στοχεύει στον προσδιορισμό της καταλληλότερης μεθόδου για της ομαδοποίηση ενός 5

9 συγκεκριμένου συνόλου δεδομένων. Ο προσδιορισμός των ορίων των διαστημάτων ομαδοποίησης πρέπει να λαμβάνει υπόψη τους ακόλουθους παράγοντες: Τις κρίσιμες τιμές Τα όρια των διαστημάτων να έχουν στρογγυλεμένες τιμές Να εφαρμόζονται εναλλακτικές μέθοδοι Σε περιπτώσεις παραγωγής σειράς θεματικών χαρτών να εφαρμόζεται ενιαία τεχνική ομαδοποίησης για όλους τους χάρτες Να αξιοποιούνται τα διαγράμματα (κυρίως το ιστόγραμμα και το διάγραμμα κατανομής συχνοτήτων) Κάθε διαδικασία ομαδοποίησης προϋποθέτει την ύπαρξη ενός συγκεκριμένου συνόλου αριθμητικών δεδομένων και τον επιθυμητό αριθμό διαστημάτων για την ταξινόμησή τους. Η επιλογή της καταλληλότερης μεθόδου ομαδοποίησης κυρίως έχει σχέση με την κατανομή που εμφανίζουν οι τιμές των αριθμητικών δεδομένων. Για το λόγο αυτό η κατασκευή του διαγράμματος των συχνοτήτων είναι πολύ χρήσιμη. Με την ερμηνεία της μορφής του διαγράμματος συχνοτήτων του εκάστοτε συνόλου αριθμητικών δεδομένων μπορεί να επιλεγεί η καταλληλότερη μέθοδος ή ένας κατάλληλος συνδυασμός μεθόδων. Οι πλέον χαρακτηριστικές μορφές ενός διαγράμματος συχνοτήτων (Σχήμα 1) είναι οι ακόλουθες: (α) (β) (γ) (δ) Σχήμα 1. Τα τέσσερα πρότυπα κατανομών του διαγράμματος των συχνοτήτων. (α) ομοιόμορφη, (β) κανονική, (γ) στρεβλή (γραμμική/μη-γραμμική) και (δ) ακανόνιστη 6

10 Ομοιόμορφη Κανονική Στρεβλή (γραμμική/μη-γραμμική) Ακανόνιστη Σύμφωνα με την ερμηνεία του διαγράμματος συχνοτήτων μπορούν να εφαρμοστούν οι ακόλουθοι μέθοδοι ομαδοποίησης: 1. Το διάγραμμα συχνοτήτων αναπαριστά ομοιόμορφη κατανομή. Οι καταλληλότερες μέθοδοι ανήκουν στην κατηγορία των σταθερών τιμών ή ίσων διαστημάτων. 2. Το διάγραμμα συχνοτήτων αναπαριστά κανονική κατανομή. Η καταλληλότερη μέθοδος είναι η μέθοδος των παραμέτρων της κανονικής κατανομής. 3. Το διάγραμμα συχνοτήτων αναπαριστά γραμμική στρεβλή κατανομή. Ο καταλληλότερος τρόπος για τον προσδιορισμό των ορίων των διαστημάτων είναι η εφαρμογή αριθμητικών προόδων. Η μέθοδος αυτή ανήκει στην κατηγορία των συστηματικά άνισων διαστημάτων. 4. Το διάγραμμα συχνοτήτων αναπαριστά μη-γραμμική στρεβλή κατανομή. Ο καταλληλότερος τρόπος για τον προσδιορισμό των ορίων των διαστημάτων είναι η εφαρμογή γεωμετρικών προόδων. Η μέθοδος ανήκει στην κατηγορία των συστηματικά άνισων διαστημάτων. 5. Το διάγραμμα συχνοτήτων αναπαριστά ακανόνιστη κατανομή. Στις περιπτώσεις αυτές είναι χρήσιμη και η ερμηνεία του ιστογράμματος των δεδομένων. Η προσοχή κατά την ερμηνεία πρέπει να εστιαστεί στον πιθανό εντοπισμό φυσικών διακοπών των τιμών των δεδομένων. Εάν εμφανίζονται φυσικές διακοπές στο ιστόγραμμα των δεδομένων αυτές πρέπει να λαμβάνονται υπόψη στον προσδιορισμό των ορίων των διαστημάτων της ομαδοποίησης. Στη συνέχεια, εξετάζεται αν κάποια από τις προαναφερθείσες μεθόδους ή συνδυασμός τους μπορεί να εφαρμοστεί συνολικά ή τμηματικά. Τέλος, στις περιπτώσεις που δεν είναι δυνατό να εφαρμοστεί καμία από τις παραπάνω μεθόδους τότε τα όρια των διαστημάτων της ομαδοποίησης προσδιορίζονται με τη μέθοδο της κανονικής τμηματοποίησης. 6. Βιβλιογραφία Dent, D.B. (1990). Cartography. Thematic Map Design. (2 nd ed.). Wm C. Brown Pub., Dubuque, pp

