Symbolic Computation of Exact Solutions of Two Nonlinear Lattice Equations
|
|
- Ἓσπερος Ζυγομαλάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 3rd Itertiol Coferece o Mchiery Mterils d Iformtio Techology Applictios (ICMMITA 5) Symbolic Compttio of Exct Soltios of Two Nolier Lttice Eqtios Sheg Zhg d Yigyig Zhob School of Mthemtics d Physics Bohi iversity Jizho 3 PR Chi szhgchi@6.com b37776@qq.com Keywords: Nolier lttice eqtio; Discrete G /G-expsio method; Exct soltio Abstrct. I this pper modified discrete G /G-expsio method is sed to costrct exct soltios of Tod lttice eqtio d Ablowitz-Ldik lttice eqtios. With the id of compter symbolic compttio we obtied i iform wy hyperbolic fctio soltios trigoometric fctio soltios d rtiol soltios of these two olier lttice eqtios. Whe the prmeters re tke s specil vles some kow soltios re recovered. It is show tht the modified method with symbolic compttio provides more effective mthemticl tool for solvig olier lttice eqtios i sciece d egierig. Itrodctio Solvig olier lttice eqtios plys importt role i my fields of sciece d egierig. I the pst severl decdes my effective methods for costrctig exct soltios of olier prtil differetil eqtios (PDEs) hve bee proposed sch s those i [-5]. slly it is hrd to geerlize oe method for olier PDEs to solve olier lttice eqtios. I 8 Wg Li d Zhg [6] proposed ew method clled the G /G-expsio method to fid trvellig wve soltios of olier PDEs. Some reserchers sch s Wg et l. [7] d Ebdi d Bisws [8-] hve doe sigifict work sig the method to costrct hyperbolic fctio soltios trigoometric fctio soltios d rtiol soltios of some importt eqtios. This method ws geerlized by Zhg Tog d Wg [] for olier PDEs with vrible coefficiets. More recetly Zhg et l. [] fod the itertive reltios betwee the lttice idices by crefl lysis d devised effective discrete lgorithm for sig the G /G-expsio method [6] to costrct hyperbolic fctio soltios d trigoometric fctio soltios of olier differetil- differece eqtios (DDEs). Lter Zhg et l. [3] employed embedded prmeter to modify the lgorithm i [] for ot oly hyperbolic fctio soltios trigoometric fctio bt lso rtiol soltios of olier DDEs. I order to show the vlidity d dvtges of the improved method we shll se the modified discrete method [3] to solve the Tod lttice eqtio d the Ablowitz-Ldik lttice eqtios i []. Exct soltios of Tod lttice eqtio Let s first cosider the fmos Tod lttice eqtio [36]: d (t ) d (t ) + [ + (t ) + (t ) (t )] =. dt dt We se the wve trsformtio (t ) = (ξ ) ξ = d + ct + ζ the Eq. () becomes c (c + )( + + ) =. () We sppose Eq. () hs the soltio i the form 5. The thors - Pblished by Atltis Press () 668
2 G ( ξ ) = + G( ξ ) d+ ελ µ G ( ξ ( ) + + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + + G ( ξ ) d ελ ( µ ) λ ) G( ξ ) = d+ ελ ( µ ) d+ ελ µ G ( ξ ( ) + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + G ( ξ ) d ελ ( µ ) λ + + ) G( ξ ) = where ( ) G ξ stisfies d+ ελ ( µ ) (3) () (5) G ξ G ξ + λ + µ G( ξ ) =. (6) d ( ) d ( ) dξ dξ Sbstittig Eqs. (3)-(5) log with Eq. (6) ito Eq. () d sig Mthemtic we obti set of lgebric eqtios for d d c. Solvig the set of lgebric eqtios we hve three cses λ µ λ µ sih( d) sih( d) = = c = d = d λ µ λ µ ε = d = µ λ µ λ si( d) si( d) = = c = d = d µ λ µ λ ε = d = (7) (8) λ = d = c = d d = d ε = d = µ =. (9) Whe λ µ > we obti hyperbolic fctio soltio of Eq. (): λ µ λ µ µ λ λ µ Csih( ξ) + Ccosh( ξ) λsih( d) = sih( d ) + () λ µ λ µ λ µ Ccosh( ξ) + Csih( ξ) λ µ sih( d) where ξ = d Settig λ µ ζ = c d C = from soltio () we obti λ µ = λ µ λ sih( d) λ µ d = k sih( k)th( k sih( k) t + c) () which is the kow kik-type solitry wve soltio i []. If set obti λ + µ = λ µ λsih( d) λ µ d = k ζ = c d C = from soltio () we 669
3 sih( k)coth( k sih( k) t + c) () which is the kow siglr trvellig wve soltio i []. Whe λ µ < we obti hyperbolic fctio soltio of Eq. (): µ λ µ λ µ λ µ λ Csi( ξ) + Ccos( ξ) λsi( d) = si( d ) + (3) µ λ µ λ µ λ Ccos( ξ) + Csi( ξ) µ λ si( d) where ξ = d Settig µ λ ζ = c d C = from soltio (3) we obti λ + µ = µ λ λsi( d) λ µ d = k si( k)t( k si( k) t + c) () which is the kow periodic wve soltio i []. If set obti λ + µ = µ λ λs i( d) µ λ d = k ζ = c d C = from soltio (3) we si( k)cot( k si( k) t + c) (5) which is the kow periodic wve soltio i []. Whe λ µ = we obti rtiol soltio of Eq. (): dc d λ (6) = C + Cξ where ξ = d dt + Settig dλ d = k ζ = c d C = from soltio (6) we obti k (7) k kt + c which is the kow rtiol soltio i []. Exct soltios of Ablowitz-Ldik lttice eqtios We ext cosider the Ablowitz-Ldik lttice eqtios []: d () t [ + () t v()][ t + () t + ()] t + ()= t (8) dt d v () t + [ + () t v()][ t v+ () t + v ()] t v()=. t (9) dt We se the wve trsformtio = ( ξ ) v = V( ξ ) ξ = d + ct + ζ the Eqs. (8) d (9) become c ( + V )( + ) + = () + cv + ( + V )( V + V ) V =. () + 67
4 Accordig to the homogeeos blce procedre we sppose tht Eqs. () d () hve the followig forml soltios: G ( ξ ) = + G( ξ ) + G ( ξ d ελ ( µ ) + + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + + G ( ξ ) d ελ ( µ ) λ ) G( ξ ) = d+ ελ ( µ ) () (3) V d+ ελ µ G ( ξ ( ) + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + G ( ξ ) d ελ ( µ ) λ + + ) G( ξ ) = () d+ ελ ( µ ) G ( ξ ) = β + β β G( ξ ) (5) V d+ ελ µ G ( ξ ( ) + + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ + β + β G ( ξ ) d ελ ( µ ) λ ) G( ξ ) = d+ ελ ( µ ) (6) V + G ( ξ d ελ ( µ ) + ε ) d+ ελ ( µ ) d+ ελ ( µ ) G( ξ ) λ β + β G ( ξ ) d ελ ( µ ) λ + + ) G( ξ ) = (7) d+ ελ ( µ ) where G( ξ ) stisfies Eq. (6). Sbstittig Eqs. ()-(7) log with Eq. (6) ito Eqs. () d () d sig Mthemtic we obti set of lgebric eqtios for β β d d c. Solvig the set of lgebric eqtios we hve three cses λ µ ( λ λ µ )sih ( d) ( λ µ ) = = ( λ λ µ ) β = λ µ λ µ sih ( d) sih ( d) β = c = d = d ε = d = ( λ µ µ µ λ ( λ µ λ )si ( d) ( µ λ ) = = ( λ i µ λ ) β = (8) (9) (3) 67
5 µ λ µ λ si ( d) isi ( d) β = c = d = d ε = d = ( µ λ ) µ λ (3) λd = = λ β = d λ β = = = ε = d = µ = (3) c d d Whe λ µ > we obti hyperbolic fctio soltios of Eqs. (8) d (9): λ µ λ µ Csih( ξ ) cosh( ) + C ξ = λ µ λ µ λ µ λ µ Ccosh( ξ) + Csih( ξ) (33) v λ µ λ µ λ µ λ µ sih ( d) Csih( ξ) + Ccosh( ξ) sih ( d) = λ µ λ µ λ µ λ µ Ccosh( ξ) + Csih( ξ) λ µ sih ( d) where = λ ξ d Settig µ = λ µ (3) we hve (3) d C = from soltios (33) d = + th( d sih ( d) t+ ζ) (35) sih ( d) sih ( d) v = th( d sih ( d) t ζ) + (36) which re eqivlet to the kik-type solitry wve soltios i []. λ If set µ = d C = the soltios (33) d (3) become = + coth( d sih ( d) t+ ζ) (37) sih ( d) sih ( d) v = coth( d sih ( d) t ζ) + (38) which re eqivlet to the siglr trvellig wve soltios i []. Whe λ µ < we obti hyperbolic fctio soltios of Eqs. (8) d (9): v µ λ µ λ Csi( ξ ) cos( ) + C ξ i = µ λ µ λ µ λ µ λ Ccos( ξ) + Csi( ξ) µ λ µ λ µ λ λ µ si ( d) Csi( ξ) + Ccos( ξ) isi ( d) = µ λ µ λ µ λ µ λ Ccos( ξ) + Csi( ξ) µ λ isi ( d) where ξ = d µ λ (39) () 67