11 Jenks, G.F. and M.R Coulson (1963). Class intervals for statistical maps. International Yearbook of Cartography, 3, pp Jenks, G.F. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7, pp Robinson, H.A., R.D. Sale, J.L. Morisson and Ph.C. Muehrcke (1985). Elements of Cartography. (5 th ed.). John Willey & Sons, New York, pp Yue-Hong Chou (????). Exploring spatial analysis in Geographic Information Systems. ISBN

Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - Bασίλης Κρασανάκης Υποψήφιος διδάκτορας Ε.Μ.Π. -

Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - Bασίλης Κρασανάκης Υποψήφιος διδάκτορας Ε.Μ.Π. - Ενότητα 8 η Εξειδικευμένες μέθοδοι απεικόνισης χωρικών δεδομένων (απόδοση συσχετισμού χωρικών δεδομένων, πλάγιες προοπτικές απεικονίσεις, χάρτης κουκίδων, χαρτόγραμμα) Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. -

Διαβάστε περισσότερα

Αρχές χαρτογραφικού γραφισμού (συμβατικές οπτικές μεταβλητές - δυναμικές οπτικές μεταβλητές) Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. -

Αρχές χαρτογραφικού γραφισμού (συμβατικές οπτικές μεταβλητές - δυναμικές οπτικές μεταβλητές) Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - Ενότητα 5 η Αρχές χαρτογραφικού γραφισμού (συμβατικές οπτικές μεταβλητές - δυναμικές οπτικές μεταβλητές) Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - bnakos@central.ntua.gr Bασίλης Κρασανάκης Υποψήφιος διδάκτορας

Διαβάστε περισσότερα

Απεικόνιση ποσοτικά διαφοροποιημένων χωρικών δεδομένων (μονοθεματικοί χάρτες εφαρμόζοντας σημειακά, γραμμικά ή επιφανειακά σύμβολα)

Απεικόνιση ποσοτικά διαφοροποιημένων χωρικών δεδομένων (μονοθεματικοί χάρτες εφαρμόζοντας σημειακά, γραμμικά ή επιφανειακά σύμβολα) Ενότητα 7 η Απεικόνιση ποσοτικά διαφοροποιημένων χωρικών δεδομένων (μονοθεματικοί χάρτες εφαρμόζοντας σημειακά, γραμμικά ή επιφανειακά σύμβολα) Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - bnakos@central.ntua.gr Bασίλης

Διαβάστε περισσότερα

Απεικόνιση ποιοτικά διαφοροποιούμενων χωρικών δεδομένων (μονοθεματικοί χάρτες εφαρμόζοντας σημειακά, γραμμικά ή επιφανειακά σύμβολα)

Απεικόνιση ποιοτικά διαφοροποιούμενων χωρικών δεδομένων (μονοθεματικοί χάρτες εφαρμόζοντας σημειακά, γραμμικά ή επιφανειακά σύμβολα) Ενότητα 6 η Απεικόνιση ποιοτικά διαφοροποιούμενων χωρικών δεδομένων (μονοθεματικοί χάρτες εφαρμόζοντας σημειακά, γραμμικά ή επιφανειακά σύμβολα) Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - bnakos@central.ntua.gr

Διαβάστε περισσότερα

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Χειμερινό εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Μέτρα

Διαβάστε περισσότερα

ΜΑΘΑΙΝΟΝΤΑΣ ΤΑ GIS ΣΤΗ ΠΡΑΞΗ ΤΟ ARCGIS 9.3. Α. Τσουχλαράκη, Γ. Αχιλλέως ΚΕΦΑΛΑΙΟ 2 Η ΧΑΡΤΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΧΡΗΣΗ ΣΥΜΒΟΛΩΝ

ΜΑΘΑΙΝΟΝΤΑΣ ΤΑ GIS ΣΤΗ ΠΡΑΞΗ ΤΟ ARCGIS 9.3. Α. Τσουχλαράκη, Γ. Αχιλλέως ΚΕΦΑΛΑΙΟ 2 Η ΧΑΡΤΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΧΡΗΣΗ ΣΥΜΒΟΛΩΝ ΜΑΘΑΙΝΟΝΤΑΣ ΤΑ GIS ΣΤΗ ΠΡΑΞΗ ΤΟ ARCGIS 9.3. Α. Τσουχλαράκη, Γ. Αχιλλέως ΚΕΦΑΛΑΙΟ 2 Η ΧΑΡΤΟΓΡΑΦΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΧΡΗΣΗ ΣΥΜΒΟΛΩΝ ΣΤΟΧΟΣ ΤΟΥ ΚΕΦΑΛΑΙΟΥ Εισαγωγή στις βασικές αρχές της απεικόνισης

Διαβάστε περισσότερα

Μορφοποίηση της διάταξης ψηφιακού χάρτη

Μορφοποίηση της διάταξης ψηφιακού χάρτη Ενότητα 11 η Μορφοποίηση της διάταξης ψηφιακού χάρτη Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - bnakos@central.ntua.gr Bασίλης Κρασανάκης Υποψήφιος διδάκτορας Ε.Μ.Π. krasvas@mail.ntua.gr Β. Νάκος & Β. Κρασανάκης

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ. Μ. 436 A εξάμηνο 2009-2010 Περιγραφική Στατιστική Ι users.att.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής κατά

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ

ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ ΚΑΙ ΠΛΟΗΓΗΣΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΤΟΠΟΓΡΑΦΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΝΑΥΤΙΚΗ ΚΑΙ ΘΑΛΑΣΣΙΑ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΠΙΣΤΗΜΗ ΜΑΘΗΜΑ: ΘΑΛΑΣΣΙΟΣ ΕΝΤΟΠΙΣΜΟΣ

Διαβάστε περισσότερα

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ

Είδη Μεταβλητών Κλίμακα Μέτρησης Οι τεχνικές της Περιγραφικής στατιστικής ανάλογα με την κλίμακα μέτρησης Οι τελεστές Π και Σ ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρμοσμένες Επιστήμες Στατιστικός Πληθυσμός και Δείγμα Το στατιστικό

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ 1 ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1. Ένα σηµείο Α(χ, ψ) ανήκει στη γραφική παράσταση της f αν f(ψ)=χ. 2. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A,

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΟΝ ΕΝΤΟΠΙΣΜΟ ΓΕΩΧΗΜΙΚΗΣ ΑΝΩΜΑΛΙΑΣ Στατιστική ανάλυση του γεωχημικού δείγματος μας δίνει πληροφορίες για τον

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : ,

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η : , Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Στατιστική II Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών Εβδομάδα 1 η :1-0-017, 3-0-017 Διδάσκουσα: Κοντογιάννη Αριστούλα Σκοπός του μαθήματος Η παρουσίαση

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΣΤΑΤΙΣΤΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΓΙΑ ΤΗΝ ΑΠΟΤΙΜΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ Στατιστική ανάλυση του γεωχηµικού δείγµατος µας δίνει πληροφορίες για τον γεωχηµικό πληθυσµό που µελετάµε. Συνυπολογισµός σφαλµάτων Πειραµατικά

Διαβάστε περισσότερα

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β;

Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; σελ 1 από 5 ΚΕΦΑΛΑΙΟ 1 Ο Α. Έστω δύο σύνολα Α και Β. Ποιά διαδικασία ονομάζεται συνάρτηση με πεδίο ορισμού το Α και πεδίο τιμών το Β; 1. Σ-Λ Η σχέση με:, είναι συνάρτηση. 2. Σ-Λ Η σχέση είναι συνάρτηση.

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ 9 ο ΜΑΘΗΜΑ ΟΜΑΔΟΠΟΙΗΣΗ ΤΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Πότε κάνουμε ομαδοποίηση των παρατηρήσεων; Όταν το πλήθος των τιμών μιας μεταβλητής είναι αρκετά μεγάλο κάνουμε ομαδοποίηση των παρατηρήσεων. Αυτό συμβαίνει είτε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; Μαθηµατικά και Στοιχεία Στατιστικής ΚΕΦΑΛΑΙΟ ο 1 : ιαφορικός Λογισµός 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής; 2. Έστω µια

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ

ΜΕΤΡΑ ΚΕΝΤΡΙΚΗΣ ΤΑΣΗΣ Μέτρα Περιγραφικής Στατιστικής Πληθυσμιακοί παράμετροι: τα αριθμητικά μεγέθη που εκφράζουν τις στατιστικές ιδιότητες ενός πληθυσμού (που προσδιορίζουν / περιγράφουν τη φυσιογνωμία και τη δομή του) Στατιστικά

Διαβάστε περισσότερα

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική

Δρ. Χάϊδω Δριτσάκη. MSc Τραπεζική & Χρηματοοικονομική Ποσοτικές Μέθοδοι Δρ. Χάϊδω Δριτσάκη MSc Τραπεζική & Χρηματοοικονομική Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3

Διαβάστε περισσότερα

Δυναμικοί Χάρτες (Χάρτες Κινούμενων Εικόνων Animations)

Δυναμικοί Χάρτες (Χάρτες Κινούμενων Εικόνων Animations) Ενότητα 9 η Δυναμικοί Χάρτες (Χάρτες Κινούμενων Εικόνων Animations) Βύρωνας Νάκος Καθηγητής Ε.Μ.Π. - bnakos@central.ntua.gr Bασίλης Κρασανάκης Υποψήφιος διδάκτορας Ε.Μ.Π. - krasvas@mail.ntua.gr Β. Νάκος

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΕΠΑ.Λ. 2013-2014 ΣΤΑΤΙΣΤΙΚΗ 1. Τι ονομάζουμε: i. πληθυσμό και μέγεθος πληθυσμού; (σελ. 59) ii. μεταβλητή; (σελ.59-60) 2. Ποιες μεταβλητές ονομάζονται ποσοτικές; (σελ.60)

Διαβάστε περισσότερα

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

03 _ Παράμετροι θέσης και διασποράς. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 6_Στατιστική στη Φυσική Αγωγή 03 _ Παράμετροι θέσης και διασποράς Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Παράμετροι θέσης όταν θέλουμε να εκφράσουμε μια μεταβλητή με έναν αριθμό π.χ.

Διαβάστε περισσότερα

Γιατί μετράμε την διασπορά;

Γιατί μετράμε την διασπορά; Γιατί μετράμε την διασπορά; Παράδειγμα Δίνεται το ετήσιο ποσοστό κέρδους δύο επιχειρήσεων για 6 χρόνια. Αν έπρεπε να επιλέξετε την μετοχή μιας εκ των 2 με κριτήριο το ποσοστό κέρδους αυτά τα 6 χρόνια.

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς )

ΣΤΑΤΙΣΤΙΚΟΙ ΠΙΝΑΚΕΣ. ΓΕΝΙΚΟΙ (περιέχουν όλες τις πληροφορίες που προκύπτουν από μια στατιστική έρευνα) ΕΙΔΙΚΟΙ ( είναι συνοπτικοί και σαφείς ) Πληθυσμός (populaton) ονομάζεται ένα σύνολο, τα στοιχεία του οποίου εξετάζουμε ως προς τα χαρακτηριστικά τους. Μεταβλητές (varables ) ονομάζονται τα χαρακτηριστικά ως προς τα οποία εξετάζουμε έναν πληθυσμό.

Διαβάστε περισσότερα

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ

ΜΕΤΡΩΝΤΑΣ ΤΟΝ ΠΛΑΝΗΤΗ ΓΗ του Υποπυραγού Αλέξανδρου Μαλούνη* Μέρος 2 ο - Χαρτογραφικοί μετασχηματισμοί Εισαγωγή Είδαμε λοιπόν ως τώρα, ότι η γη θα μπορούσε να χαρακτηρισθεί και σφαιρική και αυτό μπορεί να γίνει εμφανές όταν την

Διαβάστε περισσότερα

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

i μιας μεταβλητής Χ είναι αρνητικός αριθμός ΕΡΩΤΗΣΕΙΣ Σ Λ ΠΑΝΕΛΛΑΔΙΚΩΝ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακoλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη

ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Αριάδνη Αργυράκη ΜΟΝΟΠΑΡΑΜΕΤΡΙΚΗ ΚΑΙ ΠΟΛΥΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Αριάδνη Αργυράκη ΣΤΑΔΙΑ ΕΚΤΕΛΕΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΩΝ ΓΕΩΧΗΜΙΚΩΝ ΕΡΕΥΝΩΝ 1.ΣΧΕΔΙΑΣΜΟΣ: - Καθορισμός στόχων έρευνας - Ιστορικό περιοχής 2 4.

Διαβάστε περισσότερα

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3. Επαναληπτικά Θέµατα ΟΕΦΕ 0 Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Α. Για δύο συµπληρωµατικά ενδεχόµενα Α και A ενός δειγµατικού χώρου Ω να P A = P A.

Διαβάστε περισσότερα

Κεφάλαιο Αρχές των απεικονίσεων - προβολών Αναπτυκτές επιφάνειες και ο προσανατολισμός τους

Κεφάλαιο Αρχές των απεικονίσεων - προβολών Αναπτυκτές επιφάνειες και ο προσανατολισμός τους Κεφάλαιο 2 Σύνοψη Οι απεικονίσεις στη χαρτογραφία αναφέρονται στην προβολή ή απεικόνιση της επιφάνειας αναφοράς, δηλαδή, του ελλειψοειδούς εκ περιστροφής (ή της σφαίρας) στο επίπεδο στο επίπεδο του χάρτη.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Nα χαρακτηρίσετε τις προτάσεις που ακλουθούν γράφοντας στο τετράδιο σας την ένδειξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

Εισαγωγή στη Στατιστική

Εισαγωγή στη Στατιστική Εισαγωγή στη Στατιστική Μετεκπαιδευτικό Σεμινάριο στην ΨΥΧΟΚΟΙΝΩΝΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΨΥΧΟΚΟΙΝΩΝΙΚΕΣ ΘΕΡΑΠΕΥΤΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Χειμερινό εξάμηνο 2010-2011 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Ι Κ.Μ. 436 Περιγραφική Στατιστική Ι users.sch.gr/abouras abouras@sch.gr sch.gr abouras@uth.gr Μέτρα θέσης Η θέση αντιπροσωπεύει τη θέση της κατανομής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3.

ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. .. ΣΤΑΤΙΣΤΙΚΗ 1 Τί λέγεται πληθυσμός τι άτομα και τι μεταβλητή ενός πληθυσμού 2. Ποιες μεταβλητές λέγονται ποιοτικές ή κατηγορικές; 3. Ποιες μεταβλητές λέγονται ποσοτικές; 4. Πότε μια ποσοτική μεταβλητή

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 207-208 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 227035468 ΣΤΑΤΙΣΤΙΚΗ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A A. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι f g f g,. Μονάδες 7 Α. Σε ένα πείραμα με ισοπίθανα αποτελέσματα

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Χωρική Ανάλυση Συμπεριφοράς Ασφάλειας Οδηγών με Δεδομένα από Έξυπνα Κινητά Τηλέφωνα

Χωρική Ανάλυση Συμπεριφοράς Ασφάλειας Οδηγών με Δεδομένα από Έξυπνα Κινητά Τηλέφωνα Χωρική Ανάλυση Συμπεριφοράς Ασφάλειας Οδηγών με Δεδομένα από Έξυπνα Κινητά Τηλέφωνα Ηλίας Αλέξανδρος Παρμακσίζογλου Επιβλέπων: Γιώργος Γιαννής, Καθηγητής ΕΜΠ Αθήνα, Μάρτιος 2018 Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Περιγραφική Στατιστική

Περιγραφική Στατιστική Περιγραφική Στατιστική Παναγιώτα Λάλου. Βασικές έννοιες Ορισμός: Στατιστικός πληθυσμός ονομάζεται το σύνολο των πειραματικών μονάδων π.χ άνθρωποι, ζώα, επιχειρήσεις κ.λπ, οι οποίες συμμετέχουν στην έρευνα

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών

ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού

Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 3 ο Εξάμηνο του Ακαδημαϊκού Έτους 2013-2014 ΟΔ 034 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Δευτέρα 10:00-13:00 Ώρες διδασκαλίας (3)

Διαβάστε περισσότερα

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x). Νίκος Σούρµπης - - Γιώργος Βαρβαδούκας ΘΕΜΑ ο Α. α) ίνεται η συνάρτηση F()=f()+g(). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F ()=f ()+g (). β)να γράψετε στο τετράδιό σας τις παραγώγους

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ

ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΑΝΑΛΥΣΗΣ ΔΕΔΟΜΕΝΩΝ Στατιστικά περιγραφικά μέτρα Τα στατιστικά περιγραφικά μέτρα είναι αντιπροσωπευτικές τιμές οι οποίες περιγράφουν με τρόπο ποσοτικό την κατανομή μιας μεταβλητής. Λειτουργούν

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2013-2014 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητή: ένα χαρακτηριστικό ή ιδιότητα που μπορεί να πάρει διαφορετικές τιμές

Διαβάστε περισσότερα

Περιεχόμενα. 1 Εισαγωγή...1. 2 Χαρτογραφική Πληροφορία...29

Περιεχόμενα. 1 Εισαγωγή...1. 2 Χαρτογραφική Πληροφορία...29 Περιεχόμενα 1 Εισαγωγή...1 1.1 Χάρτης και Χαρτογραφία... 1 1.2 Ιστορική αναδρομή... 5 1.3 Βασικά χαρακτηριστικά των χαρτών...12 1.4 Είδη και ταξινόμηση χαρτών...14 1.4.1 Ταξινόμηση με βάση την κλίμακα...15

Διαβάστε περισσότερα

µια λειτουργική προσέγγιση στην απεικόνιση του χάρτη σηµασιολογία και και σύνταξη των των χαρτογραφικών σηµάτων

µια λειτουργική προσέγγιση στην απεικόνιση του χάρτη σηµασιολογία και και σύνταξη των των χαρτογραφικών σηµάτων µια λειτουργική προσέγγιση στην απεικόνιση του χάρτη σηµασιολογία και και σύνταξη των των χαρτογραφικών σηµάτων όχηµα-σήµα Σε «λειτουργικό» επίπεδο ανάλυσης, τα σήµατα του χάρτη λειτουργούν ως µεσολαβητής

Διαβάστε περισσότερα

ΣΥΜΒΟΛΙΣΜΟΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΟΝΤΟΤΗΤΩΝ

ΣΥΜΒΟΛΙΣΜΟΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΟΝΤΟΤΗΤΩΝ ΣΥΜΒΟΛΙΣΜΟΣ ΧΑΡΤΟΓΡΑΦΙΚΩΝ ΟΝΤΟΤΗΤΩΝ Χαρτογραφία Ι 1 ΟΡΙΣΜΟΙ Φαινόμενο: Ο,τιδήποτε υποπίπτει στην ανθρώπινη αντίληψη Γεωγραφικό (Γεωχωρικό ή χωρικό) φαινόμενο: Ο,τιδήποτε υποπίπτει στην ανθρώπινη αντίληψη

Διαβάστε περισσότερα

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Σ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Τι κάνει η Στατιστική Στατιστική (Statistics) Μετατρέπει αριθμητικά δεδομένα σε χρήσιμη πληροφορία. Εξάγει συμπεράσματα για έναν πληθυσμό. Τις περισσότερες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ

ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 2 ο : ΣΤΑΤΙΣΤΙΚΗ 1 ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Ποιες μεταβλητές λέγονται ποσοτικές; (ΓΕΛ 2005) 2. Πότε μια ποσοτική μεταβλητή ονομάζεται διακριτή και πότε συνεχής; (ΓΕΛ 2005,2014) 3. Τι ονοµάζεται απόλυτη

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2015-2016 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΜΑΘΑΙΝΟΝΤΑΣ ΤΑ GIS ΣΤΗ ΠΡΑΞΗ ΤΟ ARCGIS 9.3. Α. Τσουχλαράκη, Γ. Αχιλλέως ΚΕΦΑΛΑΙΟ 6 ΧΑΡΤΟΓΡΑΦΩΝΤΑΣ ΔΕΔΟΜΕΝΑ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΑ

ΜΑΘΑΙΝΟΝΤΑΣ ΤΑ GIS ΣΤΗ ΠΡΑΞΗ ΤΟ ARCGIS 9.3. Α. Τσουχλαράκη, Γ. Αχιλλέως ΚΕΦΑΛΑΙΟ 6 ΧΑΡΤΟΓΡΑΦΩΝΤΑΣ ΔΕΔΟΜΕΝΑ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΑ ΜΑΘΑΙΝΟΝΤΑΣ ΤΑ GIS ΣΤΗ ΠΡΑΞΗ ΤΟ ARCGIS 9.3. Α. Τσουχλαράκη, Γ. Αχιλλέως ΚΕΦΑΛΑΙΟ 6 ΧΑΡΤΟΓΡΑΦΩΝΤΑΣ ΔΕΔΟΜΕΝΑ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΤΟΧΟΣ ΤΟΥ ΚΕΦΑΛΑΙΟΥ να γνωρίσει με λεπτομέρεια την διαδικασία δημιουργίας ενός

Διαβάστε περισσότερα

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους.

Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. Πληθυσμός: Το συνόλου του οποίου τα στοιχεία εξετάζουμε ως προς ένα ή περισσότερα χαρακτηριστικά τους. 1 Κεφάλαιο. ΣΤΑΤΙΣΤΙΚΗ Α. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Στατιστική: ένα σύνολο αρχών και μεθοδολογιών για: το σχεδιασμό της διαδικασίας συλλογής δεδομένων τη συνοπτική και αποτελεσματική παρουσίασή τους την ανάλυση

Διαβάστε περισσότερα

Απόδοση θεματικών δεδομένων

Απόδοση θεματικών δεδομένων Απόδοση θεματικών δεδομένων Ποιοτικές διαφοροποιήσεις Σημειακά Γραμμικά Επιφανειακά Ποσοτικές διαφοροποιήσεις Ειδικές θεματικές απεικονίσεις Δασυμετρική Ισαριθμική Πλάγιες όψεις Χαρτόγραμμα Χάρτης κουκίδων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο R, να αποδείξετε ότι (f() + g() )=f ()+g (), R Μονάδες 7 Α. Σε

Διαβάστε περισσότερα

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος

Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Παρατηρήσεις για τη χρήση ενός κυκλικού διαγράμματος Χρησιμοποιείται μόνο όταν οι τιμές της μεταβλητής έχουν ένα σταθερό άθροισμα (συνήθως 100%, όταν μιλάμε για σχετικές συχνότητες) Είναι χρήσιμο μόνο

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. 7 ο ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκοπός Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Προσδοκώμενα αποτελέσματα Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου

Διαβάστε περισσότερα

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3)

2 ο Εξάμηνο του Ακαδημαϊκού Έτους ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Τμήμα Οργάνωσης και Διαχείρισης Αθλητισμού 2 ο Εξάμηνο του Ακαδημαϊκού Έτους 2015-2016 ΟΔ 055 ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΙΣ ΚΟΙΝΩΝΙΚΕΣ ΕΠΙΣΤΗΜΕΣ Διδασκαλία: κάθε Τετάρτη 12:00-15:00 Ώρες διδασκαλίας (3) Αντώνης Κ.

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΛΗΘΥΣΜΟΙ ΔΕΙΓΜΑΤΑ ΠΑΡΟΥΣΙΑΣΗ ΔΕΔΟΜΕΝΩΝ Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται: - η συνοπτική αλλά πλήρης και κατατοπιστική παρουσίαση των ευρημάτων μιας

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή.

Η γραφική απεικόνιση µιας κατανοµής συχνότητας µπορεί να γίνει µε δύο τρόπους, µε ιστόγραµµα και µε πολυγωνική γραµµή. ΠΕΜΠΤΟ ΠΑΚΕΤΟ ΣΗΜΕΙΩΣΕΩΝ ΣΤΑΤΙΣΤΙΚΑ ΙΑΓΡΑΜΜΑΤΑ Χρησιµότητα των διαγραµµάτων Η παρουσίαση των στατιστικών στοιχείων µπορεί να γίνει όχι µόνο µε πίνακες, αλλά και µε διαγράµµατα ή γραφικές απεικονίσεις.

Διαβάστε περισσότερα

Βιοστατιστική ΒΙΟ-309

Βιοστατιστική ΒΙΟ-309 Βιοστατιστική ΒΙΟ-309 Χειμερινό Εξάμηνο Ακαδ. Έτος 2017-2018 Ντίνα Λύκα lika@biology.uoc.gr 1. Εισαγωγή Εισαγωγικές έννοιες Μεταβλητότητα : ύπαρξη διαφορών μεταξύ ομοειδών μετρήσεων Μεταβλητή: ένα χαρακτηριστικό

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος... 13 ΠΕΡΙΕΧΟΜΕΝΑ / 7 ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος... 13 Κεφάλαιο 1: Περιγραφική Στατιστική... 15 1.1 Περιγραφική και Συμπερασματική Στατιστική... 15 1.2 Μεταβλητές - Τιμές - Παρατηρήσεις... 19 1.3 Είδη μεταβλητών...

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν ΘΕΜΑ 1o ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

Διαβάστε περισσότερα

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

δεδομένων με συντελεστές στάθμισης (βαρύτητας) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ-1 ΠΑΡΑΣΚΕΥΗ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ

Διαβάστε περισσότερα

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα)

Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) ΤΕΙ Στερεάς Ελλάδας Τμήμα Φυσικοθεραπείας Προπτυχιακό Πρόγραμμα Μάθημα: Βιοστατιστική-Οικονομία της υγείας Εξάμηνο: Ε (5 ο ) Ενότητα 3: Περιγραφική Στατιστική (Πίνακες & Αριθμητικά μέτρα) Δρ. Χρήστος Γενιτσαρόπουλος

Διαβάστε περισσότερα

ν ν = 6. όταν είναι πραγµατικός αριθµός.

ν ν = 6. όταν είναι πραγµατικός αριθµός. Συνάρτηση: ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ λέγεται µια διαδικασία µε την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Γνησίως αύξουσα: σε ένα διάστηµα του πεδίου

Διαβάστε περισσότερα

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου

Ποιο από τα δύο τµήµατα είχε καλύτερη επίδοση; επ. Κωνσταντίνος Π. Χρήστου Ένας καθηγητής µαθηµατικών έδωσε σε δύο τµήµατα µιας τάξης του σχολείου του το ίδιο τεστ. Η επίδοση των µαθητών του κάθε τµήµατος (όπως µετρήθηκε µε τη χρήση µιας εικοσαβάθµιας κλίµακας) παρουσιάζεται

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ

Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΠΕΜΠΤΗ, 24 ΑΠΡΙΛΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ)

ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΣΤΑΤΙΣΤΙΚΗ ( ΜΕΤΡΑ ΘΕΣΗΣ ΚΑΙ ΔΙΑΣΠΟΡΑΣ) ΠΕΡΙΕΧΟΜΕΝΑ Μέτρα θέσης και διασποράς (Εισαγωγή) Μέση τιμή Διάμεσος Σταθμικός μέσος Επικρατούσα τιμή Εύρος Διακύμανση Τυπική απόκλιση Συντελεστής μεταβολής Κοζαλάκης

Διαβάστε περισσότερα

9. Τοπογραφική σχεδίαση

9. Τοπογραφική σχεδίαση 9. Τοπογραφική σχεδίαση 9.1 Εισαγωγή Το κεφάλαιο αυτό εξετάζει τις παραμέτρους, μεθόδους και τεχνικές της τοπογραφικής σχεδίασης. Η προσέγγιση του κεφαλαίου γίνεται τόσο για την περίπτωση της συμβατικής

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 9/10/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 3o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Emal: gasl@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gasl

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Ανάλυση ευαισθησίας Ανάλυση ρίσκου

Ανάλυση ευαισθησίας Ανάλυση ρίσκου Τεχνολογία, Καινοτομία & Επιχειρηματικότητα, 9 ο εξάμηνο Σχολή Χ-Μ Ανάλυση ευαισθησίας Ανάλυση ρίσκου Γιώργος Μαυρωτάς Αν. καθηγητής ΕΜΠ Εργαστήριο Βιομηχανικής & Ενεργειακής Οικονομίας Τομέας ΙΙ, Σχολή

Διαβάστε περισσότερα

Διαδραστικός ηχητικός χάρτης σε περιβάλλον διαδικτύου. Εφαρμογή: Χάρτης θορύβου της πόλης της Βέροιας

Διαδραστικός ηχητικός χάρτης σε περιβάλλον διαδικτύου. Εφαρμογή: Χάρτης θορύβου της πόλης της Βέροιας Διαδραστικός ηχητικός χάρτης σε περιβάλλον διαδικτύου Εφαρμογή: Χάρτης θορύβου της πόλης της Βέροιας Αλεβιζάκης Αλέξανδρος Νάκος Βύρωνας ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

Διαβάστε περισσότερα

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις 01 Θέμα Α Α1. Θεωρία (απόδειξη), σελίδα 31 σχολικού βιβλίου Α. Θεωρία (ορισμός), σελίδα 18-19 σχολικού βιβλίου Α3. Θεωρία, (ορισμός), σελίδα 96 σχολικού βιβλίου Α. α) Λάθος β) Σωστό γ) Λάθος δ) Σωστό ε)

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος... 15

Περιεχόμενα. Πρόλογος... 15 Περιεχόμενα Πρόλογος... 15 Κεφάλαιο 1 ΘΕΩΡΗΤΙΚΑ ΚΑΙ ΦΙΛΟΣΟΦΙΚΑ ΟΝΤΟΛΟΓΙΚΑ ΚΑΙ ΕΠΙΣΤΗΜΟΛΟΓΙΚΑ ΖΗΤΗΜΑΤΑ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ ΤΟΥ ΠΡΑΓΜΑΤΙΚΟΥ ΚΟΣΜΟΥ... 17 Το θεμελιώδες πρόβλημα των κοινωνικών επιστημών...

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Ύλη: Συναρτήσεις-Στατιστική Θέμα 1 o : Α. i. Να διατυπώσετε το κριτήριο μονοτονίας. (5 μον.)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ. Ύλη: Συναρτήσεις-Στατιστική Θέμα 1 o : Α. i. Να διατυπώσετε το κριτήριο μονοτονίας. (5 μον.) ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ον/μο:.. Ύλη: Συναρτήσεις-Στατιστική Είμαστε τυχεροί που είμαστε δάσκαλοι 5 Γ Λυκείου Γεν. Παιδείας -- Θέμα o : Α. i. Να διατυπώσετε το κριτήριο μονοτονίας. (5 μον.) ii. Να αποδείξετε

Διαβάστε περισσότερα

Τίτλος Μαθήματος. Ενότητα 2: Μεθοδολογία Έρευνας Περιβαλλοντικής Γεωχημείας

Τίτλος Μαθήματος. Ενότητα 2: Μεθοδολογία Έρευνας Περιβαλλοντικής Γεωχημείας Τίτλος Μαθήματος Ενότητα 2: Μεθοδολογία Έρευνας Περιβαλλοντικής Γεωχημείας Αριάδνη Αργυράκη Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Μεθοδολογία Έρευνας Περιβαλλοντικής Γεωχημείας Μονοπαραμετρική

Διαβάστε περισσότερα

Τάση συγκέντρωσης. Μέτρα Κεντρικής Τάσης και Θέσης. Μέτρα Διασποράς. Τάση διασποράς. Σχήμα της κατανομής

Τάση συγκέντρωσης. Μέτρα Κεντρικής Τάσης και Θέσης. Μέτρα Διασποράς. Τάση διασποράς. Σχήμα της κατανομής Τάση συγκέντρωσης Μέτρα Κεντρικής Τάσης και Θέσης Τάση διασποράς Μέτρα Διασποράς Σχήμα Σχήμα της κατανομής Αριθμητικός Μέσος Γεωμετρικός Μέσος Μέτρα Κεντρικής Τάσης Αρμονικός Μέσος Διάμεσος ή Κεντρική

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να

Διαβάστε περισσότερα

Συναρτήσεις. Ορισμός Συνάρτησης

Συναρτήσεις. Ορισμός Συνάρτησης Συναρτήσεις Ορισμός Συνάρτησης Συνάρτηση είναι μια διαδικασία με την οποία κάθε στοιχείο ενός συνόλου Α αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου Β. Σχόλιο : Τα σύνολα Α και Β είναι

Διαβάστε περισσότερα

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ

ΟΜΑΔΟΠΟΙΗΣΗ ΠΑΡΑΤΗΡΗΣΕΩΝ ΠΑΡΑΤΗΡΗΣΕΩΝ Όταν το πλήθος των παρατηρήσεων είναι μεγάλο, είναι απαραίτητο οι παρατηρήσεις να ταξινομηθούν σε μικρό πλήθος ομάδων που ονομάζονται κλάσεις (class intervals). Η ομαδοποίηση αυτή γίνεται

Διαβάστε περισσότερα

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o

Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής Σεναρίων Κινητός Μέσος σε Χρονοσειρές o o o ΙΩΑΝΝΗΣ Κ. ΔΗΜΗΤΡΙΟΥ Εφαρμογές Ποσοτικές Ανάλυσης με το Excel 141 ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Ανάλυση Δεδομένων Στατιστικές συναρτήσεις Γραφική και πινακοποιημένη αναπαράσταση δεδομένων (ιστόγραμμα) Διαχειριστής

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. για τα οποία ισχύει y f (x) , δηλαδή το σύνολο, x A, λέγεται γραφική παράσταση της f και συμβολίζεται συνήθως με C Επιμέλεια: Κ Μυλωνάκης ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΕΡΩΤΗΣΗ Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α; Έστω Α ένα υποσύνολο του R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία

Διαβάστε περισσότερα

Τεχνική Υδρολογία (Ασκήσεις)

Τεχνική Υδρολογία (Ασκήσεις) Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών Τεχνική Υδρολογία (Ασκήσεις) Κεφάλαιο 2 ο : Κατακρημνίσματα

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 3 ΜΑΪΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝΟΛΟ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ Μ.Ν. Ντυκέν, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. Ε. Αναστασίου, Πανεπιστήμιο Θεσσαλίας Τ.Μ.Χ.Π.Π.Α. ΔΙΑΛΕΞΗ 03 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Βόλος, 2016-2017 1 1. Περιγραφική Ανάλυση Παρουσίαση

Διαβάστε περισσότερα

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics)

Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) Μέρος 1ο. Περιγραφική Στατιστική (Descriptive Statistics) 1. Οργάνωση και Γραφική παράσταση στατιστικών δεδομένων 2. Αριθμητικά περιγραφικά μέτρα Εφαρμοσμένη Στατιστική Μέρος 1 ο Κ. Μπλέκας (1/13) στατιστικών

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΒΙΟΛΟΓΙΑΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 31/3/2013 ΘΕΜΑ Α Να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση: 1. Τα δερματόφυτα προσβάλλουν: α. το τριχωτό της κεφαλής β. το στόμα γ. τον

Διαβάστε περισσότερα

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών

Διαβάστε περισσότερα