6 Whe λ µ = we obti rtiol soltios of Eqs. (8) d (9): C = C + Cξ v where ξ = d + Cd = ( C + C ξ ) () Ackowledgemets This work ws spported by the PhD Strt-p Fds of Bohi iversity (bsqd35) d Lioig Provice of Chi (37) the Lioig BiQiW Tlets Progrm (3955). Refereces [] S.Y. Lo d X.Y. Tg: Method of Nolier Mthemticl Physics (Sciece Press Beijig 6) [] C.S. Grder J.M. Greee M.D. Krskl d R.M. Mir: Phys. Rev. Lett. Vol. 9 (965) p. 95 [3] M.J. Ablowitz d P.A. Clrkso: Solito Nolier Evoltio Eqtios d Iverse Sctterig (Cmbridge iversity Press Cmbridge 99) [] M.R. Mirs: Bäckld Trsformtio (Spriger-Verlg Berli 978) [5] R. Hirot: Phys. Rev. Lett. Vol. 7 (97) p. 9 [6] M.L. Wg: Phys. Lett. A Vol. 3 (996) p. 79 [7] E.G. F: Phys. Lett. A Vol. 3 () p. 3 [8] S. Zhg d T.C. Xi: Comm. Theor. Phys. Vol. 5 (6) p. 985 [9] S. Zhg Y.Y. Zho IAENG It. J. Appl. Mth. Vol. () p. 77 []S. Zhg B. X d H.Q. Zhg It. J. Compt. Mth. Vol. 9 () p. 6 []S. Zhg d D. Wg: Therm. Sci. Vol. 8 () p. 555 []S. Zhg J.L. Tog d W. Wg: Compt. Mth. Appl. Vol. 58 (9) p. 9 [3]S. Zhg d B. Ci: Nolier Dy. Vol. 78 () p. 593 []S. Zhg B. X d A.X. Peg: Appl. Mech. Mter. Vol. 39 (3) p. 57 [5]S. Zhg Y.Y. Zho d B. Ci: Adv. Mter. Res. Vol () p. 76 [6]M.L. Wg X.Z. Li d J.L. Zhg: Phys. Lett. A 37 (8) p. 7 [7]M.L. Wg J.L. Zhg d X.Z. Li: Appl. Mth. Compt. Vol. 6 (8) p. 3 [8]G. Ebdi d A. Bisws: J. Frkli Ist. Vol. 37 () p. 39 [9]G. Ebdi d A. Bisws: Comm. Nolier Sci. Nmer. Siml. Vol. 6 () p. 377 []G. Ebdi d A. Bisws: Mth. Compt. Model. Vol. 53 () p. 69 []S. Zhg J.L. Tog d W. Wg: Phys. Lett. A Vol. 37 (8) p. 5 []S. Zhg L. Dog J.M. B d Y.N. S Phys. Lett. A Vol. 373 (9) p. 95 [3]S. Zhg L. Dog J.M. B d Y.N. S: Prm-J. Phys. Vol. 7 () p. 7 []Z. Wg: Compt. Phys. Comm. Vol. 8 (9) p. 673
SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES
Hcettepe Jourl of Mthemtics d Sttistics Volume 4 4 013, 331 338 SOME IDENTITIES FOR GENERALIZED FIBONACCI AND LUCAS SEQUENCES Nuretti IRMAK, Murt ALP Received 14 : 06 : 01 : Accepted 18 : 0 : 013 Keywords:
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eecel FP Hpeolic Fuctios PhsicsAMthsTuto.com . Solve the equtio Leve lk 7sech th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh cosh c 7 Sih 5cosh's 7 Ece e I E e e 4 e te 5e 55 O 5e 55 te
PhysicsAndMathsTutor.com
PhysicsAMthsTuto.com . Leve lk A O c C B Figue The poits A, B C hve positio vectos, c espectively, eltive to fie oigi O, s show i Figue. It is give tht i j, i j k c i j k. Clculte () c, ().( c), (c) the
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com
Eeel FP Hpeoli Futios PhsisAMthsTuto.om . Solve the equtio Leve lk 7seh th 5 Give ou swes i the fom l whee is tiol ume. 5 7 Sih 5 Cosh osh 7 Sih 5osh's 7 Ee e I E e e 4 e te 5e 55 O 5e 55 te e 4 O Ge 45
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS
Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3
Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Degenerate Solutions of the Nonlinear Self-Dual Network Equation
Commu Theor Phys 7 (09 8 Vol 7 o Jauary 09 Degeerate Solutios of the oliear Self-Dual etwork Equatio Yig-Yag Qiu ( 邱迎阳 Jig-Sog He ( 贺劲松 ad Mao-Hua Li ( 李茂华 Departmet of Mathematics igbo Uiversity igbo
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials
Itertiol Jourl of Siee Reserh (IJSR ISSN (Olie: 39-764 Ie Coperius Vlue (3: 6.4 Ipt Ftor (3: 4.438 Quruple Siulteous Fourier series Equtios Ivolvig Het Poloils Guj Shukl, K.C. Tripthi. Dr. Aekr Istitute
ECON 381 SC ASSIGNMENT 2
ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes
Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation
Qudrti Equtios d Iequtios Polyomil Algeri epressio otiig my terms of the form, eig o-egtive iteger is lled polyomil ie, f ( + + + + + +, where is vrile,,,, re ostts d Emple : + 7 + 5 +, + + 5 () Rel polyomil
CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar
CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12
SHORT REVISION Trigoometric Rtios & Idetities BASIC TRIGONOMETRIC IDENTITIES : ()si θ + cos θ ; si θ ; cos θ θ R (b)sec θ t θ ; sec θ θ R (c)cosec θ cot θ ; cosec θ θ R IMPORTANT T RATIOS: ()si π 0 ; cos
Envelope Periodic Solutions to Coupled Nonlinear Equations
Commun. Theor. Phys. (Beijing, China) 39 (2003) pp. 167 172 c International Academic Publishers Vol. 39, No. 2, February 15, 2003 Envelope Periodic Solutions to Coupled Nonlinear Equations LIU Shi-Da,
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
INTEGRAL INEQUALITY REGARDING r-convex AND
J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.
VOX Feel Pretty MARA et Trois Filles - N 12 BERNSTEN Leonrd Adpttion F. Pissloux Violons Contrebsse A 2 7 2 7 Allegro qd 69 1 2 4 5 6 7 8 9 B 10 11 12 1 14 15 16 17 18 19 20 21 22 2 24 C 25 26 27 28 29
Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*
Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΔΠΜΣ ΑΜΠΕΛΟΥΡΓΙΑ- ΟΙΝΟΛΟΓΙΑ Επίδραση άρδευσης και διαφυλλικής λίπανσης με απενεργοποιημένους ζυμομύκητες
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction
ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.15013) No.,pp.18-19 New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.
Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Diane Hu LDA for Audio Music April 12, 2010
Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Παραμετρικές εξισώσεις καμπύλων. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Παραμετρικές εξισώσεις καμπύλων Παραδείγματα ct (): U t ( x ( t), x ( t)) 1 ct (): U t ( x ( t), x ( t), x ( t)) 3 1 3 Θέσης χρόνου ταχύτητας χρόνου Χαρακτηριστικού-χρόνου
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1
VOLTERR ERE EXO O LER OE RTE EQUTO The i ler diode eutio re: [ ][ ] V The exio of eutio i: [ ] ddig eutio d V V The iut urret i ooed of the u of,. ooet, Î, tie vryig ooet. We thu let 6 The Volterr exio
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Orthogonal polynomials
Orthogol polyomils We strt with Defiitio. A sequece of polyomils {p x} with degree[p x] for ech is clled orthogol with respect to the weight fuctio wx o the itervl, b with < b if { b, m wxp m xp x dx h
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT
2003 6 RESEARCH & DEVELOPME 00-893X(2003) 06-003 - 06 3 CDMA Ξ,, (, 36005), roecker Delta, CDMA, DS - CDMA, CDMA, CDMA CDMA, CDMA, Gold asami DS - CDMA CDMA ; ; ; 929. 5 ;O45. 5 A Performace Aalysis of
PID.
- :... PID. PID...PID :. [ ].[].. []. [] []......... // //. hrf.mehd@gml.com rfee@du.c.r ... [].... PID. ().... () u v (,, u (, (,, v (, (,, w (, w Z Z Z w w Z eor ctutor : ().. -.. [].. [] -. []. [] [].
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα